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Abstract: The flux of total suspended matter (TSM), FTSM, output by several large rivers in Asia,
has been in decline due to human activities. As the estuary of the Ganges–Brahmaputra River,
the Padma River transports a significant amount of suspended matter (SM) to the Bay of Bengal
each year. In this study, the TSM concentration (CTSM) and FTSM in the Padma River in the period
1991–2019 were calculated based on the data acquired by the Landsat series satellites and an empirical
TSM algorithm model for large, high-turbidity rivers. The results showed that the maximum and
minimum FTSM values (318 ± 62 and 73 ± 29 mt, respectively) in the Padma River occurred in 2011
and 2015, respectively. On average, FTSM in the Padma River decreased at an annual rate of 3.3 mt
(p < 0.01). The impact of human activities on CTSM contributed more significantly to the changes in
FTSM (R = 0.76) than natural factors (R = 0.44). Due to a lack of water conservancy facilities within
the river basin, changes in the water and soil retention capacity due to the changes in vegetation
coverage were an important human factor (R = −0.79).

Keywords: total suspended matter; Bay of Bengal; Landsat; flux estimation

1. Introduction

Total suspended matter (TSM) is an important index for evaluating the water quality
in water bodies. In water-quality management, both the concentration and flux of TSM
(CTSM and FTSM, respectively) depend on the gross primary productivity, the concentration
of heavy metals, and the flux of substances such as radionuclides and organic micropollu-
tants [1]. The concentration of total suspended matter, similarly, has a significant impact
on the biogeochemical properties of coastal oceanic waters. The presence of TSM reduces
the underwater transmittance of a water body [2] and alters its optical properties. For
inland water bodies (e.g., rivers and lakes), TSM also plays a substantial role in maintaining
ecosystem equilibrium and controlling the habitat of aquatic organisms. The CTSM value in
a water body can help to maintain its ecosystems only when controlled within a suitable
range. For example, an extremely high CTSM may cause wear damage to the eggs of aquatic
organisms or directly lead to the death of their larvae [3]. On the other hand, some prey fish
can evade their natural enemies by taking advantage of turbid water [4,5]. In addition, TSM
and sediment can provide the environments and nutrients needed for the development of
estuarine ecosystems.

Monitoring and studying the changes in the flux of TSM in large rivers is currently
a focus area for research. Recent studies have shown that the flux of SM transported
by large deltaic rivers is in decline, especially in Asia [6]. The transfer of both water
and sediment to the sea will decrease as more dams and other river projects are built and
utilized [7]. In the past 60 years, the flux of sediment transported seaward by the nine major
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rivers in China [8] as well as the Mekong River [9] have shown a statistically significant
negative trend due to the construction of reservoirs. At present, the traditional calculation
methods of FTSM are mainly based on measured hydrological data [8], hydrological climate
model [9], isotope analysis [10], UAV measurement [11], and so on. The above method
has the disadvantages of a large amount of calculation, difficult data acquisition, and
excessive research cost [12]. In large tropical rivers such as Padma River, the installation
and maintenance of in situ stations is a very costly task, limiting the data available for
both river discharge and sediment load trend assessment. For these reasons, assessment of
FTSM in large rivers by remote sensing monitoring has received increasing interest from
the scientific community [13]. As an efficient, low-cost, long-term indirect observation
technique, remote sensing plays a vital role in several research fields including hydrology.

The Padma River is the estuary of the Ganges–Brahmaputra River. Glacial meltwater
from the Tibetan Plateau, known as the “Asian Water Tower”, is a primary source of fresh-
water for the Ganges–Brahmaputra River [14]. After converging in the Padma River, the
water in the Ganges–Brahmaputra River flows into the Bay of Bengal, significantly affecting
the eco-environmental changes in its northern waters. Many researchers have conducted
relevant studies on the water constituents in the northern Bay of Bengal, including the
measurement and monitoring of parameters such as the concentration of heavy metals [15],
nutrients [16], dissolved oxygen [17], chlorophyll [18], and sediment [19]. Other researchers
have observed this region over a large area through satellite remote sensing [20]. However,
to date, few studies have monitored and estimated the flux of SM at the mouth of the
Ganges River based on high-resolution satellite remote-sensing data.

2. Materials and Methods
2.1. Study Area

The Padma River is the estuary of the Ganges–Brahmaputra River. The estuaries of
three large rivers, namely, the Ganges, the Brahmaputra, and the Meghna, flow into the
Bay of Bengal through Padma River (see Figure 1). Each year, the Ganges–Brahmaputra
river system, which has the world’s largest annual sediment discharge, approximately
100 billion tons [21,22], transports a significant amount of freshwater and SM into the
Bay of Bengal [23]. The northern Bay of Bengal is home to the world’s largest mangrove
forest—the Sundarbans—which discharges 18 million tons of SM and organic matter into
the Bay of Bengal via various small tributaries, resulting in a complex ecosystem in the
coastal waters of the northern Bay of Bengal [24].

The Padma River—a main tributary of the Ganges River—converges in the down-
stream region with the Meghna River—a tributary of the Brahmaputra River—and eventu-
ally flows into the Bay of Bengal. Since 1966, approximately 660 km2 of land have been
eroded by the Padma River [25].

2.2. Hydrological Data

The reanalysis data used in this study included discharge and precipitation. The
discharge data originated from the global modelled daily river discharge data from the
Global Flood Awareness System [26]. Specifically, the monthly mean discharge data for
the period 1991–2019 with the resolution 0.1◦ × 0.1◦ were used. There were a total of
348 data records.
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Figure 1. Illustration of the location of the study area. The image on the left-hand side shows a map of the East Asian 
continent with digital elevation model (DEM) data downloaded from USGS as the background. The blue lines signify six 
large rivers originating from the Tibetan Plateau. The area within the black outline is the Ganges–Brahmaputra River 
Basin, while the area within the red box is the study area. The image on the right-hand side is an example of a Landsat 5 
TM image of the Padma River (taken on 17 October 1994). 
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The precipitation data originated from the Global Precipitation Climatology Project 
[27], which is a satellite precipitation product (resolution: 0.5° × 0.5°) produced by the 
Global Precipitation Climatology Center through combining the infrared (IR) and micro-
wave data acquired by dozens of geostationary and polar-orbit satellites and correcting 
the resulting data against the data acquired by multiple ground stations worldwide. Spe-
cifically, the monthly mean precipitation data (data format: netCDF4) for the period 1991–
2019 were used in this study. There were a total of 348 data records. 

The Bay of Bengal has a sub-tropical monsoon climate with high temperature all year 
round and distinct monsoon and non-monsoon seasons. The monsoon season is from May 
to October, and about 84% of the rainfall occurs from June to October. The precipitation 
is concentrated. In addition, the terrain is low and flat, and the drainage is not smooth, 
which is easy to lead to flood disasters. The dry season is from November to April. Af-
fected by the northeast monsoon, there is drought and less precipitation. Meanwhile, the 
water in non-monsoon season is not enough to meet the requirements of irrigation and 
shipping, nor to maintain the minimum environmental flow of the river [28].  

2.3. Remote-Sensing Data 
Landsat data, including Landsat-8 Operational Land Imager (OLI)/Thermal Infrared 

Sensor (TIRS) L1 products (resolution: 30 m) and Landsat-5 Thematic Mapper (TM) L1 
products (resolution: 30 m), were used as experimental satellite data in this study. Senti-
nel-2 L2A reflectance products (resolution: 10 m) were used to perform spectral validation 
on the Landsat satellite data. These satellite data were downloaded from the official web-

Figure 1. Illustration of the location of the study area. The image on the left-hand side shows a map of the East Asian
continent with digital elevation model (DEM) data downloaded from USGS as the background. The blue lines signify six
large rivers originating from the Tibetan Plateau. The area within the black outline is the Ganges–Brahmaputra River Basin,
while the area within the red box is the study area. The image on the right-hand side is an example of a Landsat 5 TM image
of the Padma River (taken on 17 October 1994).

The precipitation data originated from the Global Precipitation Climatology Project [27],
which is a satellite precipitation product (resolution: 0.5◦ × 0.5◦) produced by the Global
Precipitation Climatology Center through combining the infrared (IR) and microwave data
acquired by dozens of geostationary and polar-orbit satellites and correcting the resulting
data against the data acquired by multiple ground stations worldwide. Specifically, the
monthly mean precipitation data (data format: netCDF4) for the period 1991–2019 were
used in this study. There were a total of 348 data records.

The Bay of Bengal has a sub-tropical monsoon climate with high temperature all year
round and distinct monsoon and non-monsoon seasons. The monsoon season is from May
to October, and about 84% of the rainfall occurs from June to October. The precipitation is
concentrated. In addition, the terrain is low and flat, and the drainage is not smooth, which
is easy to lead to flood disasters. The dry season is from November to April. Affected by
the northeast monsoon, there is drought and less precipitation. Meanwhile, the water in
non-monsoon season is not enough to meet the requirements of irrigation and shipping,
nor to maintain the minimum environmental flow of the river [28].

2.3. Remote-Sensing Data

Landsat data, including Landsat-8 Operational Land Imager (OLI)/Thermal Infrared
Sensor (TIRS) L1 products (resolution: 30 m) and Landsat-5 Thematic Mapper (TM) L1
products (resolution: 30 m), were used as experimental satellite data in this study. Sentinel-
2 L2A reflectance products (resolution: 10 m) were used to perform spectral validation on
the Landsat satellite data. These satellite data were downloaded from the official website
of the United States Geological Survey (USGS) (https://earthexplorer.usgs.gov/ (accessed
on 22 July 2020)). The Landsat products, covering the period from 1991 to 2019, provided
images of the non-tidal reaches of the Padma River (row and column numbers: 137–044).
At least one image was selected for each season. After the unusable data covered by cloud
were removed, a total of 85 images were obtained. The number of effective values of each
pixel can be seen in Figure 2.

https://earthexplorer.usgs.gov/
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Figure 2. Location of the section selected for calculating FTSM. The color bar shows the number
of effective values of each pixel. The section was selected from the branchless part of the river
with a relatively large amount of available data. North of the section are mostly input tributaries,
while south of the section are mostly distributories. The contributions of the tributaries were also
considered when the flux was calculated.

The Landsat data used in this study were obtained from the official website of the
USGS. Specifically, the L1 standard data (which had been geometrically corrected) were
downloaded. In addition, the remote-sensing data were corrected based on the DEM data.
Further, the following processes were performed to obtain more accurate reflectance data.

2.3.1. Radiometric Calibration

When remote-sensing data acquired at different times and locations or by differ-
ent sensors are compared, it is necessary to convert the grey values of images to abso-
lute radiance values to facilitate the calculation of the spectral reflectance or radiance
of ground features [29]. In this study, radiometric calibration was performed using the
Radiometric Calibration function within the Radiometric Correction tool in the ENVI 5.3
software package.

2.3.2. Atmospheric Correction

In this study, atmospheric correction was completed using the FLAASH Atmospheric
Correction Model within the Radiometric Correction tool in the ENVI 5.3 software package.
The FLAASH Atmospheric Correction Model, developed through improving the Moderate
Resolution Atmospheric Transmission model, has relatively high accuracy in correcting
hyperspectral and multispectral data [30]. Specifically, based on the geographical location of
the study area, the Tropical Atmospheric Model and Maritime Aerosol Model were selected.
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2.4. CTSM Inversion Model

The CTSM algorithm for the estuary of the Yangtze River developed by Liu et al.
(2019) [31] was selected in this study for CTSM estimating based on the following considera-
tions (see Table 1):

1. The estuarian waters of both the Yangtze and Ganges Rivers are high in CTSM and
contain TSM mostly from terrestrial sources [31].

2. The estuaries of the Yangtze and Ganges Rivers are similar in terms of CTSM and the
content ranges of main water constituents (e.g., chlorophyll) [18].

3. The sensitive bands of the Landsat TM sensor for the TSM and main water constituents
(e.g., chlorophyll) in both the estuaries of the Yangtze and Ganges Rivers are identical.

4. The regions where the estuaries of the Yangtze and Ganges Rivers are located share
the same rainy season. Therefore, high discharges and high CTSM values occur at the
same time in the estuaries of the Yangtze and Ganges Rivers.

Table 1. Comparison of the characteristics of the Yangtze and Padma Rivers.

River CTSM in the River Sensitive Bands
for TSM Rainy Season

Average
Chlorophyll

Concentration at
the Estuary

Data Sources

Yangtze River 30.5–735.4 mg/L B4 and B1 May–October 3.60 mg/L Liu et al. (2019) [31]

Padma River 32.2–821.7 mg/L B4 and B1 May–October 5.54 mg/L Rahman et al. (2016) [12]
and Jutla et al. (2012) [18]

Thus, the algorithm developed by Liu et al. (2019) [31] is also applicable to the estuary
of the Ganges River. The CTSM was calculated using the following algorithm:{

log10(TSM) = a× Ratiob,
Ratio = (band4)/(band1),

(1)

where a and b are both fitting coefficients (a = 2.1454 and b = 0.2945 for Landsat-5 TM
data; a = 2.1012 and b = 0.2953 for Landsat-7 Enhanced TM Plus (ETM+) data; the absolute
relative errors for Landsat-5 TM and Landsat-7 ETM+ data are 13.69% and 13.46%, respec-
tively) and band 4 and band 1 are the reflectance values of bands 4 and 1 of the Landsat-5/7
sensors, respectively.

To apply the above algorithm to the Landsat-8 OLI, the ETM+/OLI transformation
functions established by Roy et al. (2016) [32] (see Table 2) were used.

Table 2. Transformation functions between ETM+ and OLI top-of-atmosphere reflectance sensors developed through
ordinary-least-squares (OLS) regression (Roy et al. [32]).

Band Sensor Transformation
Functions n R2 (p Value)

Mean
DifferenceOLI—

ETM+
(Reflectance)

Mean Relative
Difference

OLI—ETM+ (%)

Root-Mean-Square
Deviation

(Reflectance)

Blue
(~0.48 µm)

OLI = 0.0173 + 0.8707 ETM+ 29,697,049 0.710 (<0.0001) 0.0013 0.69 0.0259ETM+ = 0.0219 + 0.8155 OLI
Near infrared

(~0.85 µm)
OLI = 0.0374 + 0.9281 ETM+ 29,767,214 0.711 (<0.0001) 0.0194 6.45 0.0637ETM+ = 0.0438 + 0.7660 OLI
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2.5. M–K Test

The Mann–Kendall (M–K) test [33,34] is a climate diagnosis and prediction technique
that can be used to determine whether an abrupt climate change occurred from a climate
data series and, if so, its time of occurrence:

S =
n
∑

i=2

i−1
∑

j=1
sign

(
Xi − Xj

)
,

Z = S−1√
n(n−1)(2n+5)

18

S > 0,

Z = 0 S = 0,
Z = S+1√

n(n−1)(2n+5)
18

S < 0,

(2)

where Xn is the value of the variable. A positive Z value suggests an upward trend in the
variable, a negative Z value suggests a downward trend in the variable, and absolute Z
values greater than 1.28, 1.64, and 2.32 signify the passing of significance tests at confidence
levels of 90%, 95%, and 99%, respectively. The test result (i.e., Z value) reflects the overall
trend of the variable.

The M–K abrupt-change test can be used to determine whether there exists an abrupt
change. Similarly, for variable series xn, we define the following:

Sk =
k

∑
i=1

ri, ri =

{
1, xi > xj,
0, xi < xj,

(3)

E[Sk] =
k(k− 1)

4
, var[Sk] =

k(k− 1)(2k + 5)
72

1 ≤ k ≤ n, (4)

UFk =
(Sk − E[Sk])√

var[Sk]
, (5)

UBk = −UFk. (6)

Then, whether there is an abrupt change in variable xn can be analyzed based on the
two statistics UFk and UBk. The point of intersection of the UFk and UBk curves is the
abrupt-change point. The UFk curve and UBk curve signify the sequential and reversed
time series for xn, respectively. The critical values for the significance levels a = 0.05 and 0.01
(U0.05 and U0.01, respectively) are ±1.96 and ±2.32, respectively. If the UFk or UBk value
is greater than 0, it means that the series exhibits an upward trend; otherwise, the series
exhibits a downward trend. If the curves exceed the critical straight lines, this indicates a
significant upward or downward trend. The time period for which the curves exceed the
critical lines is determined as the time period of the abrupt change. The point of intersection
between the UFk and UFk curves within the critical lines corresponds to the starting time
of the abrupt change.

2.6. Validation of Landsat Data with Sentinel Data

Sentinel-2 and Landsat-8 satellite data are extensively used in remote sensing of ocean
colors. In addition, a large number of algorithms have been developed to integrate the
data acquired by the sensors of these two satellites [35]. In this study, two Sentinel-2
L2A products were used to validate the atmospheric correction accuracy of the Landsat-8
data (see Figure 3). The two selected Sentinel-2 images were captured at 04:29:19 on 11
February 2020 and at 04:31:09 on 23 November 2019, respectively. The two corresponding
Landsat-8 OLI/TIRS images were captured at 04:24:52 on 11 February 2020 and at 04:24:52
on 23 November 2019, respectively.
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Figure 3. Location of the areas in the Landsat and Sentinel images (the image with a red border is the
Sentinel image, and the image with a blue border is the Landsat image).

As mentioned above, the Landsat-8 OLI image was radiometrically calibrated and
atmospherically corrected using the ENVI 5.3 software package. The image captured by
the Multispectral Instrument (MSI) onboard the Sentinel-2 satellite was radiometrically
calibrated and atmospherically corrected using the SNAP software. The difference between
the OLI and MSI was eliminated using the sensor-transformation method developed by
Zhang et al. (2018) [36] (see Table 3).

Table 3. Transformation functions between the Sentinel-2 MSI and Landsat-8 OLI developed through OLS regression
(Zhang et al. [36]).

Band Transformation Function Sample Size R2 (p Value)
Mean

OLI—MSI
Difference

Mean Relative
OLI—MSI

Difference (%)

Blue λ (~0.48 µm) OLI = 0.0003 + 0.9570 MSI
MSI = 0.0039 + 0.9383 OLI 65,347,909 0.8980 (<0.0001) −0.0014 −4.64

Near infrared λ
(~0.85 µm) MSI Band 8A

OLI = 0.0077 + 0.9644 MSI
MSI = 0.0147 + 0.9355 OLI 65,380,148 0.9022 (<0.0001) −0.0003 −0.22

2.7. Normalized Difference Vegetation Index (NDVI)

The NDVI is an important parameter that reflects vegetation coverage and can be
calculated for Landsat datasets using the equation [37]:

NDVI =
RNIR − RR

RNIR + RR
, (7)
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where RNIR and RR are the reflectance values in the NIR and red bands, respectively.

3. Results
3.1. Hydrology in the Study Area

The changes of discharge and precipitation in the Padma River Basin during the study
period are shown in Figure 4. The discharge result is calculated from GloFAS data, and the
precipitation change result is calculated from GPCP data, which is the total precipitation in
the basin. From May, precipitation and discharge begins to increase, and begins to decrease
after October. From the change of monthly average results, the change of discharge lags
the precipitation. The time-series data for the discharge and precipitation in the Padma
River were analyzed using the M–K test. The Z value and its rate of change were obtained
respectively (discharge: Z = 0.5730, slope = 1.4077× 108, p > 0.5; precipitation: Z =−1.2784,
slope = 0.0375, p > 0.5). The results show that there is no obvious trend in discharge and
precipitation in the past 30 years.
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Figure 4. Changes of Padma River discharge and precipitation in the basin during the study period. The figures
on the left and right show the average annual discharge and precipitation and the average monthly discharge and
precipitation, respectively.

3.2. Comparison of Atmospheric Correction Results between Landsat and Sentinel

The NIR-band/blue-band ratio was calculated for points randomly selected within
the river area, and the results were then compared. Similar ratios (R2 = 0.9563, root-mean-
square error (RMSE) = 0.0811 in the 2020 image. R2 = 0.8963, RMSE = 0.0440 in the 2019
image. R2 = 0.9461, RMSE = 0.0596 in total) were obtained based on the data acquired by
the two satellites (as shown in Figure 5), suggesting that the atmospherically corrected data
were accurate and reliable.



Water 2021, 13, 2373 9 of 20

Water 2021, 13, x FOR PEER REVIEW 9 of 20 
 

 

the two satellites (as shown in Figure 5), suggesting that the atmospherically corrected 
data were accurate and reliable. 

 
Figure 5. Comparison of the NIR-band/blue-band ratios between the Landsat and Sentinel data. 

3.3. Distribution of CTSM in the Padma River 
The arithmetic mean CTSM was calculated for each season of each year in the period 

1991–2019. On this basis, the seasonal distribution of CTSM in the Padma River was ob-
tained, as shown in Figure 6. In terms of the distribution trend, CTSM in the Padma River 
was high in areas close to the banks and in the downstream region and low in areas away 
from the banks and in the upstream region. The waters with relatively high CTSM values 
were distributed near the estuary in the downstream region, which was primarily due to 
the water and soil loss on the islands near the mouth of the estuary caused by the scouring 
of the water flow in the river as well as the convergence and resuspension of the matter 
(e.g., sediment) carried here by the water flow in the river from the upstream region. At a 
seasonal scale, CTSM was the lowest in winter (December through February of the follow-
ing year). The CTSM remained below 150 mg/L in most parts of the river but reached up to 
180 mg/L in some tributaries and 200 mg/L in the downstream region. There was a certain 
increase in CTSM in spring (March through May). Compared to winter, CTSM in spring ex-
hibited an overall similar distribution trend but was higher in magnitude. The study area 
has a tropical monsoon climate with abundant precipitation in summer. Due to heavy 
precipitation and a large discharge, CTSM displayed a relatively uniform distribution pat-
tern and, overall, remained at a relatively high level in summer (June through August). 
As a result of the soil erosion caused by precipitation and high flow rates, high CTSM values 
were distributed along both banks of the river and in the inland tributaries. The CTSM in 
the river was almost above 150 mg/L. In addition, due to an increase in the discharge, the 
erosion and siltation zone at the mouth of the estuary shifted outward. Similar to summer, 
CTSM in fall (September through November) remained above 150 mg/L in the main parts 
of the river, and high-CTSM zones shifted downstream. 

Figure 5. Comparison of the NIR-band/blue-band ratios between the Landsat and Sentinel data.

3.3. Distribution of CTSM in the Padma River

The arithmetic mean CTSM was calculated for each season of each year in the period
1991–2019. On this basis, the seasonal distribution of CTSM in the Padma River was obtained,
as shown in Figure 6. In terms of the distribution trend, CTSM in the Padma River was
high in areas close to the banks and in the downstream region and low in areas away
from the banks and in the upstream region. The waters with relatively high CTSM values
were distributed near the estuary in the downstream region, which was primarily due
to the water and soil loss on the islands near the mouth of the estuary caused by the
scouring of the water flow in the river as well as the convergence and resuspension of the
matter (e.g., sediment) carried here by the water flow in the river from the upstream region.
At a seasonal scale, CTSM was the lowest in winter (December through February of the
following year). The CTSM remained below 150 mg/L in most parts of the river but reached
up to 180 mg/L in some tributaries and 200 mg/L in the downstream region. There was
a certain increase in CTSM in spring (March through May). Compared to winter, CTSM in
spring exhibited an overall similar distribution trend but was higher in magnitude. The
study area has a tropical monsoon climate with abundant precipitation in summer. Due to
heavy precipitation and a large discharge, CTSM displayed a relatively uniform distribution
pattern and, overall, remained at a relatively high level in summer (June through August).
As a result of the soil erosion caused by precipitation and high flow rates, high CTSM values
were distributed along both banks of the river and in the inland tributaries. The CTSM in
the river was almost above 150 mg/L. In addition, due to an increase in the discharge, the
erosion and siltation zone at the mouth of the estuary shifted outward. Similar to summer,
CTSM in fall (September through November) remained above 150 mg/L in the main parts
of the river, and high-CTSM zones shifted downstream.
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3.4. Interannual Variations of CTSM in the Padma River

After the waters were separated from the land in the images, CTSM in the waters was
estimated using the algorithm equation introduced in Section 2.4. The arithmetic means of
the pixels in each image of the section showed in Figure 2 was calculated to represent the
mean CTSM.

We also used Sentinel-2 data to calculate CTSM from 2016 to 2019 based on the same
algorithm. In order to ensure the consistency of the algorithm, the reflectance data of
Sentinel-2 were converted to the reflectance bands of Landsat-8 OLI by using the equation
in Table 3, and then converted to the reflectance bands of Landsat-7 ETM+ according
to the formula in Table 2. Finally, the CTSM of Sentinel-2 sensor was calculated through
Equation (1). The results calculated by Sentinel-2 data with higher temporal and spatial
resolution are similar to those calculated using Landsat data, which shows that the atmo-
spheric correction and CTSM algorithm have good accuracy. Here, there is a little systematic
bias between the two satellites, which is probably caused by the reason that the BNIR/Bblue
value of Sentinel-2 is slightly higher than that of Landsat (see in Figure 5). However, from
the perspective of the overall change trend, we still believe that the results of the two are
similar. Therefore, due to the advantages of Landsat data quantities and the fact that the
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biases are within the acceptable range, we believe that Landsat satellites can be used to
evaluate the flux of total suspended matter in the Padma River in the past 30 years.

Figure 7 shows the changes in the mean CTSM in the Padma River in the period 1991–
2019. During this period, the maximum and minimum CTSM values (194.56 ± 54 and
58.97 ± 16 mg/L, respectively) occurred in 2011 and 2015, respectively. Overall, CTSM
displayed a downward trend in this period.
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Especially, the strongest global La Niña event in the past six decades occurred in 2011
and 2012. In April of 2011, intense cyclones struck Bangladesh and brought heavy rainfall.
In July of 2011, continuous heavy precipitation triggered floods and forced more than
10,000 people to evacuate. The flood caused by La Niña lasted until the summer of 2012.
The floods caused a large amount of SM from terrestrial sources to rush into the Padma
River, resulting in an abnormally elevated level of turbidity and an abnormally high mean
CTSM in 2011 and 2012. At the end of 2012, the impact caused by La Niña weakened, and
the CTSM level returned to the normal trend in 2013.

3.5. Changes in FTSM in the Padma River

Due to the high flow rate and large discharge in the Padma River, we can approx-
imately consider that the TSM in the Padma River was sufficiently mixed. In addition,
the non-tidal reaches were selected in this study for analysis, and, therefore, the tidal
effects do not need to be considered. Then, we can approximately consider that the TSM
was uniformly distributed in the Padma River. The monthly mean FTSM was calculated
through the multiplication of the arithmetic mean CTSM at the selected section (23◦10′44′′ N)
estimated from the Landsat data by the arithmetic mean discharge at the selected section.
On this basis, subsequent calculations were performed. Figure 8 shows the changes in FTSM
in the Padma River in the period 1991–2019. The maximum and minimum FTSM values
(318 ± 62 and 73 ± 29 mt, respectively) occurred in 2011 and 2015, respectively. Due to the
impact of the 1998 flood, the discharge and CTSM were at a high level, so the FTSM increased
significantly and returned to the normal level in 2000. At the same time, the low flow
caused by the drought in 2006 also continued to reduce FTSM and restored in the next year.
In 2011, due to the flood disaster caused by La Niña, the discharge and CTSM in Padma
River increased significantly, resulting in a significant increase in FTSM level. In 2012, the
impact of La Niña continued. Although the discharge decreased, it remained at a high level.
At the same time, the erosion of flood on land did not reduce CTSM, so FTSM was still at a
high level. In 2013, the flood disaster was over, and CTSM returned to normal level; FTSM
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also decreased. The time-series data for the changes in FTSM were analyzed using the M–K
test. The Z value and its rate of change were obtained (Z = −2.6073, slope = −33.27 × 105,
p < 0.01). In the past 30 years, FTSM in the Padma River showed a relatively significant
downward trend and, on average, decreased by 3.3 mt each year. The result passed the
significance test at a confidence level of 0.01.
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Figure 8. Changes in FTSM in the Padma River in the period 1991–2019. The dotted line is the linear regression of FTSM.

3.6. Changes of NDVI in the Padma River

The NDVI for the Padma River Basin was calculated based on the Moderate Resolution
Imaging Spectroradiometer (MODIS) global monthly mean NDVI products. The resolution
of MODIS NDVI product is 1 km, and the selected coverage covers the whole Padma River
Basin. The monthly mean NDVI images for the period 2000–2019 were selected. On the
other hand, NDVI along the Padma river is calculated from Landsat images. As shown in
Figures 9 and 10, overall, the NDVI for the Padma River Basin displayed an upward trend,
suggesting a notable increase in the vegetation coverage along the banks of the Padma
River. This suggests that the significant increase in the vegetation coverage in the basin of
the Padma River increased the water and soil retention capacity of the land, reduced the
extent of soil erosion, and, to a certain extent, reduced the discharge of SM from terrestrial
sources, thereby making some contribution to the decrease in the content of TSM in the
Padma River.
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4. Discussion
4.1. Natural Factors Affecting the Changes in the TSM in the Padma River

Changes in FTSM depend on changes in the discharge and CTSM. The discharge
in the Padma River depends primarily on natural factors such as the precipitation and
groundwater resources within the river basin and water sources (e.g., freshwater released
from the melting of ice on the Tibetan Plateau). The time-series data for the discharge in
the Padma River were analyzed using the M–K test. The Z value and its rate of change
were obtained (Z = 0.5730, slope = 1.4077 × 108, p > 0.5). The results showed that the
discharge itself displayed no notable trend in the past 30 years. In addition, the correlation
between the interannual changes in the discharge and FTSM was analyzed. According to
the results shown in Figure 11, there was little significant correlation between the changes
in the discharge and FTSM (R = 0.44, p < 0.05). Hence, the changes in the discharge might
have had a limited impact on FTSM.
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At the same time, the discharge may affect the degree of bank erosion of Padma river.
Bank erosion is part of the river system’s natural disruption [38]. The erosion of Padma
River is highly irregular [39]. Anupom Halder et al. (2021) studied the change of Padma
river bank in the past 40 years by using RS and GIS techniques. The results showed a linear
relationship between the erosion and discharge (R2 = 0.9989) [40]. From 1989 to 1999, char
land of the Padma River continuously increased (see Figure 12). The island bars were most
vulnerable during flooding. Combined with the change analysis of CTSM, it can be seen
that char land in Padma River is in a continuous growth state before 2010, and CTSM is
also at a stable high concentration level. Char land in Padma stops growing from 2010 to
2019, and CTSM begins to gradually decrease. Unstable char land bar is a major source of
TSM, and the area of unstable riparian lines determines the change of CTSM. Therefore,
during the study period, although the discharge itself has not changed significantly, the
bank erosion of Padma River caused by large discharge and the change of fragile char land
area caused by the change of bank line indirectly affect the change of CTSM of Padma River,
thus affecting the transportation of FTSM.
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4.2. Human Factors Affecting Changes in the TSM in the Padma River

While neglecting the changes in the discharge, we performed a correlation analysis
on the annual mean changes in CTSM and FTSM (see Figure 13). A significant correlation
(R = 0.76, p < 0.01) was found between the changes in CTSM and FTSM, suggesting that the
changes in FTSM in the Padma River depended heavily on the changes in CTSM.
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In the Padma River Basin, the changes in CTSM were primarily a result of the changes
in the discharge of TSM from terrestrial sources, including the discharge due to soil
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erosion [41]. As no large reservoirs were constructed in the Ganges–Brahmaputra river
system, the impact of water conservancy facilities on FTSM can be excluded. In addition,
relatively large discharges may lead to soil erosion and have a greater impact on CTSM.
This is particularly true for the Padma River—a river with highly unstable shorelines. The
Padma River is relatively wide, with severe bank erosion near Harirampur in the district of
Manikganj on its left bank and Naria Upazila in the district of Shariatpur on its right bank.
Erosion on the left and right banks of the Padma River occurs at annual rates of 4.82 and
8.19 km2, respectively [42].

Substitution of FTSM series into the M–K abrupt-change test equation yielded UFk
and UBk values, as shown in Figure 14. The point of intersection between the UFk and
UBk curves correspond to the abrupt-change point of the time series. The abrupt change
occurred in 2014. The UFk value fluctuates near 0 before the point of intersection and
remains within the a = 0.05 straight line, suggesting that before 2014, the Padma River
was relatively stable and its FTSM exhibited no notable trend of change. An abrupt change
occurred in 2014, when FTSM began to decrease. This is because, around 2014, the govern-
ment of Bangladesh began to implement a series of environmental protection measures,
adopted a sustainable development strategy, and participated in the Blue Economic Zone
Cooperation in the Bay of Bengal [43]. In addition, the government of Bangladesh and
non-governmental organizations vigorously carried out afforestation projects along the
coast, resulting in a significant increase in the green land area. Vegetation planting, to a
certain extent, reduced soil erosion in the coastal zones, thereby reducing the content of
TSM [44]. To validate this hypothesis, the NDVI was analyzed.
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Figure 14. M–K abrupt-change test results for FTSM in the Padma River. The blue UFk curve and red UBk curve signify the
sequential and reversed time series for FTSM, respectively. The critical values for the significance levels a = 0.05 and 0.01
(U0.05 and U0.01, respectively) are ±1.96 and ±2.32, respectively.
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4.3. Effects of the NDVI on the Changes in CTSM

Mithun Kumar et al. (2021), in their monitoring and mapping of forest, cover changes
in eastern Sundarban based on satellite remote sensing technology using the maximum
likelihood classification approach [45]. The classification map shows that, from 1989 to
2014, the vegetation coverage in the study area decreased by 2.66%, while, from 2014 to
2019, the vegetation coverage increased by 2.22%. Water body and mudfat, low laying area,
as well as intertidal zone have been increased with the decrease in vegetation cover. Using
Landsat series satellite images separated by water and land, the NDVI mean of land in the
image frame is calculated to obtain the change of average NDVI. The trend of the average
NDVI in image was opposite to that of CTSM (correlation coefficient R = −0.79, p < 0.01)
(see Figure 15), indicating a significantly negative correlation between the NDVI and CTSM.
The results show that, from 2000 to 2019, under the background of the overall NDVI value
rising in the basin, the NDVI level along the Padma River also shows an upward trend.
At the same time, the downward trend before 2014 and the upward trend after 2014 can
also be clearly seen. The research area of this study overlaps with that of Mithun et al.
(2021) To a certain extent. Therefore, the similar conclusions of the two can also support
the results of this study. It should be noted that the vegetation coverage is not completely
related to the NDVI index, because in the study range, more vegetation in Padma River
basin is transformed into water rather than bare land due to land erosion. At the same
time, as mentioned above, in the last decade, due to environmental protection policies
and policies to encourage planting, the level of NDVI has increased and the land retention
has improved. The improvement of land conservation also slows down the generation of
fragile bar lines, so it also slows down the growth of char land area. Thus, the land-based
emission of TSM and CTSM in Padma River are reduced. In conclusion, the vegetation cover
level and NDVI of the Padma River Basin, especially the coastal land area, will affect the
land conservation capacity, thus indirectly affecting the FTSM transport of the Padma River.

Water 2021, 13, x FOR PEER REVIEW 17 of 20 
 

 

4.3. Effects of the NDVI on the Changes in CTSM 
Mithun Kumar et al. (2021), in their monitoring and mapping of forest, cover changes 

in eastern Sundarban based on satellite remote sensing technology using the maximum 
likelihood classification approach [45]. The classification map shows that, from 1989 to 
2014, the vegetation coverage in the study area decreased by 2.66%, while, from 2014 to 
2019, the vegetation coverage increased by 2.22%. Water body and mudfat, low laying 
area, as well as intertidal zone have been increased with the decrease in vegetation cover. 
Using Landsat series satellite images separated by water and land, the NDVI mean of land 
in the image frame is calculated to obtain the change of average NDVI. The trend of the 
average NDVI in image was opposite to that of CTSM (correlation coefficient R = −0.79, p < 
0.01) (see Figure 15), indicating a significantly negative correlation between the NDVI and 
CTSM. The results show that, from 2000 to 2019, under the background of the overall NDVI 
value rising in the basin, the NDVI level along the Padma River also shows an upward 
trend. At the same time, the downward trend before 2014 and the upward trend after 2014 
can also be clearly seen. The research area of this study overlaps with that of Mithun et al. 
(2021) To a certain extent. Therefore, the similar conclusions of the two can also support 
the results of this study. It should be noted that the vegetation coverage is not completely 
related to the NDVI index, because in the study range, more vegetation in Padma River 
basin is transformed into water rather than bare land due to land erosion. At the same 
time, as mentioned above, in the last decade, due to environmental protection policies and 
policies to encourage planting, the level of NDVI has increased and the land retention has 
improved. The improvement of land conservation also slows down the generation of frag-
ile bar lines, so it also slows down the growth of char land area. Thus, the land-based 
emission of TSM and CTSM in Padma River are reduced. In conclusion, the vegetation cover 
level and NDVI of the Padma River Basin, especially the coastal land area, will affect the 
land conservation capacity, thus indirectly affecting the FTSM transport of the Padma River. 

 
Figure 15. Correlation between the mean NDVI value for the Landsat image and CTSM at the mouth 
of the river in the period 2000–2019. 

5. Conclusions 
In this study, CTSM in the Padma River Basin was estimated from the Landsat-8 

OLI/TIRS and Landsat-5 TM L1 reflectance products for the period 1991–2019. In addition, 
the causes of the changes in CTSM were analyzed based on the discharge, precipitation, and 

Figure 15. Correlation between the mean NDVI value for the Landsat image and CTSM at the mouth
of the river in the period 2000–2019.

5. Conclusions

In this study, CTSM in the Padma River Basin was estimated from the Landsat-8
OLI/TIRS and Landsat-5 TM L1 reflectance products for the period 1991–2019. In addition,
the causes of the changes in CTSM were analyzed based on the discharge, precipitation,
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and NDVI data for the same time period. The main conclusions of this study can be
summarized as follows:

(1) The CTSM values in the Padma River were high in areas near the banks and in the
downstream region and low in areas away from the banks and in the upstream region. The
waters with relatively high CTSM values were distributed in the downstream region near
the mouth of the river. Across each year, CTSM was the lowest in winter and spring and the
highest in summer and fall.

(2) In the period 1991–2019, the maximum and minimum mean FTSM values in the
Padma River (318± 62 and 73± 29 mt, respectively) occurred in 2011 and 2015, respectively.
Abnormally high FTSM values occurred in the year with a strong La Niña event. Overall,
FTSM displayed a downward trend and decreased at an annual average rate of 3.3 mt.

(3) The FTSM values in the Padma River depended collectively on the discharge and
CTSM at the mouth. Compared with natural factors (e.g., discharge) (R = 0.44, p < 0.05),
the changes in CTSM contributed more significantly to the changes in FTSM in the Padma
River (R = 0.76, p < 0.01). A significantly negative correlation was found between the
NDVI and CTSM (R = −0.79, p < 0.01), suggesting that the increase in the NDVI within
the Ganges–Brahmaputra River Basin and the coastal bar line in the last decades led to
a decrease in the discharge of TSM from terrestrial sources and CTSM, and that changes
in human factors (e.g., vegetation changes) negatively contributed to FTSM in the Padma
River. Hence, human activities were the dominant factor causing the changes in FTSM in
the Padma River (Ganges–Brahmaputra River system).

This study ensured the accuracy of atmospheric correction of satellite data and the
accuracy of various algorithms. However, due to the climatic characteristics of the ge-
ographical location of the study area, it is difficult to obtain cloudless and high-quality
remote sensing images, so the sufficiency of the amount of remote sensing data cannot be
guaranteed. There may not be data available for the entire quarter in summer and autumn
in some years. In this case, after calculating the TSM concentration of the seasons with
data, we use the following method to make up for the gap in the cloudy season data: Take
the multi-year arithmetic average of all TSM data in each season to obtain the CTSM of
the four seasons during the 30 years. Then the climatic distribution of each grid point is
calculated, and the ratio of the four seasonal climatic CTSM at each grid point is calculated.
On this basis, the CTSM of the missing season is calculated based on this ratio. Due to the
numerical averaging of the climatic data, although the absolute value of the data may not
be so accurate, it should be of good reference value when estimating the trend of the FTSM
changes. Because there are few hydrological data in the study area, and because they are
difficult to obtain, this study can provide ideas for hydrological research in similar areas.
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