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Abstract: This paper presents a novel framework comprising analytical, hydrological, and remote 

sensing techniques to separate the impacts of climate variation and regional human activities on 

streamflow changes in the Karkheh River basin (KRB) of western Iran. To investigate the type of 

streamflow changes, the recently developed DBEST algorithm was used to provide a better view of 

the underlying reasons. The Budyko method and the HBV model were used to investigate the de-

creasing streamflow, and DBEST detected a non-abrupt change in the streamflow trend, indicating 

the impacts of human activity in the region. Remote sensing analysis confirmed this finding by 

distinguishing land-use change in the region. The algorithm found an abrupt change in precipita-

tion, reflecting the impacts of climate variation on streamflow. The final assessment showed that 

the observed streamflow reduction is associated with both climate variation and human influence. 

The combination of increased irrigated area (from 9 to 19% of the total basin area), reduction of 

forests (from 11 to 3%), and decreasing annual precipitation has substantially reduced the stream-

flow rate in the basin. The developed framework can be implemented in other regions to thoroughly 

investigate human vs. climate impacts on the hydrological cycle, particularly where data availabil-

ity is a challenge. 
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1. Introduction 

The Karkheh River basin (KRB), called “the food basket of Iran”, is one of the most 

important agricultural areas in Iran. Irrigated farmland in the basin produces wheat for 

the entire country, while non-irrigated areas yield grain and livestock products [1]. The 

KRB is equally essential for hydropower production. Nonetheless, due to frequent 

droughts, massive agricultural activities, and dam construction programs, the KRB has 

been experiencing substantial streamflow reduction in recent decades [1]. Enduring 

streamflow reduction in the basin may put the sustainability of food production for the 

nation, as well as the downstream environment, in jeopardy. Therefore, it is of vital im-

portance to investigate the primary cause of streamflow reduction to develop an appro-

priate management plan [2]. 

The two main causes of streamflow change are climate variation (such as changing 

precipitation patterns and intensity, and/or temperature) [3], and human activities (such 
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as land use changes, water withdrawal, and/or hydraulic structures) [4]. Studying the im-

pacts of climate variation and human activities on streamflow provides crucial infor-

mation for authorities and decision-makers to develop sustainable water resource man-

agement plans concerning water distribution and agricultural water management [5,6].  

To separate the impacts of regional human activities and climate variation on stream-

flow change, hydrological modelling and the Budyko method are widely used (e.g., [7–

9]). While studies such as Geris et al. (2015) [10] and Birhanu et al. (2019) [11] used hydro-

logical modelling to assess the impact of land use and land cover change on streamflow 

variation, others, such as Patterson et al. (2013) [12], Wang et al. (2013) [13] and Liu et al. 

(2017) [5], implemented the Budyko method to investigate streamflow changes in differ-

ent catchments. Patterson et al. (2013) used the Budyko equation to study the impact of 

both climate and human activities on the mean annual streamflow in the South Atlantic 

region of the USA. Human activities were found to be responsible for streamflow changes 

in 27% of studied basins in the South Atlantic area, which has been experiencing agricul-

tural land expansion and dam construction [12]. Wang et al. (2013) [13] successfully em-

ployed the Budyko model to separate impacts of climate variation and human activities 

on runoff in the Haihe River basin in China, where it was concluded that human activities 

were responsible for more than 50% of the runoff reduction in the basin. In the Yanhe 

basin in China, the Budyko model was used to examine runoff reduction. The model sug-

gested that runoff reduction in the Yanhe River basin was predominantly related to cli-

mate variation rather than direct human interaction. Climate variation was estimated to 

account for 46.1–60.8% (mean 54.1%) of the total decrease in runoff, whereas human ac-

tivities accounted for 39.1–53.9% (mean 45.9%) [14]. In another study conducted on several 

river basins across China, Liu et al. (2017) used the Budyko model and found that, until 

recently, climate variation was a controlling factor affecting streamflow; however, during 

recent years, the effects of human activities have been increasing. They compared the per-

formance of the Budyko model with hydrological models from literature and showed that 

in the assessment of climate variation and human activities on streamflow, Budyko-type 

and hydrological models perform equally well. However, since the Budyko model does 

not require complicated parameterization and large input data, it is more efficient when 

attempting to quantify the impacts of influencing factors on streamflow [5]. 

Hence, to assess the hydrological response of a basin on a finer timescale (e.g., daily 

or monthly timescale), hydrological modelling is a useful method. The Budyko method, 

on the other hand, is useful to analyze responses of watersheds to climatic variation in a 

more straightforward and systematic approach [14]. 

Another major advantage of the Budyko method is to express streamflow variation 

depending on evapotranspiration and precipitation [15]. Therefore, it can provide insights 

on the effects of human activities and climate variation on the hydrological system. It is 

noteworthy that while the two methods are widely used and proven to be efficient in in-

vestigating streamflow changes, they need to be validated using an independent ap-

proach. 

The first step to separate the impacts of human activities and climate variation on 

streamflow is to detect change points (breakpoints) in the streamflow time series. How-

ever, this step can be very challenging because of the non-linear interdependence of 

streamflow, climate and human impacts [15]. Streamflow, as a hydrological variable, is 

highly dependent on precipitation (a variable of semi-random nature), which can vary 

significantly and, in a long-term period, have multiple breakpoints [15]. In most studies 

associated with separating the impacts of climate variation and human activities, a break-

point is identified using common trend analysis such as the Petit test, which separates the 

natural (base) period from the impacted period (e.g., [16]). However, the majority of these 

analyses have not assessed the importance and number of changes, types, and causes. 

From a policy-making perspective, knowing the type of change (i.e., abrupt or non-

abrupt) can assist in mitigation plans and the operation of sustainable strategies for water 

resource management [15]. Hydrological change, more particularly streamflow change, 
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can take place gradually over time (non-abrupt change) or suddenly in a short period 

(abrupt change) while having similar impact on the hydrological system over different 

periods of time. Typically, non-abrupt changes can be an indicator of land use and land 

cover change (LULC), while abrupt changes can be a result of sudden human activities, 

such as changing water distribution systems, dam installation, changes in observation 

systems or due to a sudden climate parameter variation [15,17]. 

In view of the above, this study introduces a novel framework that combines mathe-

matical, hydrological, and remote sensing methods to separate the contribution of climate 

variation and regional human activities (such as land use/land cover change) to stream-

flow changes of large data-scarce river basins and verifies the results using an independ-

ent approach. For this purpose, we used hydrological data of the KRB as a relevant case 

study to validate the implemented framework. We applied the Budyko method and hy-

drological model (HBV model) to analyze mean annual streamflow variations of the stud-

ied region during the last three decades (from 1980 to 2012) and quantify the impact of 

climate variation vs. regional human impacts. To detect the breakpoints in the observed 

streamflow and climate variables (i.e., precipitation and evapotranspiration), the newly 

developed Detecting Breakpoints and Estimating Segments in Trend (DBEST) algorithm 

[18] was employed, which provides useful information on the number, significance, and 

type of changes observed. The DBEST algorithm provides insights of the length of non-

abrupt changes and underlying reasons. Applying the DBEST algorithm in hydrological 

studies, offers a systematic improvement for segmenting streamflow time-series before 

implementing the hydrological modeling and Budyko method. To validate the proposed 

models’ results and the DBEST detected breakpoint/s, remote sensing was employed and 

multiple land use maps of the basin area over the studied period were provided. 

To summarize, we developed a novel framework that comprises quantification of the 

impact of human activities and climate variability on streamflow reduction, evaluation of 

the Budyko method using the HBV model, and validation of the findings using remote 

sensing and image classification techniques. Although such a hybrid framework will pro-

vide a basis to discuss reliability of the results depending on agreement among different 

individual methods’ outcome, we included sensitivity and uncertainty analyses as sup-

plementary to the framework to emphasize reliability of the results based on modelling, 

which is a way to conceptualize reality. 

2. Materials and Methods 

2.1. Study Area 

The KRB, with an area of 43,000 km2 stretching over seven provinces and 32 districts, 

is located in the western part of Iran between 30° and 35° N latitude and 46° and 49° E 

longitude (Figure 1). The basin is the primary source of wheat production in Iran and 

encompasses 9% of the total irrigated area of the country [19]. As it plays a key role in 

food production in Iran, any hydrological changes in the basin directly affect the liveli-

hoods of farmers as well as urban consumers at both basin and country levels. Five major 

rivers flow through the KRB, and the basin is divided into five main sub-basins named 

the Gamasiab, Qarasou, Kashkan, Seimareh, and Upper Karkheh [1]. The Upper Karkheh 

sub-basin is located upstream of the Karkheh Dam, and the flow that reaches the Upper 

Karkheh outlet is drained from the entire basin. 

The KRB accommodates 5% of Iran’s population, which makes it the third most pop-

ulated basin in the country. It has 3.5 million residents, of which 40% live in urban areas. 

Figure A1 in Appendix B shows the rural and urban population of each sub-basin. It 

should be noted that there is no official population record based on catchment division, 

and values are approximated based on the data of the smallest available countrywide di-

vision. The population is mostly concentrated in the Qarasou sub-basin, with 30% of the 

population occupying 17% of the KRB area. The southern parts of the KRB basin, with 

almost 11% of the area, are home to 5% of the population [20,21]. 



Water 2021, 13, 2404 4 of 25 
 

 

Figure 1 illustrates the location of the KRB in Iran and the climatic stations in each 

sub-basin. 

 

Figure 1. Location of the Karkheh River basin in Iran. E0 denotes potential evapotranspiration. 

The altitude of the basin varies from less than 10 m in the South to more than 3500 m 

above mean sea level in the North. Mean annual precipitation ranges from 150 mm in the 

south to 750 mm in the northern region (see Table 1). The maximum summer temperature 

varies between 35 and 45 °C across the basin. Range and pasture, rainfed agriculture, for-

est, irrigated agriculture, and urban area are the dominant land uses [19]. 
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Table 1. Karkheh sub-basin characteristics. 

Sub-Basin 
Area 

(km2) 

Mean Altitude 

(m amsl) 

Mean Precipitation 

(mm/Year) 
Mean Streamflow (mm/Year) 

Qarasou 5508 1559 424 111 

Gamasiab 11,512 1856 461 81 

Kashkan 9524 1611 477 158 

Seimareh 12,350 1179 412 97 

Upper Karkheh 3995 795 422 114 

In the basin, spring water is traditionally used for irrigation; however, due to fre-

quent droughts and subsequent surface water scarcity, groundwater pumping and river 

water diversions have become widespread in recent decades. The competition between 

irrigated agriculture and wetland ecosystems has led to an increasing salinity and reduced 

surface water availability, particularly in the lower parts of the basin [19]. 

During the twentieth century, the KRB remained mainly unregulated. The first dam 

constructed in the area was the Karkheh Dam, which was completed in 2001 and was the 

first large multipurpose dam in Iran, with a total storage of 5600 MCM (Table A1). Its 

reservoir is designed to irrigate 320,000 ha of agricultural land in the Upper Karkheh ba-

sin. The Seimareh Dam was built in 2013, and there are a few smaller reservoirs in opera-

tion, with several other small scale dams and irrigation schemes either under construction 

or under planning, all of which could impose extra burden on the streamflow of the study 

area [19]. 

2.2. Data 

The study period (1980–2012) was selected considering availability and quality of 

data. Daily precipitation data for the study period were acquired from a well-distributed 

gauge network (57 stations) across the basin (Figure 1). The Thiessen method was used to 

determine the weight of each station for the total precipitation of the sub-basins. 

Potential evapotranspiration (E0) stations are not spatially representative of the basin, 

though these stations (hereafter called reference stations) have a sufficiently long period 

of recorded temperature and E0. Temperature stations, however, are relatively well-dis-

tributed in the basin and provide a long period of recorded temperature. To extend the E0 

estimation throughout the basin, temperature stations were classified based on their alti-

tude and their distance from the reference stations [22]. Accordingly, for each year, a 

monthly relationship between observed E0 and temperature in the reference stations was 

developed to calculate E0 at temperature stations for the same altitude class. For instance, 

in 1995, for the Polchehr reference station (Figure 1), there is a high correlation between 

monthly E0 and monthly mean temperature, T (R2 = 0.95) (see Figure A2): 

��(�)E�(�)  =  15.103 . �(�) ∙  T(�)  −  20.929 (1)

Given that the Kermanshah temperature station is located at the same altitude and 

has a significant correlation with the Polchehr station (i.e., 0.94), TKermanshah was substituted 

in Equation (1) to estimate E0 for the Kermanshah station. Similarly, for each year of the 

study period and each temperature station, a relationship was derived to provide spatially 

distributed E0 data throughout the basin. Table A2 shows the temperature stations that 

are correlated with the E0 reference stations. 

Regarding streamflow data, five discharge stations located at the outlet of the sub-

basins, namely Polchehr at the Gamasiab River, Ghoorbaghestan at the Qarasou River, 

Poldokhtar at the Kashkan River, Nazarabad at the Seimareh River, and Payepol at the 

Upper Karkheh River, were selected considering their locations, period of records, and 

quality of data (Figure 1 and Table A3). The Payepol station is located downstream of the 

Karkheh Dam and receives a cumulative discharge from the upstream sub-basins. Thus, 

it provides useful information about the impact of the reservoir on the main river flow. 
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2.3. Change Detection 

Hydrological modelling and the Budyko method, were employed to separate the im-

pacts of climate variation and human activities on mean annual streamflow change in the 

KRB. The total change in streamflow (ΔQ) can be assumed to depend on climate variation 

(ΔQ�) and human activity (ΔQ�) [23–25]: 

∆Q =  ∆Q� + ∆Q� (2)

Major land use changes results in gradual streamflow changes, while climate can af-

fect the streamflow abruptly [15,17]. Hence, the DBEST method was employed to pinpoint 

changes or breakpoints in the mean annual streamflow during the study period. DBEST 

is a user-friendly algorithm for analyzing time-series with two main application domains 

of generalizing trends to main features and detecting and characterizing trend changes. It 

uses a novel segmentation algorithm that simplifies the trend into linear segments, using 

the number of changes or a threshold for the magnitude of changes of interest for detec-

tion. In addition to detecting trend changes and estimating the statistical significance of 

the trend (using Student’s t-test), DBEST determines the timing, magnitude, number, di-

rection, and type (abrupt or gradual) of the detected changes [15,18]. The validity of the 

detected changes is also examined in DBEST using Bayesian information (BIC) [26]. 

The detected breakpoint divides the streamflow time-series into a pre- and post-

change period. In the pre-change period, also called the natural period, it is assumed that 

humans’ impacts on streamflow is not considerable. For the period after the breakpoint, 

the post-change period, both climate variation and human activities are considered to af-

fect the streamflow [14,15,27–29]. 

2.4. Assessment of Streamflow Changes Using the HBV Hydrological Model 

Different versions of the HBV model have been successfully applied in several basins 

across the world to simulate streamflow changes, including snow-influenced areas as well 

as semiarid climates at both local and regional scales (e.g., [24,30–32]). The latest version 

of the model, HBV-light, was selected for this study, due to its simple yet flexible struc-

ture. This is an important feature for a model to simulate a basin like Karkheh, which 

covers a large space from high mountainous terrain to low land areas at sea level. In this 

version, the basin area can be subdivided into different elevations and vegetation zones, 

suitable for the KRB, which is characterized by extensive elevation and vegetation range 

[30]. The model simulates streamflow at daily time steps using daily climate variables 

such as potential evapotranspiration, precipitation, and temperature. The HBV-light 

model uses variables from the warming-up period for initialization of parameters. An em-

bedded genetic algorithm (GA) is used for auto- calibration. To assess the performance of 

the calibration, the model provides several common yet informative measures such as 

annual mean difference (δ), Nash–-Sutcliffe efficiency (Re), and Kling– Gupta efficiency 

(KGE). 

The pre-change period was divided into calibration and validation periods. The cal-

ibration parameters (Table A4) were adapted according to the manual, catchment charac-

teristics, and literature [24,25,30,33]. After calibration and validation of the model for the 

pre-change period, the HBV-light model was used to simulate flow of the post-change 

period, keeping parameters constant. Accordingly, ΔQ� was calculated by deducting the 

mean annual simulated streamflow from the post-change period and that of the pre-

change period. ΔQ� was calculated as the difference between the mean annual simulated 

and observed streamflow, both from the post-change period (e.g., [8,14,15,27–29,34]). In 

this way, we were able to quantify the impact of climate variables and regional human 

activity for the post-change period. 

  



Water 2021, 13, 2404 7 of 25 
 

 

2.5. Assessment of Streamflow Changes Using the Budyko Method 

The Budyko method defines a physically understandable link between annual evap-

otranspiration and average water and energy balance at the basin level. It assumes that 

when the period of study is sufficiently long, the system is steady and water storage 

change is negligible [5]. Considering the water balance equation (Equation (3)), the 

Budyko method investigates the link between precipitation as an input of the hydrological 

system, and evapotranspiration and streamflow as outputs of the system. Hence, in the 

equation the water storage change (∆S) is insignificant when the water balance system is 

in a steady state [35]: 

P = E + Q + ∆S (3)

In the current study, to validate the steady state assumption for the KRB, the ABCD 

model was employed. The ABCD model is a widely used conceptual model which esti-

mates water storage change in the catchment. This conceptual model, developed by 

Thomas (1981), is especially applicable for data-scarce regions [36–38], such as the KRB. 

The ABCD model code is written in R, and the model is further explained in Appendix C. 

After confirming the steady- state condition of the KRB, one of the most popular Budyko-

type equations, the Choudhury equation (Equation (4)), was employed to calculate the 

effects of climate variation and regional human impact on streamflow at the basin level 

[39]. 

�

�
=

1

(1 + �
�
��

�
�

)�/�
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The empirical parameter n is a catchment characteristic, which represents soil prop-

erties, slope, land use, and climate seasonality [23,25,40]. The analytical elasticity method 

was used to define the contribution of each of the two variables to the streamflow changes, 

ΔQ (Equations (5)–(8)). In this method, ɛ� and ɛ��
 (Equations (6) and (7)) are precipita-

tion and potential evapotranspiration elasticity, respectively, and they are assumed to be 

independent [23,41]: 
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(7)

Δ��  =  Δ� −  Δ��ΔQ�  =  ΔQ −  ΔQ� (8)

2.6. Analyzing Land Use–Land Cover Change during the Study Period 

To validate the results of HBV and Budyko models concerning the contribution of 

climate vs. human impacts on stream flow changes, we implemented a remote sensing-

based approach. Given the scarcity of land cover information in the KRB, multispectral 

Landsat satellite imagery were used to investigate the likely relationship between the land 
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cover change and streamflow variation in the basin, and to obtain a spatiotemporal land 

use/land cover (LULC) information for the study area [42]. Landsat 5 Thematic Mapper 

(TM) was selected for this study because it offers high-resolution images (120 m) and com-

plete spatial coverage of the study basin from 1980 to 2012. 

Cloud-free Landsat images were acquired from Landsat 5 TM C1 Level-1 for three 

years of 1987, 1995, and 2012 (different months) representing the pre-change or natural 

period, transition period, and the post-change period, respectively. The images were, 

then, projected to the UTM (zone 38) and WGS 84 data reference system. The ground truth 

data were collected using the Global Positioning System (GPS) and ground control points 

from the Google Earth application to provide a signature for each land use type. These 

data were applied for classification and overall accuracy assessment of the classified im-

ages. Image classification processing was performed in the ENVI 4.8 environment by, em-

ploying a supervised classification technique with the maximum likelihood classifier 

(MLC) algorithm for generating the land use map. The MLC is a commonly used statistical 

technique for image classification and for evaluating the standard LULC [43]. Due to the 

complexity of the land use types in the basin, overlaps among different land use types, 

and a lack of sufficient numbers of historical ground truth data, an optimum threshold 

was determined to simplify the LULC classification of the study area. 

2.7. Uncertainty Analysis 

The application of hydrological models to discriminate the climate variation vs. hu-

man activities is a common approach (e.g., [44–46]). However, if the model is not well- 

calibrated, it can lead to uncertain results [8]. One of the main sources of uncertainty arises 

from non-uniqueness of model parameters, which means that different combinations of 

parameters may result in the same streamflow prediction [30]. Hence, the non-uniqueness 

of the model parameters was investigated. For this the ten -best sets of calibration param-

eters values produced by genetic algorithm (GA) were selected for each sub-basin to sim-

ulate the streamflow for the pre- and post-change periods. Subsequently, the impacts of 

climate variation and human activities were separated, accordingly. 

In the case of Budyko method, the results can be affected by the noisy historical cli-

mate data [8]. In this study, the sensitivity of the Budyko equation to the precipitation and 

evapotranspiration input data was investigated using Equation (9) proposed by Yang et 

al. [41]. The equation derives the possible error of estimating streamflow due to climate 

parameter change as: 

dQ =  ε�
��

�
. Q  (9)

where Q is flowrate (mm/year), ε is streamflow elasticity, and a is a climate parameter. 

To provide an overview of the developed methodological approaches implemented 

in this study, Figure 2 illustrates the roadmap of the present study. 
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Figure 2. Flowchart of the implemented methodology. 

3. Results 

The R-package (DBEST) was implemented to perform breakpoint detection and time-

series analysis. For each sub-basin, DBEST detected one to three breakpoints in the stream-

flow trend, only one of which was major at the 0.05 statistical significance. The detected 

breakpoints were non-abrupt for all sub-basins and mostly occurred during the 1994–1995 

period (Table 2 and Figure 3). 

In the sub-basins, annual streamflow experienced a dramatic decrease from the pre-

change period (1980–1994) to the post-change period (1995–2012). 

Table 2. Average streamflow variation for the pre-change period (Q1) to the post-change period (Q2), and type and mag-

nitude of the change. 

Sub-Basin  Breakpoint Break Type Q1 (mm/Year) Q2 (mm/Year) ΔQ (mm/Year) 
ΔQ 

(%) 

Qarasou 1994 NA * 146 77.9 −68.1 −47% 

Gamasiab 1994 NA 107.8 57.7 −50.1 −47% 

Kashkan 1993 NA 186.2 138.5 −47.7 −26% 

Seimareh 1994 NA 124.2 72.3 −51.9 −42% 

Upper Karkheh 1994 NA 145.4 85.6 −59.8 −41% 

* NA: non-abrupt. 
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Figure 3. Streamflow trend in the sub-basins and their breakpoints as detected by DBEST. 

As presented in Table 3, all sub-basins experienced a reduction in precipitation and 

an increase in evapotranspiration from the pre- to post-change period. The Qarasou sub-

basin showed the most severe decline in average annual precipitation (−19%), while the 

Kashkan sub-basin experienced a minimum change in precipitation (+1%) relative to other 

sub-basins. 

Table 3. E0 and p variation during the pre- and post-change periods. Numbers 1 and 2 denote the pre- and post-change 

period, respectively. 

Sub-Basin E01 (mm) E02 (mm) ΔE0 P1 (mm) P2 (mm) ΔP 

Qarasou 2098 2206 +5% 473 381 −19% 

Gamasab 2021 2277 +13% 494 432 −13% 

Kashkan 2202 2597 +18% 480 474 +1% 

Seimareh 2073 2240 +8% 446 382 −14% 

Upper Karkheh 2138 2344 +9% 454 393 −13% 

The DBEST analysis for potential evapotranspiration showed an increasing trend 

without detecting any significant breakpoint, while precipitation analysis showed two 

major breakpoints (1994 and 2006) in most sub-basins. As shown in Table 4, the major 

precipitation and streamflow breakpoints coincide for all sub-basins except for the Kash-

kan. In this particular sub-basin, the DBEST detected no significant breakpoint for precip-

itation but did detect an insignificant abrupt change in 1990, prior to the year that the 
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streamflow breakpoint took place. In 2006, the Gamasiab, Seimareh, and Qarasou experi-

enced substantial decreases in precipitation. While the streamflow trends were found to 

respond to this change, it did not significantly affect the already decreasing streamflow 

trends. 

Table 4. Precipitation trend analysis and the DBEST-detected breakpoints in the KRB. 

Precipitation Time-Series 

Analysis 

Number of Significant 

Breakpoints 

Type of 

Change 

Year of Occur-

rence 

Year of Streamflow 

Breakpoint 

Gamasiab 2 A *, NA 1994, 2006 1994 

Qarasou 2 A, A 1994, 2006 1994 

Kashkan 0 A 1990 1993 

Seimareh 2 A, A 1994, 2006 1994 

Upper Karkheh 0 NA 1994 1994 

* Abrupt. 

3.1. Hydrological Modelling 

The evaluation indices presented in Table 5 implies that the HBV model was well-

calibrated for the pre-change period, with the poorest performance observed for the Kash-

kan sub-basin (Re = 0.57). This seems to be a result of observed data quality. 

Table 5. Calibration performance indices for the studied sub-basins. 

Basin Qarasou Gamasab Kashkan Seimareh Upper Karkheh 

Re calibration 0.77 0.75 0.57 0.77 0.68 

δ (mm/year) 2.0 −8.0 11.0 5.0 0.0 

KGE 0.88 0.88 0.68 0.82 0.79 

The HBV modelling results for the ΔQc and ΔQh are presented in Table 6. It is shown 

that for all sub-basins except for the Kashkan, the streamflow reduction was mostly 

caused by climate variation. For the case of the Kashkan, streamflow reduction due to 

regional human activities (ΔQh) was significantly higher than ΔQc. 

3.2. Budyko Method 

The ABCD model showed that the average amount of water storage change (∆S), over 

the study period, is negligible (−0.17 mm) confirming that a steady state condition for the 

KRB is applicable (see Appendix C). Consequently, the parameters of precipitation elas-

ticity (εP) and evapotranspiration elasticity (εE0) were calculated using Equations (6) and 

(7) (Table 6). The higher values of εP in comparison to εE0 for all sub-basins suggest that 

the hydrological responses of the sub-basins are more sensitive to the variation in precip-

itation than evapotranspiration. The negative εE0 indicates that evapotranspiration and 

streamflow are inversely related. As can be seen in Table 6, the ΔQc and ΔQh from the 

HBV model and the Budyko method varied between the sub-basins, but for any given 

sub-basin the results were compatible. 

Table 6. Comparison between the HBV model and Budyko method for estimation of streamflow changes in the studied 

sub-basins. 

Basins  ɛp ɛ�� ΔQ (mm) 
HBV Estimated Q (mm/Year) Budyko Estimated Q (mm/Year) 

ΔQc  ΔQh ΔQc  ΔQh 

Qarasou 1.61 −0.61 68.1 40.6 27.5 41.8 26.3 

Gamasiab 1.81 −0.81 50.1 25.9 24.2 27.7 22.4 

Kashkan 1.50 −0.50 47.7 14.4 33.2 15.3 32.4 

Seimareh 1.65 −0.65 51.9 28.9 23.0 29.6 22.3 

Upper Karkheh 1.60 −0.60 59.8 30.9 28.9 32.2 27.6 
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Figure 4a,b, provides a visual comparison between the implemented methods. Re-

sults for the Seimareh sub-basin are the cumulative response of the two upper sub-basins, 

Qarasou and Gamasiab, and the Seimareh. These findings indicate that both climate vari-

ation and human activities have a strong influence on streamflow changes in the sub-ba-

sins. However, the impact of climate variation on the stream flow changes is observed to 

be relatively more substantial than that of human activities in all sub-basins, except in the 

Kashkan. 

 

Figure 4. (a) Percentage of streamflow (Q) changes for all sub-basins due to climate variability and human activities. (b) 

Cumulative percentage of streamflow variation (%) for the entire KRB due to climate variability and human impact. c and 

h indicate climate variation and human activities, respectively. 

3.3. Land Use Change 

Land cover change during the study period was investigated using Landsat 5 TM, as 

it is the only satellite mission that provides images dating back to the 1980s. The three 

years of 1987, 1995, and 2012 were selected to present the land use condition of the KRB, 

representing the three phases of the pre-change, transition, and post-change periods, re-

spectively. Five types of land use were detected in the study area encompassing i) irri-

gated (merged with about 5–10% rangelands and pasture area), ii) rainfed (merged with 

about 10–20% irrigated and rangeland and pasture area), iii) range and pasture, iv) forest 

(merged with about 10–20% rangeland and pasture area), and v) urban (includes build-

ings and orchards). 

Figure 5 shows a noticeable expansion of irrigated farmlands in the basin during the 

three investigated years. Before the breakpoint, the majority of rainfed, range, and pasture 

areas were located in the mountainous region of the basin. Forests, mainly, covered the 

middle and south-eastern parts of the basin, while irrigated areas were scattered in the 

northern parts (Figure 5a). By 2012, after the breakpoint as presented in Figure 5c, a no-

ticeable portion of rainfed farmland had converted to irrigated farmlands throughout the 

basin. 

The LULC maps show that the KRB was initially covered predominantly by range, 

and pasture and rainfed farms. Although the basin is still covered, mostly, by the same 

land use types, the percentage area of the identified classes has changed since the 1980s 

(Table 7). According to Tables 7 and 8, land use change, with a ~70% reduction in dense 

forest area and 100% increase in irrigated farms, accompanied with a 13% decline in rain-

fall, led to a more than 40% streamflow reduction for the entire basin, implying impacts 

of both climate variation and human activities. The present study suggests that all sub-

basins in the KRB experienced a major abrupt change of streamflow during the 1994–1995 

period, which coincides with the period of dam construction in the basin. 
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Figure 5. Land use maps for the KRB, (a) before breakpoint (1987), (b) in transition (1995), and (c) after breakpoint (2012), 

and (d) the digital elevation map. 
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Table 7. Percentage of land use classes in the five studied sub-basins for selected years. 

Sub-Basin Land Use Type 1987 (%) 1995 (%) 2012 (%) 

Seimareh 

Irrigated  1.37 4.49 6.88 

Rainfed  11.84 10.91 8.39 

Range and pasture 10.71 9.81 12.24 

Forest  4.77 3.42 1.08 

Urban 0.09 0.17 0.24 

Qarasou 

Irrigated  2.29 2.66 2.98 

Rainfed  5.02 5.55 4.92 

Range and pasture 4.87 4.07 4.61 

Forest  0.57 0.41 0.13 

Urban 0.11 0.15 0.19 

Gamasiab 

Irrigated  4.28 5.11 5.91 

Rainfed  7.62 8.09 13.00 

Range and pasture 14.16 11.41 6.73 

Forest  0.32 0.89 0.04 

Urban 0.46 1.35 1.12 

Kashkan 

Irrigated  1.12 2.82 6.80 

Rainfed  9.12 8.33 5.58 

Range and pasture 7.81 7.09 8.50 

Forest  4.10 3.85 1.15 

Urban 0.05 0.11 0.23 

Upper Karkheh 

Irrigated  0.09 0.90 1.08 

Rainfed  2.09 1.59 0.85 

Range and pasture 6.34 6.40 7.15 

Forest  0.74 0.37 0.07 

Urban 0.05 0.05 0.12 

Table 8. Land use classes (total) percentage in different years. 

Land Use Class 
Year 

1987 1995 2012 

Irrigated (%) 9.2 16.0 17.7 

Rainfed (%) 35.7 34.5 35.3 

Range and pasture (%) 43.9 38.8 42.3 

Forest (%) 10.5 8.9 2.7 

Urban (%) 0.8 1.8 2.1 

Figure 6 and Table 8 show that the forest area significantly decreased from 1987 to 

2012, while the size of both irrigated areas and urban areas increased noticeably during 

the study period. Deforestation occurred in the south-eastern part of the basin, in the 

Kashkan sub-basin. Increasing urban area can influence the hydrological cycle of a basin 

dramatically by decreasing infiltration, vegetation cover, and changing the water con-

sumption [15]. On the other hand, urbanization and deforestation result in decreased 

groundwater recharge and groundwater levels. The spatial decline of groundwater levels 

can have a major impact on the surface water flow through surface water-groundwater 

interactions. 
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Figure 6. From left to right, KRB land use classifications before breakpoint (1987), during transition (1995), and after break-

point (2012) periods. 

The calculated land use map, together with the results from the Budyko and HBV 

methods, suggest that the streamflow decrease in the Kashkan sub-basin is mainly related 

to human activities rather than climate variation. In the case of the Upper Karkheh sub-

basin, in addition to the cumulative response of the upstream sub-basins, the Karkheh 

Dam plays a major role in streamflow reduction. Based on a study conducted by Ahmad 

et al. (2010) [1], annual actual evapotranspiration varies from 41 to 1681 mm/year through-

out the basin, with the highest rate for the Karkheh Dam, which indicates the substantial 

impact of the dam on basin-wide water balance. 

3.4. Uncertainty and Sensitivity Analysis 

The use of hydrological models is usually accompanied by uncertainty estimations 

related to the input of observed data or model structure. In order to adequately simulate 

a hydrological response at the basin level, accurate data such as climate variables (precip-

itation, ET, etc.) and the basin’s physical characteristics (topography, land coverage, veg-

etation, etc.) are vital. In climate variation- related studies, in which the study period is on 

the scale of decades, it is often difficult to obtain uniformly distributed and accurate data 

sets [47]. In the KRB, specifically, part of the uncertainty may arise from observed rainfall, 

potential evapotranspiration, and streamflow data. Weather gauges are usually not uni-

formly distributed in the entire basin. Moreover, elevation and topography of the basin 

can introduce bias to the observation time series, which can subsequently affect the runoff 

simulation [48]. To investigate uncertainty, the embedded GA in the HBV model provided 

sets of calibration parameters, leading to the best model performance. The 10 best sets 

were chosen to simulate streamflow. In other words, for each sub-basin, the HBV model 

was run 10 times to determine the impacts of climate variation and human activities for 

each set. If the results for the sub-basins remain consistent despite changes in parameters, 

the uncertainty is not significant and can be ignored [30]. Table 9 shows that the model’s 

responses to parameter change do not vary significantly. The highest range of change is 

less than 3.5% of the streamflow for all sub-basins. 

  

9.2

16
17.7

35.7 34.5 35.3

43.8

38.8
42.2

10.5
8.9

2.7
0.8

1.8 2.1

0

5

10

15

20

25

30

35

40

45

50

Landuse 1987 Landuse 1995 Landuse 2012

L
a

n
d

u
se

 c
la

ss
if

ic
at

io
n

s 
%

Irrigated Rainfed Range Forest Urban



Water 2021, 13, 2404 16 of 25 
 

 

Table 9. HBV model response to the changes in calibration parameters. 

Sub-Basin 
min ΔQc 

(mm/Year) 

max ΔQc 

(mm/Year) 

min ΔQh 

(mm/Year) 

max ΔQh 

(mm/Year) 
Variation% 

Qarasou 39.8 40.6 27.5 28.3 1.0 

Gamasiab 25.9 27.6 22.5 24.2 3.3 

Kashkan 14.4 16.2 31.4 33.2 3.5 

Seimareh 28.9 29.5 23.0 22.4 1.1 

Upper Kark-

heh 
30.9 32.5 28.9 27.3 2.7 

While the Budyko method is more convenient and efficient, potential evapotranspi-

ration and precipitation can introduce uncertainty to the results. Precipitation measure-

ment was extended within the sub-basins using the Thiessen method, which is, basically, 

a simplification of the spatial variability of the input water to the system. Due to the lack 

of uniformly distributed E0 stations, a regression method was used for the case of E0 data, 

which again can introduce possible error to the modelling result. To address these issues, 

a sensitivity analysis of the Budyko equation with respect to the precipitation and evapo-

transpiration inputs was carried out. Table 10 shows the possible sources of error in the 

streamflow estimation, because of a 10% alternation in Budyko parameters, including P, 

E0, and n, for each sub-basin. As presented, the method is robust to these changes; for 

instance, the results suggest that a 10% change in the input precipitation data leads to a 

3–5% error in streamflow estimation. On the other hand, the results indicate that stream-

flow estimation is not as sensitive to the evapotranspiration data. 

Table 10. Streamflow response to a 10% change in the Budyko input parameters. 

Basins  ɛp ɛ�� n 
���� ����  ��

������
���  

���% ����% ���% 
(mm/Year) 

Qarasou 1.61 −0.61 0.8 111 424 2155 4.3 −0.32 2.3 

Gamasiab 1.81 −0.81 0.99 81 461 2157 3.3 −0.32 2.7 

Kashkan 1.50 −0.50 0.7 158 477 2437 5 −0.32 1.3 

Seimareh 1.65 −0.65 0.83 97 412 2162 3.9 −0.3 2.1 

Upper Karkheh 1.60 −0.60 0.77 114 422 2248 4.5 −0.32 2.0 

4. Discussion 

Studying the impacts of climate variation and regional human activities on water 

resources provides critical information for authorities and decision-makers to develop 

sustainable water resources management plans. Any hydrological variation due to these 

two factors (i.e., climate variation and human activities) can alter the status of streamflow, 

evapotranspiration, surface storage, and soil moisture, directly impacting a watershed’s 

hydro-environmental and hydro-ecological values. It can affect the vegetation, flora and 

fauna, intensifying the impact of intensify hydrological changes. In principle, variation in 

climate and regional activities can change the hydrological cycle, both directly through 

water supply demand, and indirectly through climate-induced vegetation change. 

Most climate studies in the region have investigated the future hydrological response 

of the KRB basin under different climate scenarios (e.g., [49,50]). A handful of studies in-

vestigated water availability in the basin [2,30] and identified a significant decrease in the 

streamflow of the KRB during recent decades. For illustrating streamflow changes, flow 

duration curves (FDCs) and mean monthly flow for the pre- and post-change periods are 

provided in Figures 7 and 8.Most climate studies in the region have investigated the future 

hydrological response of the KRB basin under different climate scenarios (e.g., [49,50]). A 

handful of studies investigated water availability in the basin [2,30] and stated significant 

decrease in streamflow of KRB during recent decades. For illustrating streamflow 
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changes, Flow Duration Curves (FDCs) and mean monthly flow for the pre- and post-

change periods are provided in Figures 7 and 8. 

 

Figure 7. FDCs of the studied sub-basins for the pre-change (1) and post-change (2) periods. 

 

Figure 8. Mean monthly streamflow of the studied sub-basins during the pre-change (1) and post-change periods (2). 
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Whilst the findings of this study confirm streamflow reduction in all sub-basins, a 

closer look at the flow duration curve (FDC) reveals a significant reduction in both high 

flow rates, i.e., streamflow with the exceedance probability of 5% (Q5), and low flow rates, 

i.e., streamflow with the exceedance probability of 95% (Q95) (Figure 7). For instance, the 

mean daily streamflow decreased by one-third during 50% of the study period in the 

Payepol station (Figure 7). The mean monthly flow in the sub-basins also experienced a 

major reduction for all months (Figure 8), with the exception of the Payepol station, in 

which the streamflow showed an increase in the summer months (June through -August) 

during the post-change period. This might be the result of river flow regulation due to the 

operation of the Karkheh Dam since 2001. The reservoir water, which is stored during 

times of abundance, is released in the summer season;, therefore, an increase in summer 

flow does not necessarily mean an increase in natural streamflow caused by rainfall 

throughout the basin. Moreover, for the Kashkan sub-basin, the difference between 

streamflow in the pre- and post-change periods, during late autumn and winter (October 

through -February) was less than that of the other sub-basins. For the summer months 

(June through -August), on the contrary, the largest differences between pre- and post-

change period streamflow were observed in the Kashkan sub-basin (Figure 8). It can be 

postulated that intensive agricultural activities in the area led to a higher actual evapo-

transpiration and, therefore, the larger difference between the streamflow during the two 

periods. 

The DBEST method showed streamflow breakpoints occurred gradually over time, 

which seemed to be related to the gradual LULC changes. On the other hand, precipitation 

analysis captured the breakpoints in the same year, which implies climate parameter var-

iation is also effective. For the case of the Kashkan sub-basin, non-abrupt changes in the 

streamflow trend and an insignificant breakpoint in the precipitation trend can strengthen 

the claim that human activity has a dominant role in streamflow change. The findings 

were further validated when Landsat data analysis showed a significant change in land 

use during the study period. Employing image processing techniques added qualitative 

aspect to the framework and provided beneficial information of both quality and quantity 

regarding human activities and climate variation in the region. 

A handful of studies that investigated the small-scale sub-basin hydrological pro-

cesses of the KRB, revealed notable land use changes during the 1990′s. For instance, 

Karimi et al. (2018) [51] observed a dramatic increase in irrigated farms and urban areas 

during the 1992–2015 period in the Ravansar basin within the Qarasou sub-basin. Based 

on personal discussions with local authorities in the Kashkan sub-basin, there was a sub-

stantial investment in expanding agricultural lands in this basin during the 1990s. The 

primary purpose of this investment was to create jobs for locals. Kashkan, with a rural 

population of almost 300,000, is the most densely populated sub-basin in the KRB. The 

population density and development of agricultural lands are in line with the result of 

this study, suggesting that human influence is a dominant factor in streamflow reduction 

in this specific basin. The Seimareh sub-basin also experienced extensive agricultural de-

velopment during the study period (Table 7). 

Developing water distribution systems and the construction of reservoirs in the KRB 

have improved food production and provided easier lives for the residents. However, it 

has dramatically disturbed the water cycle in the basin. The KRB is considered a semiarid 

to arid region, which is subjected to water scarcity. Increasing human population, agricul-

tural and industrial activities, and urbanization demands, combined with the governmen-

tal policy of being self-sufficient in food production, have put additional pressure on the 

water resources in the area [2]. Any change in LULC can lead to significant change in the 

basin-wide water balance by impacting, for example, groundwater storage, soil infiltra-

tion, and actual evapotranspiration [52]. 

The population of the KRB is predicted to increase to 4.8 million by the year 2025, out 

of which 75% will live in urban areas. Urbanization in the northern sub-basins will in-

crease the strain on water resources in the basin, while in the southern part of the basin, 
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dam constructions and 300,000 ha of planned irrigation programs would be overwhelm-

ing for the groundwater and surface water resources [21]. Accordingly, policymakers 

should carefully follow any changes in the quality and quantity of the available freshwa-

ter, as well as any changes in the hydrological behaviour of the stream flows. We believe 

the implemented method in this study is easy to replicate and does not need extensive 

observed data, which makes it a competitive approach to adopt, especially in the basins 

with limited data. Despite the timescale differences considered in the calculations (the 

annual timescale for the Budyko method and the daily timescale for hydrological model-

ling), the results of both methods, were highly consistent, with a minimum underestima-

tion of climate variation by the HBV model compared to the Budyko method. 

The results provide insight regarding the appropriate development of urban and ru-

ral management plans, restoration of ecological environments, implementation of conser-

vation projects, and regulation of irrigation schemes, and can also impact sustainable 

management based on regional decisions on basin as well as sub-basin scales. If current 

water management and ecosystem planning remains unchanged, the combined impacts 

of climate variation and human activity may severely damage the stability of the ecosys-

tem of the entire basin. Although, the main focus of the current study was the KRB, the 

proposed framework can be easily adapted to other case studies around the globe, partic-

ularly where data availability is an issue. 

4.1. Limitations of the Study 

To carry out the study using a hydrological approach, some assumptions were made. 

Similar to in previous literature (e.g., [14,28,29]), it was assumed that no human activity 

was involved in the streamflow variation during the pre-change period. In other words, 

the human activities in the pre-change period were considered negligible and the hydro-

logical processes were assumed to be natural. It was also assumed that climate variation 

and human activities are two independent variables, while in reality, they are tied to-

gether and can amplify or amend each other [15]. In this study, the climate variability is 

defined as a combination of variability in the climate parameters, as well as global-scale 

human-induced effects that cause a worldwide greenhouse gas emissions. Human activi-

ties, on the other hand, are defined as the regional impacts of humans, considering the 

fact that dam construction and land use change, including urbanization and agricultural 

activities, etc., are intimately embedded in the human impact. 

The catchment characteristic parameter (n) was assumed to be constant during the 

study period, while the value of n was subjected to change by changing LULC and also 

was dependent on other climate parameters, such as climate seasonality, mean storm 

depth [41], vegetation coverage [40], and/or effective rooting depth and plant root charac-

teristics [53]. To calculate this parameter, following the same approach as similar studies 

(e.g., [8,23]), we simultaneously modelled E using Equation (4) and minimized the differ-

ence between the calculated E and observed long-term E. The catchment characteristic 

parameter (n) was assumed to be constant during the study period, while, the value of n 

is subjected to change by changing LULC and also is dependent on other climate param-

eters, such as climate seasonality, mean storm depth [41], vegetation coverage [40], and/or 

effective rooting depth and plant root characteristics [53]. To calculate this parameter, fol-

lowing the same approach as similar studies (e.g., [8,23]), we simultaneously modelled E 

using Equation (4) and minimized the difference between the calculated E and observed 

long-term E. 

In the case of remote sensing, because of the shortages in historical ground truth 

points, availability of high-quality images, and complex land use types, the land use maps 

might be subjected to some uncertainties. For this, we considered an average overlap of 

~10% between the similar land uses, as explained in the Methods section. 
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5. Conclusions 

This paper introduces a new framework for analysing and separating contributions 

of climate variation vs. human activities to streamflow changes in the large and data-

scarce basins. The Budyko method and HBV modeling were used to define the underlying 

reasons affecting streamflow, and the DBEST algorithm verified the results by detecting 

both non-abrupt changes in the streamflow caused by anthropogenic effects and abrupt 

changes in precipitation amount due to dramatic climate variation. The observable im-

pacts of human activities in the form of land use change, obtained from satellite remote 

sensing, were additionally used for verification of the results of the Budyko method and 

HBV modelling. Sensitivity and uncertainty analyses were applied to these two methods, 

respectively. The methodology was successfully implemented for the KRB, and it was 

shown, by both the Budyko method and HBV modelling, that in most of the studied sub-

basins, climate variation and human activities (i.e., agriculture, deforestation, and water 

diversion) were more or less equally responsible for the streamflow reduction. Land use 

maps based on Landsat 5 TM images suggested significant changes in land cover through-

out the basin for the study period between 1980 and 2012. While it might be difficult to 

locally manage the impact of climate variation (as it is likely to be affected by changes on 

the global scale), existing knowledge of the regional scale anthropogenic impacts on water 

quantity, as suggested by the framework, can provide insights that leads to informed 

management plans, such as improved irrigation techniques, nature-based solutions, and 

urbanization control, to limit the adverse impacts of human activity on the streamflow. 

This, in turn, can compensate for the adverse impact of climate variations by adapting to 

a changing climate. On the other hand, the lack of such a framework in the hydrological 

studies may result either in wrongly condemning climate variation as the only causative 

factor contributing to the most hydro-agricultural and environmental problems or in con-

fusing the regional policymakers regarding how to cope with the problem efficiently 

based on the less likely assumptions. Therefore, the outcomes of this study can be used to 

assist policymakers and water professionals in proposing a proper water management 

plan to prevent the further reduction of streamflow. The proposed methodology can be 

applied to any other catchment/region, particularly where access to data is challenging. 
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Appendix A 

Table A1. The KRB’s major dams of the KRB. 

Name Long °E Lat °N 
Storage-Normal 

Level (BCM) 
Purpose 

Operation 

Date 

Karkheh 48.1506 32.4208 5.6 
Irrigation, hydropower generation, flood 

control 
2001 

Seimareh 47.1908 33.3183 2.8 Hydropower generation 2013 

Table A2. E0 reference stations and related temperature stations. 

Reference E0 Sta-

tion 
Altitude (m) Temperature Station Altittude (m) 

Chamanjir 1140 
Khorramabad 

Koohdasht 

1147 

1190 

Dasht Abbas 161 Dehloran 232 

Abdolkhan 40   

Hamidieh 22   

Chamgaz 350 Darreshahr 670 

Doab 1310   

Varayeneh 1760 
Hamedan 

Borujerd 

1741 

1630 

Kheirabad 1763 

Malayer 

Eyvan 

Kangavar 

Nahavand 

1778 

1200 

1468 

1680 

Ravansar 1388 Kamyaran 1404 

Mahidasht 1360 Eslamabad 1349 

Holeilan 950 Ilam 1340 

Dartoot 703   

Polchehr 1280 Kermanshah 1306 

Table A3. The KRB streamflow stations, their locations, recorded length, and streamflow characteristics. 

Sub-Basin Station Long.ºE Lat. ºN Altit. (m) 
Record 

Length 

Annual P 

(mm) 

Mean Q 

(mm/Year) 

Qarasou Ghoorbaghestan 47.25 34.23 1300 1975–2011 452 111 

Gamasiab Polchehr 47.43 34.33 1306 1970–2011 429 81 

Kashkan Poldokhtar 47.72 33.17 650 1980–2011 512 158 

Seimareh Nazarabad 47.43 33.17 559 1979–2011 406 97 

Upper Karkheh Payepol 48.15 32.42 90 1974–2011 422 114 

Table A4. Suggested range for the calibration parameters of the HBV model. 

Parameter Unit Description Range 

TT ⸰C Threshold temperature −2.5–2.5 

CFMAX mm ⸰C-1 d-1 Degree-day factor 1–6 

SFCF  Snowfall correction factor 0.5–1.25 

FC mm Maximum of storage in soil box 50–500 

LP  Threshold of reduction of evaporation 1–6 

Perc mm d-1 Maximum flow from upper to lower box 0.1–6 

UZL mm Threshold of Q0 outflow in upper box 10–100 

K0 d-1 Recession coefficient  0.05–0.5 
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K1 d-1 Recession coefficient 0.01–0.15 

K2 d-1 Recession coefficient 0.0001–0.05 

MaxBAS d Routing, length of weighting function 1–6 

Appendix B 

 

Figure A1. Approximated population distribution in the KRB based on the 2015 national record. 

 

Figure A2. R2 between monthly evapotranspiration (E0) and average temperature (T) for the Pol-

chehr reference station in 1995. 

Appendix C 

The ABCD model uses monthly precipitation and potential evapotranspiration as an 

input and provides monthly actual evapotranspiration, streamflow, and soil and ground-

water storage estimation. There are four parameters in the model (i.e., a, b, c, and d) to be 

defined and calibrated prior to simulation [36]. In this model, initial soil water storage (Si-

1) and precipitation in a month (Pi) are defined as available water. Equation (A1) describes 

the correlation between available water (Wi) and evapotranspiration opportunity (Yi). The 

parameter of evapotranspiration opportunity (Yi) is a combination of soil water storage at 

the end of the month (Si) and actual evapotranspiration (Ei) [36–38]: 
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The groundwater discharge (base flow) is calculated as: 

�� − ���� = ��� − ���G� − G��� = cR� − dG� (A2)

where Gi−1 and Gi are the initial and end- of- the- month groundwater storage. 

The monthly streamflow (Qi) from direct runoff (Ri) and groundwater discharge is 

estimated as: 

�� = (1 − �)�� − ���Q� = (1 − c)R� − dG� (A3)

Soil water storage at the end of the month can be derived as: 

�� = �� exp(−���/�) S� = Y� exp(−E��/b) (A4)

Therefore, actual evapotranspiration of the given month can be obtained by deduct-

ing Si from the evapotranspiration opportunity (Yi). 

The ABCD model code was developed in R, and the embedded genetic algorithm 

(GA) provided the best set of parameters (i.e., a, b, c and d) for the model. The objective 

functions for GA were Kling–-Gupta efficiency (KGE) and Nash–-Sutcliffe efficiency (Re), 

between monthly observed streamflow and monthly estimated streamflow. 

Table A5. Calibration performance indices for the KRB. 

 KGE Re 

ABCD model 0.76 0.63 

 

Figure A3. Monthly water storage change in the KRB. 
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