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Abstract: Open spaces, including waterfront areas, are critical to coastal communities and provide 

many benefits, including recreation opportunities, economic development, ecological benefits, and 

other ecosystem services. However, it is not clear how values of waterfront ecosystem services vary 

across geographical areas which prevents development and adoption of site-specific natural 

resource conservation plans and suitable long-term land management strategies. This study 

estimated the monetary value of distance to different waterfront types in coastal counties of 

Mississippi and Alabama (U.S.) using a geographically weighted regression (GWR) approach as an 

extension to a traditional hedonic pricing method (HPM). In addition, the study utilized publicly 

available data from the U.S. Census Bureau instead of certified rolls of county property assessors 

and Multiple Listing Service (MLS) data which can be costly and difficult to obtain. Residents 

valued most waterfront types which was reflected in greater assessed prices for houses in proximity 

to these waterfronts. However, the value of ecosystem services associated with waterfronts differed 

geospatially. The marginal implicit prices ranged from −$6343 to $6773 per km depending on a 

waterfront type. These estimates will be useful to city developers, land-use planners, and other 

stakeholders to make more informed and balanced decisions related to natural resource 

preservation associated with coastal areas, land-use planning, and zoning. In addition, information 

from this study can be used in developing healthy living environments where local economy can 

benefit from increased property tax revenues associated with waterfronts and their ecosystem 

services. 

Keywords: geographically weighted regression; hedonic pricing method; environmental amenities; 

spatial variability; marginal implicit price; open space 

 

1. Introduction 

As coastal areas experience rapid population growth, waterfront open space is 

increasingly limited resulting in overuse and a decreased potential to provide ecological, 

sociocultural, and economic benefits [1,2]. Urban waterfronts represent publicly or 

privately-owned landscapes that are part of a city and in contact with a water body such 

as an ocean, lake, river, or estuary [3–6]. These areas provide many benefits and ecosystem 

services such as natural scenery; ecological benefits such as wildlife habitat and urban 

heat reduction; recreational opportunities such as hiking and boating; and produce 

economic benefits related to higher real estate values and increased tax revenues [7–10]. 

Waterfronts are therefore important to coastal communities and their visitors, and future 

land-use planning decisions should balance their preservation and development in ways 
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that enhance cultural, environmental, and economic values of open spaces and adjacent 

areas. Considering the distribution of waterfronts across the community landscape, 

including its socioeconomic geography, can identify ways to improve resident access to 

open space ecosystem services. 

Population growth is one of the major threats to coastal waterfront open spaces 

[11,12]. For instance, the U.S. coastal population, including Atlantic, Gulf of Mexico, and 

Pacific, grew by 40 million between 1960 and 2008, representing an increase of 84% [13]. 

During the same time period, the U.S. population in the coastal counties along the Gulf of 

Mexico increased by 150%, whereas in five coastal counties in Mississippi and Alabama, 

including Hancock, Harrison, Jackson, Mobile, and Baldwin, population increased by 

over 65% taking into account a population decline after numerous hurricanes such as 

Katrina [13]. Similarly, between 2010 and 2019, population in these five counties increased 

by another 8% overall, of which Baldwin County experienced the largest increase of over 

20% [14]. Availability of open space, such as waterfront open space, is particularly 

important in urban environments where a rapid population increase and land scarcity can 

lead to potential land-use conflicts [15]. Thus, preservation of waterfront open space 

versus its conversion to residential and commercial uses has become an important policy 

issue in land-use planning and urban development. 

Ecosystem services and goods provided by waterfronts are important to human 

welfare; however, they are often neglected in land-use decisions because many of them 

do not provide direct monetary remuneration, potentially leading to their suboptimal 

provision. Monetary valuation of such ecosystem services enables quantification of 

economic tradeoffs between preserving waterfront open space versus development (with 

associated property taxes) to better inform future urban development decisions [6,16]. 

Many previous studies have quantified a monetary value of various nonmarket ecosystem 

services provided by waterfront open spaces using a hedonic pricing method (HPM). For 

example, Gibbons et al. [17] estimated that a 1 km increase in distance to river and 

coastline decreased the house price by 0.93% and 0.14%, respectively. Scorse et al. [18] did 

a similar study to quantify monetary value of proximity to oceanfront in California, U.S. 

and estimated that houses located next to the surf break were valued $106,000 more than 

similar houses located one mile away. Authors also determined that a house with a full 

ocean view was valued almost $1 million more than a similar house with no ocean view. 

Another study by Anderson and West [19] estimated an increase in house value ranging 

from 0.004% to 0.034% with a 1-percent decrease in distance to neighborhood parks, 

special parks, lakes, and rivers. Bin [20] reported that moving 300 m closer to the nearest 

river increased the property value by $3700, whereas Costanza et al. [21] demonstrated 

that houses within 90 m from a beach were sold for $81,000 to $194,000 more than those 

located farther away. Similarly, Poudyal et al. [22] estimated increases in the house price 

by 0.016% with a 1% decrease in distance to a park. Thus, while many waterfront 

ecosystem services are not traded in the markets, they are valued by residents which has 

been reflected in prices of market goods such as houses. 

There are also numerous studies conducted in the Gulf of Mexico. For instance, a 

study done by Dumm et al. [23] in Hillsborough County in Florida estimated that in 

general waterfront houses had a 7.20% price premium added compared to non-waterfront 

houses. Similarly, a study by Dahal et al. [24] in the cities of Daphne and Mobile adjacent 

to the Gulf of Mexico estimated that house prices increased by $2500 to $15,500 per km 

with increase in proximity to different waterfront types. In another study, Dahal et al. [25] 

conducted a survey in four cities along the Gulf of Mexico to evaluate residents’ attitudes 

towards waterfront open space. The study suggested that over 95% of respondents 

believed that it was important to preserve the coastal character of waterfronts in future 

development decisions. The study also revealed that a majority of respondents (71.29%) 

believed that commercial development and changing economy were major threats to the 

existence of waterfronts and more than half of the residents (53.96%) believed that these 

resources should be protected at any cost. Thus, waterfronts are important elements of 
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coastal communities and monetary valuation of ecosystem services provided by them can 

help identify priorities in their protection versus development. 

The monetary value of nonmarket ecosystem services provided by waterfronts can 

be extrapolated from residential house sale transactions. While the HPM has been used 

extensively in nonmarket valuation, it typically relied on house values obtained from tax 

assessors or Multiple Listing Service (MLS) as a data source. However, obtaining MLS 

data, which is typically owned by a private MLS organization, or tax assessor data can be 

costly and time-consuming, and not readily available in every location. Furthermore, 

while house sale data can also be obtained from other sources, such as Zillow (one of the 

leading online real estate and rental marketplaces reporting information related to median 

house values, inventory, and other parameters), this approach may not be practical as 

decision-makers and practitioners are not necessarily aware of alternative sources and 

might not know how to incorporate such information into the land-use analysis. In 

addition, other sources might not be able to provide information with the resolution 

required for the analysis and their housing value estimates might not be as accurate as 

owner’s estimates of property value [26]. Such difficulty in obtaining the required data 

can result in planners lacking important information when assessing the value of 

waterfront ecosystem services to guide land-use decisions and developing zoning 

guidelines. 

Many previous valuation studies have considered the impact of waterfront proximity 

on house value; however, they did not account for the effect of spatial variation in the 

impact of waterfront ecosystem services on house values (e.g., [27–35]). For example, 

Cohen et al. [36] demonstrated that the ordinary least squares (OLS) regression method 

did not indicate the relationship between house price and proximity to waterbodies; 

however, the geographically weighted regression (GWR) method suggested that a 1-

percent increase in distance to a waterbody was related to a house price decrease of 

0.027%. Similarly, Pandit et al. [37] and Tapsuwan et al. [38] suggested the use of spatial 

models to account for the impact of location on house prices because spatial dependencies 

can result in biased and inconsistent estimates when they are derived from stationary 

models such as the OLS. Information obtained from the OLS model can only provide 

average estimates that can serve as a useful benchmark for making general statements; 

however, such estimates might not accurately reflect monetary values of ecosystem 

services associated with specific sites [39]. Thus, there is a need to account for spatial 

heterogeneity when quantifying a monetary value of ecosystem services associated with 

waterfronts to better understand how these attributes are related to house values and 

facilitate an improved planning for open space conservation and development. This study 

used a GWR model to determine spatial variation in monetary values of waterfronts 

adjacent to urban areas. Marginal implicit prices were calculated and then mapped to 

visualize the effect of waterfront’s proximity on a house value. Findings from this study 

have several policy implications related to natural resource preservation associated with 

coastal areas, land-use planning, and zoning. 

2. Materials and Methods 

2.1. Study Area 

The study was conducted in the five coastal counties in the Gulf of Mexico (U.S.), 

three from Mississippi and two from Alabama: Hancock, Harrison, Jackson, Mobile, and 

Baldwin (Figure 1). Total population in the study area in 2010 was approximately 950,000, 

of which Mobile accounted for 43.21%, Harrison for 19.22%, Baldwin for 18.59%, Jackson 

for 14.50%, and Hancock for 4.48% [14]. In terms of racial/ethnic composition, Mobile 

County had 61.30% white, 34.50% Black or African American, and 4.20% Other. Harrison 

County had 71.00% White, 21.80% Black or African American, and 7.20% Other (7.20%). 

Baldwin County had 86.20% White, 9.50% Black or African American, and 4.30% Other. 

Jackson County had 73.80% White, 21.70% Back or African American, and 4.50% Other. 
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Hancock County had 89.20% White, 7.00% Black or African American, and 3.80% Other 

[14]. Thus, more that 80% of population in the study area was white suggesting low racial 

variability. 

 

Figure 1. Location of the study area in the Gulf of Mexico. 

According to the U.S. Census [40,41], 26.49% of the study area was covered by water, 

suggesting a considerable amount of waterfront open space. Of the total area, 30.70% was 

covered by wetlands, 25.21% by forest land, 12.46% by shrub land, 9.90% by planted or 

cultivated area, and 11.86% was developed. The remaining area (9.87%) included other 

land types such as barren and herbaceous land [42]. There are a number of popular 

destination beaches and several rivers that provide scenic and recreation amenities. 

Despite the recession of 2001 and 2007–2009 and corresponding declines in the 

housing market, the number of housing units in the study area increased substantially for 

a net increase of 35.31% between 1990 and 2010 [40,41]. The area comprised of 633 Census 

block groups where each group represented a statistical division of a Census tract 

typically consisting of 600 to 3000 people [43]. Three block groups consisted of water only 

and were omitted from the analysis. 

2.2. Data Collection 

This study used Census data instead of MLS data. The Census data sets have several 

advantages because they are freely available to the public, spatially georeferenced via the 

Topologically Integrated Geographic Encoding and Referencing (TIGER) system and can 

be easily integrated with spatial data related to availability of ecosystem services using 

Geographic Information Systems (GIS). The use of aggregated Census data can serve as 

low cost and practical alternative data source for planners to estimate a monetary value 

of proximity to waterfronts and their ecosystem services. 

Data related to house values and their structural attributes were based on the 2010 

United States Census and were collected at Census block group level [44]. The Census 

block group is the smallest statistical unit with detailed house structural and 

neighborhood information required for modeling. Median house values (a dependent 

variable) represented Census respondents’ estimates of how much the property would 

sell for in the current market and might differ from a price at which the property would 
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actually sell. Independent variables consisted of three sets of attributes: structural, 

neighborhood, and ecosystem services. Variables representing house structural attributes 

included number of rooms and house age. Neighborhood attributes included two groups 

of variables. The first group consisted of socioeconomic characteristics representing 

neighborhood development level, economic condition and prosperity such as household 

income, resident median age, percentage of families below poverty line, population 

density, and percentage of recreationally used houses and vacant houses, whereas the 

second variable group comprised of government and locational services represented by 

distance to the nearest facilities such as school, road, railroad, hospital, shopping center, 

and airport. The neighborhood data were obtained from various open sources such as the 

U.S. Census, Mississippi Automated Resource Information System 

(www.maris.state.ms.us, accessed on 20 June 2016), City of Mobile 

(www.cityofmobile.org, accessed on 20 June 2016), and expertGPS (www.expertGPS.com, 

accessed on 20 June 2016), whereas Euclidian distance from the centroid of the Census 

block group was estimated using Esri’s ArcMap. 

To identify ecosystem services, we followed Dahal et al. [25] in which the author 

conducted a detailed survey to determine how coastal communities valued and used 

waterfront open spaces in five coastal counties of Mississippi and Alabama. Following 

Dahal et al. [25], ecosystem services were represented by proximity to the nearest public 

park and different waterfront types. Data on location of ecosystem services were obtained 

from the U.S. Census Bureau [45]. The U.S. Census Bureau defined streams as natural 

flowing waterway with an intricate network of interlacing channels, artificial waterways 

constructed to transport water, to irrigate or drain land, and natural or artificial 

waterways to connect two or more bodies of water, or to serve as waterway for watercraft, 

whereas a river was defined as natural flowing waterway that did not contain the 

characteristic of a stream [46]. A bay was defined as a body of water partly surrounded 

by land and bayou as slowly moving water and marshy land [46]. Centroids of each 

Census block group were identified using Esri ArcMap and the Euclidian distance from 

each Census block group centroid and nearest waterfront was determined using ArcGIS. 

Table 1 provides descriptions of all variables used in the study.To identify ecosystem 

services, we followed Dahal et al. [25] in which the author conducted a detailed survey to 

determine how coastal communities valued and used waterfront open spaces in five 

coastal counties of Mississippi and Alabama. Following Dahal et al. [25], ecosystem 

services were represented by proximity to the nearest public park and different waterfront 

types. Data on location of ecosystem services was obtained from the U.S. Census Bureau 

[45]. The U.S. Census Bureau defined a stream as a natural flowing waterway with an 

intricate network of interlacing channels, artificial waterways constructed to transport 

water, to irrigate or drain land, and natural or artificial waterways to connect two or more 

bodies of water, or to serve as waterway for watercraft, whereas a river was defined as a 

natural flowing waterway that did not contain the characteristic of a stream [46]. A bay 

was defined as a body of water partly surrounded by land and bayou as slowly moving 

water and marshy land [46]. Centroids of each Census block group were identified using 

Esri’s ArcMap and the Euclidian distance from each Census block group centroid and 

nearest waterfront was determined using Esri’s ArcGIS. Table 1 provides descriptions of 

all variables used in the study. 

Table 1. Definition of variables used in the study to estimate a monetary value of distance to waterfront ecosystem services 

in coastal counties of Mississippi and Alabama, U.S. 

Variable Description Mean Std. Dev. 

Dependent Variable   

House value  

(2010 US$ in thousands) 
Median house assessed value as reported by residents in 2010 139.20 72.02 

Independent Variables 
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House structural attributes 

Room Median number of rooms. 5.54 0.80 

House age Median house age. 31.79 15.98 

Neighborhood attributes 

Income (US$ in thousands) Median household income in 2010. 44.99 19.64 

Resident age Median resident age. 38.99 6.73 

Poverty Percentage of families below a poverty line. 16.14 14.90 

Population density Number of people per square mile (thousands). 1.55 1.53 

Vacant Percentage of vacant houses. 15.02 11.02 

Recreational 
Percentage of houses used for seasonal, recreational, or 

occasional purposes. 
2.81 7.45 

Road (m) Distance to primary or secondary road. 1798.28 1867.78 

Rail (m) Distance to the nearest active railroad track. 6986.84 11,902.43 

School (m) Distance to the nearest public school. 2457.16 2641.52 

Shopping (m) Distance to the nearest shopping center. 6150.95 7806.10 

Hospital (m) Distance to the nearest hospital. 8370.56 7891.07 

Airport (m) Distance to the nearest airport. 11,153.00 7157.78 

Ecosystem service attributes 

Park (m) Distance to the nearest public park. 4254.13 4974.38 

Bay (m) Distance to the nearest bay. 7787.85 7991.89 

River (m) Distance to the nearest river. 6027.44 4151.44 

Stream (m) Distance to the nearest stream. 6506.19 4898.54 

Bayou (m) Distance to the nearest bayou. 8055.22 6312.58 

Water (m) 
Distance to the nearest water body other than bay, river, 

stream, and bayou. 
995.04 867.39 

2.3. Model Specification 

A hedonic model was constructed to represent house price differentiation based on 

its structural, neighborhood, and ecosystem service attributes where a price of one house 

relative to another differs based on the level of attributes associated with each house 

[6,22,47,48]. When house prices are econometrically evaluated in relation to its structural, 

neighborhood and ecosystem service attributes, the marginal implicit price is represented 

by a parameter coefficient (a coefficient of attributes), whereas the relative price of a house 

is represented by the summation of all its marginal prices [49]. A marginal price of an 

ecosystem service attribute associated with a market good, such as a house, can be 

determined through the price a buyer paid for the property: 

PZi
(Zi,Zi�1)=

∂P(Z)

∂Zi

 (1)

where, P is the price function of the vector Z representing house structural, neighborhood, 

and ecosystem service attributes, and i = 1, 2,…, n  is the level of different attributes 

describing a house. 

The HPM model was first estimated using OLS as: 

ln Hi= β
0
+ � β

j
Sij+ � β

k
Nik+ � β

l
Eil+ εi   (2)

where lnHi is a natural log of an assessed value of the ith house in 2010 dollars, ���  

represents jth house’s structural attributes, ��� stands for kth neighborhood attributes, 

���  represents lth ecosystem service attributes, β’s are the parameter coefficients 

corresponding to house’s structural, neighborhood, and ecosystem service attributes, and 

�� is the error term. 
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The OLS regression model was tested for multicollinearity and heteroscedasticity. If 

the assumption of a constant error variance is violated, model uncertainty problem arises 

and in the presence of multicollinearity, estimated parameters become less efficient [50]. 

Thus, White’s test of heteroscedasticity was used to determine if the variance of error 

terms was constant, whereas the Variance Inflation Factor (VIF) was used for 

multicollinearity test [50]. Taylor [51] suggested that price of a house may increase at a 

diminishing rate with some variables such as area of house and income. To capture the 

nonlinear relationship, Taylor [51] suggested that a functional form in HPM could have 

some or all independent variables transformed. In this study, house value, household 

income, population density and distance-related variables were logarithmically 

transformed, and house age was squared to represent their nonlinear nature. 

A standard global modeling approach, such as OLS, might obscure the site-specific 

variation between a house value and its ecosystem service attributes as it cannot detect 

nonstationary [52]. Stationarity refers to a relationship in which house’s neighborhood 

and ecosystem service attributes have a constant effect on the house value over space 

and/or time; whereas, nonstationarity indicates that the effects of the neighborhood and 

ecosystem service attributes vary in either or both dimensions. As house price may vary 

due to location, the GWR was used to address spatial nonstationarity. Steps used in 

developing the GWR model are represented in Figure 2. 

The GWR develops a local model and estimates parameters based on neighborhood 

density (numbers of observations used in estimating local coefficients). The GWR 

approach extends the OLS regression model by producing local parameters. Following 

Fotheringham et al. [53], the local hedonic model utilizing the GWR was constructed as: 

y
i
=β

0
(ui,vi)+� β

k
(ui,vi)xik+εi

k
 (3)

where (ui,vi) are the coordinates of the ith point in space represented by a centroid of 

Census block group, β
k
(ui,vi) represents realization of the continuous function β

k
(u,v), 

and εi  is the error term. Equation (3) is the extension of Equation (2). A detailed 

description of the steps implemented to derive the GWR model is provided in Appendix 

A. An ANOVA test was conducted to test the null hypothesis that the GWR model had 

no improvement over the OLS model. 

Local coefficients generated from the GWR model were mapped to visualize local 

marginal effects of ecosystem services using inverse distance weighting (IDW) 

interpolation method. Mennis [54] was followed in mapping t-values of local parameter 

estimates. A surface maps illustrating estimated coefficients and local t-values for 

ecosystem service variables were created. A t-value data layer was produced with t-values 

between −1.645 and +1.645 being masked out and t-values smaller than −1.645 or greater 

than +1.645 set to 100% transparency. Setting transparency for these t-value ranges to 

100% allowed data stored in local coefficient layers to be unobstructed, which enabled 

mapping of local ecosystem service parameters significant at a 10% significance level. 
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Figure 2. Analysis steps in extending the ordinary least squares (OLS) regression to the geographic weighted regression 

(GWR) model. 

3. Results 

The GWR (local) model outperformed the OLS (global) model based on ANOVA 

comparison (F-statistics of 2.17 and p-value of <0.001). Findings suggested that the GWR 

model was more suitable than the OLS model because it explained 57.2% of total model 

variation while maintaining lower RSS and AICc score. Results from geographical 

variability test suggested that almost all variables varied significantly suggesting they 

were nonstationary. 

A White’s test for heteroscedasticity in the OLS model (chi-square statistics = 364.09, 

prob > chi-square = 0.00) indicated the presence of heteroscedasticity and thus, robust 

standard errors were used to test for significance of model parameters. For most variables 

in the OLS model, VIFs were not greater than 10 except for house age and its squared 

term, indicating there was no multicollinearity in the model. However, these two variables 

were retained in the model to estimate nonlinear relationship between house age and its 

price [55,56]. In addition, VIF is usually higher as variables age and age-squared were 

correlated but does not affect the model as it does not affect the probability values of the 

variable [57,58]. 
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3.1. Structural and Neighborhood Characteristics 

House structural attributes had differing effects on house value (Table 2). OLS results 

suggested median number of rooms (p < 0.001), house age (p = 0.027), and house age-

squared (p = 0.005) were statistically significant. GWR results suggested that the impacts 

of each of these variables were different depending on location. An increase in the median 

number of rooms by one was associated with a varying impact on house value ranging 

from 3.10% to 10.4%. Age of house was negatively associated with house value. A one-

year increase in house age related to a house value decrease of 1.3% to 1.7%. However, a 

statistically significant positive sign of squared house age variable indicated that the 

house value had a nonlinear relationship with house age and the value decreased at a 

decreasing rate with age. 

Table 2. Parameter estimates from the ordinary least square (OLS) global and geographically weighted regression (GWR) 

local models used to estimate the monetary value associated with proximity to waterfront ecosystem services in 

Mississippi and Alabama (U.S.), and results of the spatial variability test. 

Variables 

Global Model Local Model Test for Spatial 

Variability 

(Difference of 

Criterion) a 

Parameter 

coefficient 

White Std. 

Error 
Min. 

Lower 

Quartile 
Median 

Upper 

Quartile 
Max. 

Intercept 8.647 *** 0.915 7.523 7.746 7.891 10.040 10.178 1575.438 *** 

Rooms 0.059 * 0.031 0.031 0.042 0.049 0.098 0.104 −35.518 *** 

House Age −0.014 *** 0.003 −0.017 −0.016 −0.015 −0.014 −0.013 −14.978 *** 

House Age–

squared 
0.000 *** 0.000 0.000 0.000 0.000 0.000 0.000 0.432 

Ln(Income) 0.420 *** 0.067 0.266 0.273 0.496 0.507 0.525 5057.518 *** 

Median Age 0.007 ** 0.003 −0.002 −0.001 0.000 0.014 0.014 −12.500 *** 

Poverty −0.001 0.002 −0.002 −0.002 −0.001 0.001 0.001 1.059 

Ln(Pop den) 0.000 0.021 −0.031 −0.026 0.014 0.021 0.036 −20.126 *** 

Vacant −0.009 ** 0.004 −0.012 −0.009 −0.008 −0.008 −0.006 1.249 

Recreation 0.019 *** 0.006 0.009  0.015 0.022 0.024 0.033 −0.832 * 

Ln(Road) 0.004 0.014 −0.004 0.002 0.004 0.009 0.028 −15.059 *** 

Ln(Rail) 0.013 0.013 −0.021 −0.008 0.011 0.017 0.028 −15.908 *** 

Ln(School) 0.000 0.022 −0.021 −0.016 0.011 0.012 0.016 −49.912 *** 

Ln(Shopping 

centers) 
−0.036 * 0.021 −0.051 −0.033 −0.029 −0.024 −0.013 −51.620 *** 

Ln(Hospital) −0.086 *** 0.025 −0.157 −0.143 −0.137 −0.055 −0.032 −29.118 *** 

Ln(Airport) 0.006 0.026 0.000 0.016 0.052 0.062 0.076 −149.902 *** 

Ln(Park) −0.010 0.021 −0.036 −0.032 0.010 0.016 0.023 −37.697 *** 

Ln(Bay) −0.059 *** 0.009 −0.064 −0.057 −0.054 −0.052 −0.047 −9.532 *** 

Ln(River) −0.004 0.012 −0.032 −0.028 −0.025 −0.008 −0.005 −2.123 ** 

Ln(Stream) −0.030 * 0.017 −0.078 −0.059 −0.055 −0.046 −0.033 −76.215 *** 

Ln(Bayou) 0.038 ** 0.018 0.032 0.036 0.048 0.061 0.073 −47.041 *** 

Ln(Water) −0.029 *** 0.011 −0.040 −0.035 −0.015 −0.014 −0.012 −12.116 *** 

R2 0.518  0.572      

R2 adj 0.500  0.530      

AICc 447.863  427.544      

CV 0.123  0.120      

Residual Sum of sq. 69.201  61.425      

Bandwidth (m.)   533.083      

N 620  620      

Note: The dependent variable is ln (housing value), * p < 0.10, ** p < 0.05, *** p < 0.01, and a negative value of difference 

criterion suggests a spatial variability. 

Neighborhood characteristics had both positive and negative effects on house values 

(Table 2). Median household income (p < 0.001) and percentage of houses used for 
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recreational purposes (p = 0.001) were positively associated with house value in OLS 

model as well as in GWR model. A 1.0% increase in income and percentage of houses used 

for recreational purposes were associated with house value increases of 0.27% to 0.53% 

and 0.9% to 3.30%, respectively, in GWR model. However, the percentage of vacant 

houses was negatively related with house values. Median household age had both 

positive and negative relationship with house value in GWR model. Distance-related 

neighborhood variables, such as distance to the nearest shopping center and hospital, 

were negatively related to house value. With a 1.0% increase in distance to the nearest 

shopping center and hospital, a house value decreased by 0.013% to 0.033% and 0.032% 

to 0.143%, respectively, in GWR model. 

3.2. Ecosystem Service Attributes 

Proximities to different waterfront types and their ecosystem services were related 

to house values. Results from the OLS model showed that of six variables, four were 

statistically significant at the 10% or better significance level. Stationarity for each of the 

six variables was rejected, suggesting the monetary value of ecosystem services was 

spatially heterogeneous. The OLS model indicated that proximity to selected waterfront 

types (bay, stream, and other water body) was associated with increased house values. 

However, proximity to a bayou was negatively related to the house value. 

The relationship of distance to different waterfronts and house values, holding all 

other variables constant, is plotted in Figure 3. The figure shows downward sloping 

relationships between house value and distance to bay, river, stream, and other water 

body and an upward sloping relationship with distance to a bayou. A downward sloping 

relationship implies that houses located nearer to waterfronts (bay, river, stream, and 

other water body) were assessed higher values, whereas upward slope indicated that 

houses located distant from waterfronts (bayou) were assessed higher values. 

Marginal implicit prices for each of the significant waterfront coefficients were 

estimated at the mean assessed house value of $139,204 and distance of one mile (1.609 

km) to the selected waterfront types (Table 3) using Equation (1). The GWR model 

indicated that the implicit price of distance to a bay varied across the study area (Figure 

4A). The local parameter coefficients of distance to a bay estimated by the GWR model 

were significant throughout the study area suggesting benefits of a bay were reflected in 

the house value throughout the study area and the implicit price was estimated to be 

between $4039 and $5574 for each 1 km decrease in distance to a bay (Table 3). The GWR 

model suggested that the marginal implicit price, assumed to be constant across the study 

area in the OLS model, in fact, varied between locations and the houses were valued at a 

relatively higher rate on peripheries of urban centers than other areas (Figure 4A). 
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Figure 3. Relationships between assessed house value and proximity to waterfront ecosystem 

services. 

Table 3. Estimated marginal implicit prices per 1 km decrease in distance to waterfront ecosystem 

services. 

Waterfront Type 
Marginal Implicit Price per km 

OLS GWR * 

Nearest bay $5133 $4039 to $5574 

Nearest stream $2566 $2898 to $6773 

Nearest river NS $2455 to $2802 

Nearest bayou −$3267 −$3608 to −$6343 

Nearest other water body $2534 $2287 to $3432 

Note: NS represents a statistically insignificant coefficient. * Only significant GWR estimates were 

translated to US$ values. 
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Figure 4. Local parameter coefficients of proximity to waterfront ecosystem services estimated from GWR model that were statistically significant at 10% or a better significance level: 

(A) bay, (B) stream, (C) river, (D) other water body, and (E) bayou. 
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Proximity to the nearest stream was also valued positively by coastal residents. The 

GWR model demonstrated variability of the implicit price which ranged between $2898 

and $6773 for 1 km decrease in distance to a stream. Figure 4B illustrates that local 

parameters for a stream were not statistically significant throughout the study area 

(indicated by white color) suggesting distance to stream did not have any effect on house 

values in some locations. Proximity to a stream was more valued in Mobile County than 

Baldwin County, whereas it was not associated with house values in Hancock County and 

some regions of Harrison County. Proximity to a river was not associated with house 

values in the OLS model; however, in the GWR model, some parameters in the southern 

region of the study area were related to house values (significant at 10% or a better 

significance level) (Figure 4C). People living near Dog River, East and West Fowl Rivers, 

and Little River valued proximity to a river, whereas in other areas proximity to a river 

did not have an association with house values. The marginal implicit price was estimated 

between $2455 and $2802 per 1 km decrease in distance. Similarly, Figure 4D illustrated 

the spatial variability due to distance to other water body. The estimated implicit price 

was between $2287 and $3432 per 1 km decrease in distance (GWR). Proximity to other 

water bodies was significant in coastal counties of Mississippi but not in Alabama. 

Findings implied that the proximity to other water bodies was valued by residents where 

streams and quality bays were relatively scarce, such as in Hancock and Harrison 

Counties. 

An examination of Figure 4E indicated spatial variability in the effect of distance to a 

bayou on house values. The estimated marginal implicit price from the GWR model was 

between −$3608 and −$6343 per 1 km decrease in distance suggesting that proximity to a 

bayou was negatively associated with house values. This negative relationship between 

house values and proximity to a bayou occurred in almost all parts of the study area in 

Alabama; however, it was mostly statistically insignificant in Mississippi. 

4. Discussion 

Traditional regression models such as OLS can mask important local variation in 

model parameters [59]. In most previous studies, the relationship between residential 

property value and proximity to waterfronts represented an average measure by 

assuming the relationship did not change across the landscape. However, this study 

revealed that this assumption is not necessarily true. Ignoring the notion that specific sites 

within the same study area might differ from each other with regard to availability of 

ecosystem services and their impact on property values might lead to incorrect 

generalizations about the entire study area [60]. Inferences based on results from a global 

OLS model, where nonstationarity is present, might not be sufficient in a local policy 

setting [39]. 

This study suggested there was spatial variation and the global (OLS) model did not 

capture the geographical variations in house values across the study area and provided 

ambiguous coefficients reflecting a net effect of proximity to waterfront ecosystem 

services that may not be appropriate for all areas. For example, proximity to stream and 

other water bodies corresponded to an increase in house value by 0.03%. However, GWR 

estimated that effect of proximity to a stream ranged from 0.03% to 0.07% reflecting an 

increase of $2800 to $6800 in house value for a 1 km decrease in distance to the nearest 

stream. Similarly, other water body estimates ranged from 0.01% to 0.04% reflecting a 

$1000 to $3000 increase in house value for a 1 km decrease in distance. These findings 

suggest that waterfront ecosystem services were valued differently not only for different 

waterfront types but also for different locations. GWR maps illustrated that OLS results 

were suboptimal as a predicted response varied across the study area. For example, 

proximity to a bay was assigned higher values in urban peripheries than other regions. 

Thus, findings from GWR provide some guidance as to how policy solutions need to be 

spatially varied across geographic area. Information on spatial variation of waterfront 

ecosystem service monetary value, in conjunction with information on their ecological 
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importance, can be used to identify areas requiring preservation and those more suitable 

for development, and implementing local policies, such as zoning regulations, that will 

balance future changes in urban land use. Conservation easements, for example, can be 

modified to fit specific site conditions and ecosystem availability based on findings from 

this research without the necessity to adopt the same policy for entire the study area. As 

residents preferred to live in proximity to most waterfront types, planners can use this 

information to formulate site-specific conservation strategies in allocating budgets for 

both waterfront ecosystem service conservation and development in city planning. On the 

other hand, bayous, were less desired by residents; therefore, surrounding areas could be 

targeted for preservation. 

Proximity to a bay was associated with the greatest monetary value, followed by 

streams and other water bodies, which suggested that large-size waterfronts were 

appreciated more than smaller ones. The possible reason might be that larger-size 

waterfronts provide more ecosystem services and recreational opportunities, such as 

boating, than smaller-size waterfronts. Mahan et al. [30] found a similar trend where a 

$24.39 increase in a house value was associated with one-acre increase in adjacent wetland 

size. Similarly, Bolitzer and Netusin [29], Habb and McConnell [61], and Poudyal et al. 

[55] indicated an increase in residential property values with an increase in size of open 

space. In addition, ecosystem services of bays might have been captured better than other 

types of waterfronts, such as rivers and streams, because the study area is in the coastal 

region where access to bay areas is fairly easy. Thus, coastal residents preferred to live 

closer to waterfronts, and size and types of waterfronts seemed to matter in their 

decisions. The information on waterfront size and type preference can be used to promote 

availability, improve access to, and increase provision of ecosystem services associated 

with certain waterfront types. This approach can also help increase property tax revenues 

that can be used to improve urban infrastructure and services and enhance availability of 

ecosystem services in waterfront areas preferred by residents. 

Proximity to rivers, streams and other water bodies such as lakes, small ponds, and 

reservoirs were also valued positively. This result was consistent with previous studies 

by Mahan et al. [30] and Sander and Polasky [62] who estimated 0.004% to 0.01% increases 

in house value with a 1% increase in proximity to the nearest stream. Bowman et al. [63] 

estimated that adjacency to a stream increased a house value by 9.60%. Doss and Taff [64] 

found that with a 10-m increase in proximity to a lake, a residential property value 

increased by $187.92, whereas Sander and Polasky [62] reported a 0.01% increase in 

residential house sale price with a 1-percent increase in proximity to the nearest lake. 

Similarly, Luttik [65] estimated that house prices increased by 10% with access to a water 

view. Bayou, however, had a positive coefficient sign suggesting that residents assessed 

higher value to houses located away from this waterfront type. A possible reason might 

be that bayous are less appealing because of their bio-physical characteristics and provide 

habitat for many wild animals, such as alligators, and thus residents might consider living 

in proximity to bayous as unsafe. Another reason might be residents preferred diverse 

recreational opportunities associated with bays and stream than bayous. Bayous provide 

more of nonuse value compared to other waterfront types such as bays, streams, and 

rivers which cannot be measured by hedonic model employed in this study. 

The study used data at the Census block group level that lacked many house 

structural attributes such as number bathrooms; presence of garage, fireplace, porch, and 

central air conditioning system; area of a property; and quality of a house, which are 

crucial in HPM analysis. As other relevant information was missing, the analysis may 

potentially have suffered from inefficiency. However, all available variables were used in 

the analysis to control the variation across housing stock caused by structural attributes. 

In addition, the data available from the Census are presented as either median or average 

assessed house values for a Census block group. The data aggregation to a Census block 

group may have impacted the reliability of estimated marginal implicit prices compared 

to estimates derived based on individual house-level information. However, Shultz and 
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King [47] suggested that aggregating data by a block group level is preferable over the 

block or tract level. Despite some disadvantages of Census data, overall quality of 

waterfront ecosystem service values as embodied in assessed house values was well 

represented because estimate coefficient signs and significance were consistent with 

Dahal et al. [24] who performed a similar study in the same location and time frame using 

detailed information from MLS data. However, it is recommended that additional HPM 

studies should be conducted to evaluate consistency of their estimates with those derived 

based on detailed information obtained from MLS or tax assessors. Despite potential 

limitations, monetary assessment of waterfront ecosystem services based on Census block 

group data would be helpful in situations where MLS or tax assessors’ information is 

either unavailable or difficult to acquire and thus not practical for local leaders who could 

use the information in their land-use decisions. 

While the study demonstrated the usefulness of GWR in addressing spatial 

nonstationarity considering all variables were spatially heterogeneous, in the real world 

all independent variables might not necessarily vary across spatial locations [65]. For 

example, ecosystem service attributes expressed as proximity to waterfronts may be 

valued differently in different locations, whereas some structural variables, such as a 

number of bedrooms, may be valued equally in different locations. Therefore, future 

studies should consider using a mixed geographically weighted regression (MGWR) 

approach where some of the variables are allowed to be global (stationary) and others to 

be local (nonstationary). The MGWR approach can explore spatial variation of some 

independent variables as well as allow global effect of the stationary variables. The mixed 

approach would be more flexible and parsimonious than GWR model and would improve 

model efficiency [66,67]. 

This study did not measure the actual size of waterfronts and made inferences based 

on observations that bays were larger in size than streams and other water body types. 

Information on actual size of waterfronts would aid in determining whether the 

waterfront outputs are amenities or disamenities to coastal residents. For instance, 

waterfronts that are relatively large in size allow diverse recreational opportunities and 

homeowners may be easily attracted towards them while waterfronts that are smaller in 

size might be considered merely a pond in buyer’s eyes. The study did not account for the 

impact of waterfront view or accessibility. Future studies should consider waterfront view 

as one of the potential ecosystem services as unobstructed waterfront view may serve as 

superior selling attribute to attract potential buyers. The study used single-year data, 2010 

Census data, to estimate monetary values of proximity to waterfront ecosystem services. 

Utilizing housing data from an extended time period would have helped to control for 

market fluctuations due to many exogenous events by averaging their effects. 

5. Conclusions 

The study determined how monetary value of proximity to waterfront ecosystem 

services varied across a geographic area and by a waterfront type, and demonstrated that 

the aggregated information as available in the U.S. Census can be used to estimate a 

monetary value of ecosystem services associated with waterfronts. The information on 

resident preferences related to open space areas, such as waterfronts, will be helpful in 

identifying areas suitable for natural resource conservation versus development and 

adopting local land-use policies that will facilitate this process. For example, bays were 

highly preferred in urban centers especially in Mobile and Baldwin Counties and as an 

increasing number of people have been choosing to live nearby such areas, this might 

create land use pressure and potential loss of waterfront ecosystem services. Therefore, 

policies regarding preservation of waterfronts should be focused on such areas to 

maintain local communities’ interests and ecological values. Findings from this study 

provide crucial information for city planners to promote healthy environments where 

local economies can benefit from increased property tax revenues associated with 

different waterfronts. Planners can use this information to develop guidelines for 
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waterfront preservation and urban development by maintaining visually appealing and 

easily accessible waterfronts in close vicinity to urban settings. 

Results have several implications. Estimates from the GWR model indicated that the 

marginal price of proximity to waterfronts was not constant throughout the study area, 

suggesting that a general conservation/development policy might not be appropriate for 

a local/regional setting as there was a substantial spatial variation in monetary value of 

proximity to waterfront ecosystem services. The information on waterfront value 

variation can be used to educate decision-makers about the relative value of waterfronts 

and associated ecosystem services and facilitate new ideas on how to better adopt 

location-specific land-use management that fits local characteristics and is preferable by 

local communities. Aggregated Census data can be used to produce quick and first-hand 

estimates that local decision-makers can use to make more informed land-use decisions 

when detailed MLS data are not available, difficult to acquire, or costly. For example, it 

can be utilized to develop a Web site or a mobile application that local decision-makers 

can use to acquire needed data quickly and easily make their decisions regarding land-

use management in a specific area. A quick access to data and efficient technique for 

monetary valuation of waterfront ecosystem services can serve as an important decision 

tool in designing urban waterfront policies that are better aligned with local settings and 

lead to higher economic activity while preserving their ecosystem services. 
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Appendix A 

In the GWR model, house structural, neighborhood and ecosystem service attributes 

located closer to a house � have a greater impact in the estimation of a local parameter, 

β�
k
(ui,vi), than for a house located away from location i. Thus, the model [from Equation 

(3)] can be further represented as: 

β�
k
(ui,vi) = (X′W(ui,vi)X)�1X′W(ui,vi)y (A1)

where β�
k
(ui,vi)  is an estimate of β(ui,vi)  and W(ui,vi)  is an n × n  matrix with off-

diagonal elements as zero and diagonal elements representing the geographical weight of 

each location (ui,vi) as a function of distance from one location to other location for which 

observations were collected: 
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The parameters in each row of the above matrix were estimated by: 

β�(i) = (X′W(i)X)�1X′W(i)Y (A3)

The spatial weighting matrix was represented by: 

 W(i)=
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⎢
⎢
⎢
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⋮
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⋱
⋯

⋮
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 (A4)

Equation (A4) represents the weighted least squares estimator where the weight 

varies according to the location i. W(i) was computed with a bi-square kernel function. 

The function provides a continuous, near-Gaussian weighting function up to distance � 

from the regression point and then zero weight to any data point beyond b [53]. While the 

kernel can either be a fixed or adaptive distance, an adaptive distance function was 

selected because the spatial context of the study area was relatively large and geographic 

feature (centroid of Census block group) distribution was irregular [68]: 

��� = �
�1 − �

���

�
�

�

�

�

, ��� < �

                       0, ��� > �

 (A5)

where ���  is the weight function, � is a specific data point in space, ���  is the Euclidean 

distance between locations � and �, and � is an adaptive bandwidth size defined as the 

kth nearest neighbor distance. The ���  equals one if � is one of the Kths nearest neighbors 

of �. The value of K is the number of observations that are included in the GWR model. 

Weights for all data points beyond the Kth become zero. The selection of � in Equation 

(A5) is important because as � increases, the local model will be closer to global model 

and as � decreases, parameter estimates progressively depend on observations in close 

proximity to �  and thus increase variance [53]. A geographically weighted regression 

model was estimated using GWR4 software. 

This study used the Golden Section Search routine to identify a bandwidth 

minimizing the Akaike Information Criterion (AIC) score [69]. The AIC has an advantage 

of being more general and accounts for model parsimony [53]. As the classic AIC selects 

smaller bandwidths which are likely to be undersmoothed, a corrected AIC (AICc) was 

used as a selection criterion [70]. A model with a lower AICc is considered to be the better 

model because the smaller the AIC score, the closer will it be to the true model [53]. The 

AICc was defined as: 

AICc = 2nlog
e
(σ�) + nlog

e
(2π) + n{

n + tr(s)

n − 2 − tr(s)
} (A6)

where � is the sample size, �� is the estimated standard deviation of the error term, and 

tr(s) represents the trace of the hat matrix (mapping y� onto y) and is a function of the 

bandwidth: 

y� = sy (A7)
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Local standard errors were based on the variance matrix and expressed as: 

y� = sy (A8)

where C represents the variance-covariance matrix and was defined as: 

C = (�′�(ui,vi)�)�1�′�(ui,vi) (A9)

After computing the variance of each parameter estimate, standard errors were 

obtained as follows: 

SE(β�
i
) = sqrt[Var(β�

i
)] (A10)

The weighting matrix addressed the spatial heterogeneity, whereas the statistical 

significance of each local parameter estimate obtained from the GWR model was 

evaluated using a t-test. To test for spatial heterogeneity of the GWR model, a spatial 

variability was examined. The variability for each parameter coefficient was tested by 

model comparison between the fitted GWR (estimated y values computed by GWR) and 

a model in which only the kth coefficient was fixed while others were kept as they were 

in the fitted GWR. 
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