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Abstract: The Middle East is faced with a water shortage crisis due to its semiarid and arid climate.
In this paper, precipitation as an important part of the water cycle was evaluated in 43 stations across
the Middle East using the stable isotope technique to study the parameters which influence the stable
isotope content of precipitation. First, the stepwise regression model was applied to determine the
main geographical and climatological factors affecting the stable isotopes in precipitation. Secondly,
the stepwise model was also used to simulate the stable isotope values in precipitation. Furthermore,
due to the notable climatic variations across the Middle East, the precipitation sampling stations
were classified into six groups based on the Köppen climate zones. Significant variations in the
stable isotope values of precipitation were observed in the stations of each climate zone. Finally, the
Middle East meteoric water line was developed for the dry and wet periods based on the average
stable isotopes in the studied stations. The developed lines showed a lower slope compared to the
GMWL due to the higher air temperature and relative humidity in the Middle East compared to the
average global conditions. To conclude, the stable isotope contents in precipitation showed significant
temporal and spatial variations due to the notable climatic variations across the Middle East.

Keywords: stable isotopes; precipitation; Middle East; Köppen climate classification; stepwise regression

1. Introduction

The Middle East is located in the southwest of Asia and is well known for its significant
energy resources such as oil and gas. Due to the semiarid and arid climates in large parts
of the Middle East, this region always faces a water shortage crisis [1]. During the last few
decades, due to the intense growth of the population and industries, the importance of
water resources has considerably increased in this region [2]. Therefore, water resources in
the Middle East should be studied and continuously monitored by accurate and reliable
methods such as stable isotope techniques. These techniques can provide a comprehensive
view on the crucial aspects of water resources such as origin, mixture, pollution, and
evolution [3–11]. Precipitation is an important element of the water cycle and has a
direct and quick effect on the quality and quantity of surface water and groundwater
resources [12–15]. Studying the stable isotopes in precipitation provides very important
information regarding the moisture origin of precipitation, the parameters which influence
moisture in air mass trajectories toward precipitation sampling sites, and the parameters
which affect the climate of precipitation sampling sites [16,17].
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Since Harmon Craig (1961) [18] found that 18O/16O and 2H/H ratios in freshwater
molecules are correlated with each other, numerous researchers across the world have used
the stable isotope technique as a reliable and accurate method to study water resources.
Furthermore, the meteorological conditions (such as the sea surface temperature (SST) and
the relative humidity of the sea) of the water body from which the moisture originates can
be studied using the d-excess values (d-excess = δ2H − 8 × δ18O [19]) of the precipitation
events. In large-scale and closed water cycle systems, the d-excess values in precipitation
are under the dominant influence of the meteorological conditions and the SST of the
moisture sources [20–23]. For instance, the precipitation originating from water bodies
with high SSTs such as the Mediterranean Sea shows high d-excess values [24–28], while
the precipitation originating from low SST water bodies normally shows low d-excess
values [28].

The application of stable isotopes in water resources across the Middle East has started
since the establishment of the Global Network of Isotopes in Precipitation (GNIP) stations
in this region. Numerous GNIP stations exist in most of the countries across the Middle
East except for Qatar, Kuwait, and Iraq. Some of these stations (such as Tehran, Kabul,
Bahrain, Cairo, Adana, Ankara, Antalya, etc.) have long time series of stable isotope
datasets. The stable isotope technique in precipitation has also been applied in numerous
studies [16,28–35] across the Middle East, mainly during the last two decades.

Although many studies have been conducted on the water resources across the Middle
East using the stable isotope technique, most of them are local studies which cover only
small parts of the Middle East. Furthermore, in most of the mentioned studies, the effects
of climatic and geographical parameters on the stable isotope content of precipitation have
not been properly investigated. In some parts of a recent paper published in the Journal of
Hydrology [36], the authors tried to investigate the effect of local and regional parameters
on the stable isotope values in precipitation across the Middle East. Although their study
was a pioneer work and overcame many shortcomings of previous studies, they should
have considered two things. First, they did not consider the seasonal effect on the stable
isotope values in precipitation thoroughly. They should have divided the hydrological
year to the wet and dry periods and then they should have studied and compared the
stable isotope values in precipitation in these two periods. Second, they used the analytic
hierarchy process (AHP) technique to evaluate the effect of various regional parameters
(teleconnection indices) on the stable isotope values in precipitation. As the AHP technique
uses human judgment in its evaluations, its results cannot be completely accurate and
reliable and have some uncertainties. In the current study, the authors tried to overcome
the shortcomings of the abovementioned study and to present a new way to link the
climatological conditions of the study area to the stable isotopes in precipitation.

This study aimed to gather available stable isotope data from the GNIP stations and
previous studies to conduct a comprehensive investigation regarding the effects of various
climatic and geographical parameters on the stable isotope values of precipitation in the
Middle East using stepwise regression model. A map of the spatial distribution of the
simulated δ18O, δ2H, and d-excess values in the precipitation of the Middle East obtained
by stepwise model is also presented. Furthermore, the link between the stable isotope
characteristics of precipitation and the Köppen climate zones in which the studied stations
were located was studied. Finally, the meteoric water line of the Middle East was developed
based on the stable isotope data in the studied stations. The presented precipitation dataset
in the current research will be useful for researchers who study the stable isotopes in
precipitation, the climatology, and the isotope hydrogeology across the Middle East.

2. The Geography and Climatology of the Middle East

The Middle East is a large area surrounded by Afghanistan and Pakistan in the
east, the Red and Arabian Seas in the south, the Caspian Sea in the north, and the Black
and Mediterranean Seas in the west. Precipitation and temperature show significant
variations across the Middle East [37]. In the arid zones of Iraq, Iran, and the Kingdom of



Water 2021, 13, 2397 3 of 16

Saudi Arabia (KSA), temperatures rise to more than 50 ◦C, while the Zagros Mountains in
western Iran and eastern Iraq experience the very low temperature of −30 ◦C in winter [37].
Precipitation also shows large variations in the Middle East. For instance, the coastal areas
of the Caspian Sea receive more than 1800 mm of annual precipitation [38], while the arid
areas in Iran, KSA, and Iraq often receive no or little precipitation for a long time [37].
In addition to spatial variations, precipitation also shows large temporal variations as
most parts of the Middle East receive large amounts of annual precipitation during the
cold and wet (November to April) period compared to the hot and dry (May to October)
period. The moisture causing precipitation events in the Middle East is mainly provided
by the Mediterranean (MedT), the continental polar (cP) (also known as the Siberian),
the continental tropical (cT) (also known as the Sudan), and the Maritime polar (mP) air
masses during the cold and wet period. However, during the hot and dry period, only
the maritime tropical (mT) air mass which affects the southeastern part of the Middle East
including Pakistan, southeastern Iran, and northern Oman [26] is active (Figure 1).
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studies [26,39]. A visual analysis reveals that the convergence of the moisture flux prevails 

Figure 1. The map of the Middle East including the precipitation sampling stations, the precipitation
checkpoint stations, and the main air masses affecting it.

Furthermore, the vertical integrals of northward and eastward water vapor fluxes
were used to obtain the vertically integrated moisture flux (VIMF). The VIMF depicts
the horizontal rate of water vapor flow per meter across the flow for a column of air
extending from the surface of the earth to the top of the atmosphere. The monthly patterns
of the VIMF and its divergence for the cold and wet as well as the hot and dry periods
are shown in Figure 2. During the months of the cold and wet period, the moisture flux
over the Middle East prevails from the west, transporting moisture from the Black Sea,
the Mediterranean Sea, the Arabian Sea, and the Persian Gulf. This is in agreement with
previous studies [26,39]. A visual analysis reveals that the convergence of the moisture
flux prevails over the Middle East during the cold and wet period. The upward motions
favor convection, which leads to precipitation over the region. On the contrary, the VIMF
divergence is mostly observed over 40◦ N from May to August, while convergence is
dominant over the Indian Peninsula and the surrounding regions throughout the period,
which is in agreement with the Asian summer monsoon. In this period, the VIMF reaches
the Middle East from the west (Europe and the Mediterranean Sea) and from the south
(the Arabian Sea).
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Figure 2. The northward and eastward vertically integrated moisture flux (VIMF) data obtained from
the ERA-Interim Reanalysis with a resolution of 1◦ × 1◦ for the period of 1981 to 2015 [40].

Due to the large variations observed in temperature, precipitation amount, eleva-
tion, and latitude across the Middle East, various climatic zones exist in it. According to
the Köppen classification [41,42], various climatic zones including BWh (arid, desert,
and hot), BWk (arid, desert, and cold), BSh (arid, steppe, hot), BSk (arid, steppe, cold),
Csa (temperate, dry summer, hot summer), Csb (temperate, dry summer, warm summer),
Cfa (temperate, no dry season, hot summer), Dsa (continental, dry summer, hot summer),
Dsb (continental, dry summer, warm summer), Dsc (continental, dry summer, cold sum-
mer), Dfb (continental, no dry season, warm summer), and Dfc (continental, no dry season,
cold summer) exist across the Middle East [43]. However, only the BWh, BSk, and Csa
climatic zones cover large parts of the Middle East and the other climatic zones, including
BWk, BSh, Csb, Cfa, Dsa, Dsb, Dsc, Dfb, and Dfc, cover small parts of it.

3. Materials and Methods

The stable isotope (18O and 2H) data were studied in 43 stations (mostly from the
GNIP stations) across the Middle East, while in some stations, including Basreh, Terbil,
Erbil [33], Shiraz [44], Isfahan [32], Mashhad [28], and Herat [45], the stable isotope data
were extracted from the scientific papers. Precipitation was sampled on a monthly basis
using the GNIP cumulative sampling approach. A monthly cumulative precipitation
sample represents all the precipitation events that occur in the studied month. To collect
monthly samples, the rain samplers were equipped with accumulation containers in
the precipitation sampling sites. After each precipitation event, the rain in the gauges
was immediately emptied into monthly bottles (high-density polyethylene 1 L bottles)
which could significantly reduce evaporation. The samples collected with this procedure
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represented the weighted monthly average of the stable isotopes of precipitation. At the
end of the study month, in each station, 30 mL bottles were filled with monthly precipitation
collected in the monthly bottles.

Several laboratories across the world, such as the IAEA’s Isotope Hydrology Laboratory
(Vienna, Austria), Central Laboratory of Environmental Isotope Hydrology in Egypt, the
Laboratory of AGH University of Science and Technology (Krakow, Poland), Technische
Hochschule Laboratory (Darmstadt, Germany), and the Isotope Laboratory of Copenhagen
University (Denmark), have analyzed the stable isotopes in the Middle East precipitation
using a Delta-Plus XP isotope ratio mass spectrometer (IRMS) (Thermo Finnigan, Germany)
or a Los Gatos Research (LGR) Liquid Water Isotope Analyzer Instrument.

The stable isotope values in precipitation are presented in delta notation (δ) which is
the relative deviation of the sample from the Vienna Standard Mean Ocean Water (VSMOW)
and is calculated by Equation (1):

δ18O sample =



 18O

16O

 sample

 18O

16O

 reference

− 1


× 1000‰ vs. VSMOW (1)

The analytical standard uncertainties for most of the samples were ±1‰ for δ2H and
±0.1‰ for δ18O.

Furthermore, the stepwise regression model was used to determine the effects of vari-
ous geographical and meteorological parameters on the stable isotope values of precipitation.

The stepwise regression model is a statistical technique which attempts to fit a linear
equation between dependent and predictive variables [46] using Equation (2):

Y = β0+ β1 × 1 + β2 × 2 + . . . + βnXn + ε (2)

in which β0, β1, β2, . . . , and βn are the parameter values and ε is the error term. The
error term demonstrates the variations of parameter Y, which cannot be explained using
the linear model.

The independent variables (such as the precipitation amount, latitude, temperature,
and elevation) were entered into the stepwise regression model one by one to clarify
their significance in it. Then, based on the calculated F-statistics and p-values in each
independent variable, the parameters which needed to be removed from the model were
chosen [47].

The variables with the p-values of more than 0.05 were removed from the model, while
the other parameters were considered as the main independent factors in the stepwise
regression model. The statistical (regression) analysis used in the stepwise model was
performed using the R programming language [48].

Finally, the stepwise regression model was used to simulate the δ18O, δ2H, and
d-excess values in the Middle East precipitation. The spatial distribution maps of these
isotopes across this region were developed using QGIS Desktop software [49]. To validate
and check the accuracy of the maps developed by the stepwise model, the root mean square
error (RMSE) was used [50]. The RMSE (also known as the prediction error) was calculated
using Equation (3):

RMSE =

√
∑N

i=1(predicted i − actual i)ˆ2
N

(3)
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4. Results and Discussion

The arithmetic and weighted means of the δ18O, δ2H, and d-excess values in 43 pre-
cipitation sampling sites across the Middle East are tabulated in Supplementary Table S1.
Stable isotopes in precipitation can determine very important facts regarding the climato-
logical characteristics of the precipitation sampling sites as well as the characteristics of the
moisture sources.

4.1. The Parameters Affecting the Stable Isotope Values and the Simulation of the Stable Isotopes

The stable isotope values in precipitation mainly depend on the climatological and
geographical conditions of the precipitation sampling site. The effects of the main meteoro-
logical (such as air temperature and precipitation amount) and geographical parameters
(such as latitude and elevation) on the stable isotope values of precipitation were studied
using stepwise regression model. The geographical (latitude and elevation) and meteoro-
logical parameters (temperature and precipitation amount) were entered into the stepwise
regression model one by one as independent variables, and the insignificant parameters
were omitted, as shown in Supplementary Table S2. The results obtained from the step-
wise regression model demonstrated that, among the geographical and meteorological
parameters, latitude and temperature mainly control the δ18O values in the Middle East
precipitation, while only latitude has a dominant influence on the δ2H values in the precipi-
tation of this region (Sig < 0.05). However, more parameters including precipitation amount,
temperature, and elevation affect the d-excess values in the Middle East precipitation.

Furthermore, the δ18O, δ2H, and d-excess values were simulated using stepwise
regression. The spatial distribution maps of the stable isotopes in precipitation across the
Middle East were prepared based on these simulated parameters using QGIS Desktop
software (Figure 3).

To validate the distribution maps of the simulated δ18O, δ2H, and d-excess values in
precipitation across the Middle East using the stepwise technique, several checkpoints
across this region including Amman [51], Karbala [33], Marivan [52], Islamabad [53], and
Faryab [54] (besides Taif-al-Hada, Haray, and Addis Ababa from the GNIP stations) were
used, as shown in Figure 1. The error maps (the differences between the real and simulated
isotopic values) for the Middle East are depicted in Figure 4. In the developed error maps,
the northeastern part of the Middle East demonstrates a notable mismatch (as high as
−15.5‰ for δ 18O and −162‰ for δ2H) between the simulated and real data, while most
parts of the Middle East show a good match.

In the d-excess error map, a significant mismatch is observed over the northern and
southern parts of the Middle East. However, in most western and central parts of the
Middle East, a good match is observed between the simulated and real data. In addition
to preparing the error maps, the RMSE was also calculated for the stable isotope maps
developed by real (using the inverse distance weighting (IDW) technique) and simulated
data (using the stepwise model), as shown in Table 1. Lower RMSE values were observed
for the maps developed by real data. This confirms their higher accuracy compared to the
maps developed by the simulated data.
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Table 1. The RMSE in the stable isotope distribution maps in precipitation across the Middle East.

Map Type δ18O (‰) δ2H (‰) d-Excess (‰)

IDW 1.11 13.10 7.50
Stepwise model 7.15 30.18 12.36

In addition to studying the spatial variations of stable isotopes in precipitation across
the Middle East, the temporal variations of stable isotopes in some of the stations in this
region were also studied. Among the 43 sampling stations, 12 stations which had enough
isotope datasets to conduct temporal studies on the stable isotope values of precipitation
were selected. The monthly δ18O values at these stations were linked to the monthly
temperature variations (due to the temperature-dependent distillation process in the at-
mosphere [55]) and to the average amount of monthly precipitation. In the continental
stations (Nicosia, Cairo, Tehran, Kabul, Ankara, Aaramta, and Adana) across the Middle
East, the monthly δ18O values demonstrated more depleted values during the cold and
wet period than in the hot and dry period. At these stations, monthly precipitation was
higher and the average monthly temperature was lower during the cold and wet period
compared with the hot and dry period (Figure 5). The inverse correlation between the
δ18O values in precipitation and the precipitation amount in most of the studied stations in
the Middle East is due to the precipitation amount effect. Among the studied continental
stations, only in Khartoum, most of the annual precipitation occurred during the hot pe-
riod. The precipitation moisture over the Sahelian-Sudan region originates from the local
evaporation as well as such regions as the Western Sahel, the Guinea Coast, Central Africa,
and the Mediterranean Sea [56]. During the hot and dry period, the Guinea Coast and
the Mediterranean Sea are the most important moisture sources for the rainiest months
(July and August), while Central Africa has its maximum contribution during September.
The wind direction also changes from the north in July to the southwest in August and
to the northeast in September. This explains the seasonality of the moisture contribu-
tion and precipitation, which is related to the migration of the Intertropical Convergence
Zone [56,57].
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In the coastal stations (Karachi, Antalya, Bahrain, and Sidi Barrani), due to the higher
relative humidity throughout the year in the atmosphere, the seasonal effect on the δ18O
values of precipitation is not as significant as in the continental stations. Thus, the δ18O
values have no obvious correlation with the precipitation amount and temperature. In
contrast to the other coastal stations, the Karachi station, which is influenced by the Indian
monsoon regime, shows high amounts of precipitation and depleted δ18O values in July,
August, and September in the hot period (Figure 5) [58]. The monsoon regime affects large
parts of Pakistan, Oman, and southeastern Iran during the hot period and causes intense
precipitation events (Figure 1).

4.2. The Classification of the Studied Stations

Since studying the stable isotope characteristics of precipitation across the Middle
East was very complicated due to various climatic conditions, the stations were classified
based on the Köppen climate zones Table 2 [41,42]. The weighted means of the δ18O and
δ2H values in the precipitation events of the stations located in the BWh zone showed
the most enriched values during the hot and dry (−1.71‰ and −3.98‰, respectively) as
well as the cold and wet (−2.42‰ and −5.87‰, respectively) periods. This is due to the
fact that the stations located in the BWh zone face a high air temperature and an intense
evaporation, which enrich the stable isotope values in precipitation. However, the only
station located in the Dsb zone (Erzurum) showed the most depleted δ18O and δ2H values
both during the hot and dry (−4.81‰ and −27.71‰, respectively) as well as the cold and
wet (−11.29‰ and −78.34‰, respectively) periods. This was because this station was
located in a mountainous region with a high elevation and a low annual air temperature.
The stable isotope values decline notably as elevation increases in mountainous regions.
As a mass of vapor rises over the slope of a mountain and is simultaneously adiabatically
cooled (by expansion), rainout occurs. At high elevations where the air temperature is
lower, stable isotopes normally show more depleted isotope values. However, the gradient
of isotope depletion by elevation increase varies from one place to another [25].

Table 2. The average stable isotope values in the studied stations based on the Köppen climate zones.

Row

Climate
Zone

ave.
δ18O

ave. 1*
δ2H

ave.
d-Excess

w. 2*
δ18O

w.
δ2H

w.
d-Excess Station

(‰ vs. VSMOW)

Hot and dry period (May to October)

1 BWh −0.71 4.12 9.66 −1.71 −3.98 9.72
Khartoum, Qassim, Bahrain, Karachi,

Rafah, Salalah, Jubial, Sidi Barrani,
Qiaroon, Taftan, Taif-al-Hada

2 Csa −4.20 −21.13 12.44 −3.97 −19.56 12.25 Diyarbakir, Antalya,
Adana, Prodromos

3 BSk −1.97 −3.78 9.33 −2.19 −6.46 11.03 Saiq, Kabul, Tehran, Ankara, Herat
4 BWk −0.17 7.71 9.05 −1.94 −4.43 11.05 Sana’a, Isfahan
5 BSh −2.14 8.69 10.61 −2.77 −5.09 16.91 Mashhad
6 Dsb −3.87 −21.23 9.78 −4.81 −27.71 10.8 Erzurum

Cold and wet period (November to April)

1 BWh −1.30 1.84 12.10 −2.42 −5.87 13.51

Cairo, Qassim, Tabuk, Bahrain, Karachi,
Basreh, Trebil, Rafah, Salalah, Jubial,
Sidi Barrani, Qiaroon, Taftan, Harray,

Wadi-al-Qor, Khatt, Taif-al-Hada

2 Csa −6.03 −30.77 17.54 −6.12 −30.22 18.77
Diyarbakir, Antalya, Adana, Erbil, Tyre,
Yohmor, Prodromos, Aarmata, Beirut,

Tripoli, Homs
3
4

BSk
BSh

−7.09
−5.37

−40.62
−25.62

16.41
17.15

−7.33
−6.07

−42.51
−31.38

16.16
17.18

Shiraz, Kabul, Tehran, Ankara, Herat
Mashhad, Nicosia, Amman

5 BWk −4.40 −22.77 10.22 −4.10 −19.25 13.54 Sana’a, Isfahan, Damascus
6 Dsb −12.40 −88.00 11.61 −11.29 −78.34 11.98 Erzurum

1* ave. means average, 2* w. means weighted mean.
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Regarding the d-excess values in precipitation across the Middle East Table 2, the
stations located in the Csa and BSh climate zones showed the highest average d-excess
values (18.77‰ in the Csa climate zone during the cold and wet period and 16.91‰
in the BSh climate zone during the hot and dry period). This was because most of the
moisture causing precipitation in the stations located in these zones was provided by
the Mediterranean Sea. The role of the Mediterranean Sea moisture in these parts of the
Middle East has also been confirmed by previous studies [37,59]. The stations located
in the BWh climate zone showed the lowest d-excess values compared to those in the
other zones during the hot and dry period. Although the stations located in the BWh
zone received their precipitation moisture from water bodies with high SSTs (such as the
Persian Gulf, the Mediterranean Sea, and the Red Sea), the lowest d-excess values at these
stations were due to the effect of intense evaporation on precipitation in the sampling sites.
The significant enrichment of the δ18O and δ2H values in the precipitation events of these
stations also confirms the important effect of evaporation. During the cold and wet period,
the only station located in the Dsb climate zone (Erzurum) showed the lowest d-excess
value (11.98‰) compared to the other climate zones across the Middle East. This was
because most of the precipitation moisture in this station was provided by water bodies
with low SSTs in high latitudes such as the Caspian Sea, the Black Sea, and the North
Atlantic Ocean [37].

Plotting the stable isotopes in the studied stations based on their climate zones on the
global meteoric water line (GMWL) and the eastern Mediterranean meteoric water line
(EMMWL) showed that the stations located in the BWh climate zone were mainly plotted
on the GMWL during the cold and wet period. However, the precipitation samples showed
a mild deviation from both the GMWL and the EMMWL during the hot and dry period
due to the effect of evaporation on the stable isotope values in precipitation (Figure 6).
Intense evaporation caused a notable enrichment in the stable isotopes and their deviation
from the meteoric water lines. Most of the stations in the Csa climate zone were located in
the coastal area of the Mediterranean Sea or the nearby regions and were plotted on the
EMMWL during the cold and wet period. This was normal as the main part of moisture for
precipitation at these stations was provided by the Mediterranean Sea. The high average
d-excess value (18.77‰) of precipitation in the stations located in this zone also confirmed
that the moisture originated from the Mediterranean Sea [60]. However, during the hot
and dry period, a notable deviation from the EMMWL was observed in most stations of
the Csa climate zone due to the significant effect of evaporation on the precipitation events.
The stations located in the BSk climate zone were plotted between the GMWL and the
EMMWL during the cold and wet period, because these stations received moisture for
precipitation from various sources including water bodies with high SSTs (such as the
Mediterranean Sea, the Red Sea, and the Persian Gulf) and water bodies with low SSTs
(such as the Caspian Sea and the Black Sea). However, during the hot and dry period, a
very mild deviation from both the EMMWL and the GMWL was observed in the stations
located in this climate zone due to the effect of moderate evaporation on the precipitation
events. Similar to the BSk climate zone, the stations located in the BSh zone were also
plotted between the GMWL and the EMMWL during the cold and wet period. However,
during the hot and dry period, a deviation from both meteoric water lines was observed
due to the evaporation effect on the stable isotopes in precipitation. The stations located in
the BWk climate zone (except for the Sana’a station) were mainly plotted on the GMWL
and the EMMWL during the cold and wet period. The Sana’a station deviated from both
meteoric water lines due to the intense evaporation affecting precipitation in this station.
In contrast to the other stations, the Sana’a station showed more depleted stable isotope
values during the hot and dry period than the cold and wet period. This was because
most of the annual precipitation in this station occurred during the hot period. Due to the
precipitation amount effect, more depleted stable isotope values were also observed during
this period. Finally, in the Dsb climate zone, there was only one station (Erzurum). The
precipitation events in this climate zone showed the most depleted stable isotope values
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compared with those in the other zones in the Middle East. These stable isotope values
were plotted on the GMWL during the cold and wet as well as the hot and dry periods.
This was because this station received most of the moisture for its precipitation from water
bodies with low SSTs such as the Atlantic Ocean, the Black Sea, and the Caspian Sea.
However, during the hot and dry period, the precipitation events showed more enriched
stable isotope values as well as a negligible deviation from the GMWL. As the Erzurum
station was located in a high elevation with a very low evaporation rate, deviation from
the GMWL was negligible during the hot and dry period.
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The Middle East meteoric water line (MEMWL) was developed for the hot and dry as
well as the cold and wet periods using the weighted mean of δ18O and δ2H values in the
studied stations across the Middle East (Figure 7).
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well as the cold and wet periods.

The lower slope of the MEMWL for the cold and wet (δ2H = 7.397 (±0.289) δ18O
+ 12.823 (±1.725), R2 = 0.96) as well as the hot and dry (δ2H = 7.015 (±0.567) δ18O + 7.908
(±1.791), R2 = 0.889) periods compared to that of the GMWL (δ2H = 8.17 δ18O + 11.27 [61])
was due to the high air temperature and the intense evaporation in the Middle East
compared to the average global conditions. The intense evaporation in the stations across
the Middle East causes a notable enrichment in the δ18O and δ2H values of precipitation as
well as a decrease in the slope and intercept of the developed MEMWL, especially during
the hot and dry period when the air temperature increases and the evaporation intensifies
in this region.

5. Conclusions

This paper reviewed the stable isotope data of the GNIP stations and used previous
studies to investigate the locally significant parameters affecting the stable isotopes in the
precipitation of the Middle East. The geographical and climatological parameters which
controlled the stable isotopes in the Middle East precipitation were examined in this study
using stepwise regression model. Latitude was the main geographical parameter and tem-
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perature was the main climatological parameter correlating with the δ18O and δ2H values
in precipitation. However, the precipitation amount, temperature, and elevation were
statistically the most significant factors correlating with the d-excess values in precipitation.
Furthermore, the stepwise model was used to develop empirical models for simulating
the stable isotope values in precipitation across the Middle East. The map of the spatial
distribution of the simulated stable isotopes in precipitation was also drawn. The stable
isotope maps were validated by several precipitation checkpoints across the Middle East
and RMSE was calculated for each developed map. Moreover, the stable isotope values in
precipitation across the Middle East showed large variations, which highly correlated with
the climate zones where the sampling stations were located. The stations located in the
BWh climate zone showed the most enriched δ18O and δ2H values. However, Erzurum,
which was the only station in the Dsb zone, showed the most depleted isotope values and
was plotted on the GMWL during the hot and dry as well as the cold and wet periods.
In addition to spatial variations, the δ18O values in precipitation also showed temporal
variations in the studied stations across the Middle East. The δ18O values showed depletion
with decrease in temperature and increase in precipitation amount in most of the studied
stations during the cold and wet period. However, in some stations in the southern part
of the Middle East (including Sana’a, Karachi, and Khartoum), most annual precipitation
and depleted isotope values were observed during the hot period. Finally, the MEMWL
was developed for the hot and dry as well as the cold and wet periods, which showed
lower slopes than the GMWL due to the higher air temperature and evaporation rate in the
Middle East compared with the average global conditions.
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