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Abstract: Seasonal water-level fluctuations may lead to changes in river nutrients, which causes
corresponding changes in the trophic structure of an aquatic food web, and finally affects the whole
ecosystem. In this study, we focused on the Ganjing River, a tributary of the Yangtze River, China.
Common organisms were sampled and measured for carbon and nitrogen stable isotopes in the wet
and dry seasons, respectively, and the relative contributions of different food sources were combined
to construct the food web, so as to realize the influence of water-level fluctuation on aquatic food web.
Our results showed that basal food sources for fish consumers were endogenous carbon sources such
as POM, zooplankton and zoobenthos in the dry season, while high water level exposed fish to more
diverse and abundant food sources, and the contribution proportions of exogenous carbon sources
(e.g., terrestrial detritus) to consumers increased in the wet season. In parallel, the abundance and
species diversity of fish were higher than those in the dry season. Most fish species had relatively
higher trophic levels in the dry season compared to the wet season, because the increase in fish
densities led to an increase in piscivores fish. The food web was composed of planktonic and benthic
food chains in the dry season. During the wet season, the planktonic food chain was dominant,
followed by the herbivorous food chain, and the benthic food chain was relatively less important.
Therefore, water-level fluctuation may alter the trophic linkages within fish communities, which
contributed to a more complex and interconnected food web. Moreover, as we expect, the stable
isotope analysis food web was broadly in line with the gut content analysis food web.

Keywords: water-level fluctuation; food web; stable isotope; Bayesian isotope mixing model (BIMM);
Three Gorges Reservoir

1. Introduction

Freshwater ecosystems, which contain a disproportionate number of the planet’s
biodiversity [1], seem to be changing under the influence of natural environment and
human activities at any moment. As a key environmental factor, short-term fluctuation
of water level proves a crucial characteristic in the water bodies (such as lakes, rivers
and reservoirs), which is also essential for the maintenance of aquatic biodiversity and
productivity [2,3]. Water-level fluctuation has an impact on the ecological processes and
patterns of water ecosystem in various aspects. For instance, variations in the hydrologic
regime caused by water-level changes, accompanied by changes in light, climate and wave
impacts [3], give rise to increases or decreases in the aquatic habitats for feeding, spawning,
and migration [4,5]. These shifts can influence the composition of communities and the
trophic relationships of species in food chains [6], which in turn make a difference in food
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web structure between high and low water-level period. However, the ecological influences
driven by water-level fluctuation on the structures of freshwater food webs remain poorly
studied at the moment [6,7].

Variation of flow regime and sediment transport driven by the hydrological regulation
can alter habitat suitability and the contribution of native and allochthonous nutrients,
which causes corresponding changes in trophic diversity and food web structure [8].
According to relevant studies, hydrological alterations may be the largest threat to fish
biodiversity in the Yangtze River basin [4], which could affect fish density, abundance
and food sources. Many fish migrate seasonally in response to water-level changes within
the basin [9]. Beyond that, in terms of diet, the dependence of fish on endogenous and
exogenous carbon sources shows significant seasonal difference due to the variations in
hydrological conditions during the wet and dry season [10], while the change of food
sources may be accompanied by the change of trophic structure of fish.

In recent years, stable isotope analysis technique has been widely used in aquatic
ecosystems, especially in food webs, to reveal the energy flow and material transfer path-
ways in ecological communities [11-13]. A number of isotopic studies have been conducted
in various aquatic habitats to assess changes in the composition of communities and major
energy pathways following variations in hydrological regimes. For example, finding from
the research in Lake Gucheng indicated that a rise of water level resulted in an ecosystem
shift from a macrophyte-dominated state to a phytoplankton-dominated state [6]. Kaymak
et al. [14] used carbon-and-nitrogen isotopes to analyse the effects of seasonal hydrologic
variation and impoundment on assimilation of basal food sources by fish in a river, and
they found that the effect of dams was small when compared to the influence of watershed
characteristics, temperature and hydrological seasonal changes.

In this study, we studied the Ganjing River in the Three Gorges Reservoir, China,
to focus on the ecological influences of water-level fluctuation on freshwater ecosystem,
especially fish population structure. At the same time, the variations of food web structure
and fish trophic levels in different hydrological seasons were analysed by using carbon
and nitrogen stable isotopes technology, combined with fishery resources investigation.
Furthermore, stable isotope mixing models have been widely applied to quantify dietary
proportions of various sources to key consumers [15-17], and we introduced a Bayesian iso-
tope mixing model (BIMM) to estimate the relative importance of different food resources.

2. Materials and Methods
2.1. Study Area

As a tributary of the Three Gorges Reservoir Region, the Ganjing River originates in
the southeast of Liangping County, Chongging, to end its course in the Yangtze River 3 km
from the county seat of Zhongxian County. Following construction of the Three Gorges
Dam, a catchment area was formed between the Yangtze estuary and Qijia Valley. The
Three Gorges Reservoir is a unique canyon and river channel type reservoir with abundant
and precious fresh water resources [18], which is located at the junction of the Sichuan
Basin and the plain of the middle and lower reaches of the Yangtze River. The reservoir
is 600 km long and 2000 m wide at its widest point. There are 10 tributaries (e.g., Daning
River, Xiangxi River and Meixi River) with a catchment area of more than 1000 km? flowing
into the Yangtze River, and their fluctuation cycle is almost the same as that of the main
stream. As a consequence of the operation of the Three Gorges Reservoir, the water level
varies obviously in seasons (ranging from 145 to 175 m), forming a dramatic water-level
difference in drawdown and flooding periods [19]. Since the Three Gorges Reservoir stores
water in winter and spring, and releases water in summer and autumn, the reservoir
keeps the low water-level from June to September and high water-level from October to
April [20,21]. Meanwhile, the operation of the Three Gorges Reservoir has a great influence
on the water level of Ganjing River, and its water-level is basically consistent with the trend
of the dam water level. Our measured results showed that the mean water level in March
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was 169 m, that in June was 147 m, that in August was 155 m and that in December was
175 m.

2.2. Sample Collection

Different basal sources, invertebrates and fish samples were collected synchronously
from the waterbody and riparian zone in the Ganjing River basin during the wet season
(June and August) and dry season (December and April) from 2018 to 2019, respectively. A
total of 12 sections were monitored, which covered both inside and outside the existing
electric fence net area, including 10 sections on the trunk and tributaries of the Ganjing
River and 2 sections in the Zhongxian County of the Yangtze River (Figure 1).
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Figure 1. The location of the Three Gorges Reservoir Region and the sampling sites in the Ganjing
River. Samples were taken from the left and right banks of each monitoring site.

Fish samples were captured by gill nets near the sites, and a total of 27 dominant
species were obtained (Table S1), which were divided into various feeding groups (her-
bivores: Ctenopharyngodon idellus, Parabramis pekinensis, Megalobrama skolkovii and Squalio-
barbus curriculus; planktivores: Xenocypris argentea, Saurogobio dabryi, Hypophthalmichthys
molitrix, Hypophthalmichthys nobilis, Coilia ectenes taihuensis and Hemiculter leucisculus; ben-
thivores: Cyprinus carpio, Carassius auratus, Myxocyprinus asiaticus, Pelteobagrus vachelli,
Pelteobagrus fulvidraco and Pelteobaggrus nitidus; piscivores: Clarias fuscus, Siniperca chuatsi,
Culter dabryi, Culter alburnus, Erythroculter dabryi, Erythroculter oxycephaloides and Culter oxy-
cephaloides; omnivores: Xenocypris microlepis, Distoechodon tumirostris, Luciobarbus capito and
Spinibarbus sinensis). Dietary data were collected by searching the relevant literature and
then examining citations in the original studies [22,23]. All sampled fish were identified,
counted, measured and weighed, and their feeding habits were classified according to the
literature [24].
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Muscle tissues were sampled from the dorsal of fish and cryopreserved in centrifugal
tubes for further processing. Terrestrial detritus referred to dead leaves of dominant
terrestrial plants, which were collected by hand from the riparian zone, and aquatic detritus
referred to the organic matter on the surface of sediments. After collecting the mixed water
of surface (within 10 m of the surface), middle (10-20 m below the surface) and bottom
(20-30 m below the surface) layers using a 1L hydrophore at each site, the water samples
were filtered onto pre-combusted glass fibre filters (Whatman GF/C) to obtain particulate
organic matter (POM). Samples of sediment and benthic animals were harvested with
a Peterson mud digger. Later, benthic species identified were placed in distilled water
overnight to empty the digestive tract of residues [25]. In order to acquire adequate sample
tissue for analysis, benthic animals of the same species were pooled together. POM and
sediment samples were acidified with 1 mol L1 hydrochloric acid to remove the effects of
carbonate contamination. Phytoplankton and zooplankton samples were collected through
64-um and 112-pum plankton nets, respectively. The attached algae were scraped directly
from stones along the shore using soft toothbrushes, and then rinsed with distilled water
repeatedly to remove sediment particles and detritus [26]. All samples for stable isotope
analyses were dried at 60 °C to a constant weight and ground into a fine powder with a
bead mill type tissue grinder (MiniBeadbeater-16, Glen Mills, Inc., California, USA) in the
laboratory [27].

2.3. Analysis of Stable Isotopes

The §'3C and §'5N values were measured using a Delta Plus mass spectrometer cou-
pled to a Carloerba NC 2500 elementary analyzer. Stable isotope ratios are defined as parts

per thousand (%o.) according to the equation: 6X (%.) = [(ngmple/ Rsm,,dmd) - 1} x 1000,

where X represents the corresponding ratio '3C/12C or >N /!N and R represents '3C or
I5N.. The standard values of carbon (§'3C) and nitrogen (61°N) isotopes were based on
VPDB (Pee Dee Belemnite) and atmospheric Ny, respectively [12]. The internationally used
standard substance were IAEA-USGS24 and IAEA-USGS26.

In this study, all kinds of fish captured were the core components of the food web in the
Ganjing River. According to feeding differentiation of fish species, we integrated potential
food sources into seven major groups, including attached algae (A), POM (P), aquatic
macrophyte (M), terrestrial detritus (DT), aquatic detritus (DA), zooplankton (ZP) and
zoobenthos (ZB) for model construction. Trophic enrichment factor (TEF), caused by isotope
fractionation during the process of digestion and metabolism, were A§'C = 0.40 + 1.20 %o
and AS'N = 3.4 4 0.50 %o to correct stable isotopes values of food sources [11].

In order to really reflect the food web structure and characteristics in the Ganjing
River, this paper also used BIMM developed by Kadoya [16], combined with the measured
isotope values of samples to carry out diet prediction analysis and food web construction.
Then, the gut content analysis (GCA) food web was compared with the stable isotope
analysis (SIA) food web. BIMM model fitting was implemented by using the “R2WinBugs”
package in R version (4.0.1). The diet matrix (P) and diet dependency matrix (D) were
calculated according to the following equation [28]:

D=I+P+P 4. . =[-P"

where T;;. is flow matrix, excluding flows to and from external; T; is total inflows to
compartment i (i = n + 1, usable export from the network; i = n + 2, unusable export
from the network), excluding inflow from external sources; and I is identity matrix and
its elements. The correlation level between the GCA diet matrix and the SIA diet matrix
was estimated using Mantel tests in “Cultevo” package. The accuracy of the model was

determined by comparing the difference between the isotopic values of samples and the



Water 2021, 13, 2371

50f13

predicted values of the model (Figure S1). All data processing, analysis and graphics
production were carried out in R software.

3. Results

In total, 339 consumer and 195 basal food source samples were collected during the
dry and wet seasons for carbon and nitrogen isotope ratios analysis, respectively. The
stable isotope data of fish species (17 species in the dry season and 24 species in the wet
season) fell within the isotopic mixing space determined by seven potential sources in both
seasons, indicating that the carbon sources tested were the most probable food sources
for consumers, and no significant collinearity was found among consumers, which was
suitable for further analysis of food sources for consumers. We found that the 5'C values
of most of fish we collected were higher in dry season than those in wet season, while the

815N values were lower in dry season than those in wet season (Figure 2).
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Figure 2. Stable carbon and nitrogen isotopic signatures (mean + SD) of basal food sources and consumers in the Ganjing
River, corrected for trophic enrichment factor. Symbols with different colors and shapes represent different fish species and
food sources. (a) During the dry season. CTID: C. idellus (n = 10); PAPE: P. pekinensis (n = 5); MESK: M. skolkovii (n = 10);
SQCU: S. curriculus (n = 10); XEAR: X. argentea (n = 3); DITU: D. tumirostris (n = 4); HYMO: H. molitrix (n = 13); HYNO:
H. nobilis (n = 15); COEC: C. ectenes tathuensis (n = 14); GYCA: C. carpio (n = 7); GAAU: C. auratus (n = 5); PEVA:
P. vachelli (n = 5); SPSI: S. sinensis (n = 3); SICH: S. chuatsi (n = 4); CUDA: C. dabri (n = 5); CUAL: C. alburnus (n = 8); EROX:
E. oxycephaloides (n = 8); P: POM (n = 22); A: attached algae (n = 21); Da: aquatic detritus (n = 10); Dt: terrestrial detritus
(n =4); ZP: zooplankton (n = 22); ZB: zoobenthos (n = 20). (b) During the wet season. CTID: C. idellus (n = 15); PAPE:
P. pekinensis (n = 11); MESK: M. skolkovii (n = 15); SQCU: S. curriculus (n = 5); XEMI: X. microlepis (n = 5); SADA: S. dabryi
(n =7); HYMO: H. molitrix (n = 28); HYNO: H. nobilis (n = 20); COEC: C. ectenes taihuensis (n = 5); HELE: H. leucisculus (n = 6);
LUCL: L. capito (n = 5); GYCA: C. carpio (n = 5); GAAU: C. auratus (n = 5); MYAS: M. asiaticus (n = 8); PEVA: P. vachelli (n = 10);
PEFU: P. fulvidraco (n = 5); PENI: P. nitidus (n = 5); CLFU: C. fuscus (n = 5); SICH: S. chuatsi (n = 4); CUDA: C. dabryi (n = 5);
CUAL: C. alburnus (n = 12); ERDA: E. dabryi (n = 13); CUOX: C. oxycephaloides (n = 3); P: POM (n = 27); A: attached algae
(n =12); M: aquatic macrophyte (1 = 10); Da: aquatic detritus (n = 8); Dt: terrestrial detritus (n = 4); ZP: zooplankton (n = 20);
ZB: zoobenthos (1 = 15).

3.1. GCA Food Web

Based on the diet data of fish in the Three Gorges Reservoir, we constructed the GCA
diet matrix and diet dependency matrix of food web in the Ganjing River (Figures 3 and 4).
Results from diet matrix revealed that among seven basal food sources, aquatic detritus,
zooplankton and zoobenthos were the major food sources supporting the biomass of
herbivores, planktivores and benthivores fish, respectively, during the dry season, and
attached algae and terrestrial detritus made corresponding contributions to consumers.
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However, during the wet season, herbivores fish switch to primarily depend on aquatic
macrophyte, while aquatic detritus accounted for a smaller proportion of food sources in
fish diet and terrestrial detritus accounted for a larger proportion (Figure 3). According to
the diet dependency matrix, dietary compositions varied from one predator to another in
present study (Figure 4). In the dry season, the dependence of H. molitrix, H. nobilis and
C. ectenes taihuensis on POM was higher than 90%. C. idellus, P. pekinensis, M. skolkovii and
S. curriculus were more dependent on aquatic detritus (up to 80%). Species of X. microlepis,
H. nobilis and C. ectenes taihuensis depended mostly on zooplankton (80-90%) and C. carpio,
C. auratus, P. vachelli, M. asiaticus and C. dabryi assimilated large quantities of zoobenthos
(up to 85-95%). During the wet season, dependence on POM was extremely high in
H. molitrix, H. nobilis, C. heterodon and H. leucisculus, reaching more than 95%. C. idellus,
P. pekinensis, M. skolkovii, S. curriculus and X. microlepis relied more heavily on aquatic
macrophyte (up to 80%). Species of H. nobilis, C. ectenes taihuensis and H. leucisculus mostly
assimilated zooplankton (80-90%) and C. carpio, C. auratus, P. vachelli, M. asiaticus, C. dabryi,
P. fulvidraco and P. nitidus mainly depended on zoobenthos (up to 85-95%). However, food
sources of consumers were little depended on terrestrial detritus and attached algae in
both seasons.
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Figure 3. The diet matrix of food web components during the dry season (a) and wet season (b) in the Ganjing River. The

diagonal is food items, and the square edge is predators. The shades of blue and the degree of filled circles represent the

percentage contribution of different food sources to consumers. The colour scale bar denotes the degree of prey percent

contributions to consumers.

On the basis of the GCA diet matrix, we constructed the GCA food web in the Ganjing
River (Figure 5). The point we primarily focused on was how tight the links were among
the components. During the dry season, it was noticeable that POM, zooplankton, aquatic
detritus and zoobenthos were the core components of the food web, which indicated that
all of them played an important role in the food web, effectively linking primary producers
and consumers. However, results showed that attached algae and terrestrial detritus
appeared less important for consumers because of the low degree of linkage with species.
In practical terms, it meant these two food sources (attached algae and terrestrial detritus)
account for a small proportion of consumers’ diet. Furthermore, H. molitrix, H. nobilis, C.
ectenes taihuensis, C. carpio, C. auratus and S. dabryi were of the secondary importance in the
food web, and the degree of linkage with the core components was relatively strong, acting
as an important intermediary in the transport of substances in the food web. Therefore,
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it can be found that the food web consisted of two major trophic chains based on diet
analysis during the dry season in the Ganjing River, namely, the planktonic food chain
which was relatively important from attached algae, zooplankton to H. molitrix, H. nobilis
and other primary consumers and the benthic food chain from aquatic detritus, zoobenthos
to omnivorous fish.
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Figure 4. The diet dependency matrix of food web components during the dry season (a) and wet season (b) in the Ganjing
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During the wet season, POM, zooplankton, zoobenthos and aquatic macrophyte were
the core components of the food web, which effectively linked primary producers and
primary consumers. Similar to the dry season, the results revealed that attached algae and
terrestrial detritus were so poorly linked to other consumers that they did not appear to
be of great importance in the food web. Besides, C. idellus, M. skolkovii, X. microlepis and
C. auratus were subdominant in the food web, and had a high degree of linkage with
the core components. Therefore, the food web was composed of three major trophic
chains based on diet analysis during the wet season in the Ganjing River, namely, the
planktonic food chain from POM, zooplankton to H. leucisculus, C. ectenes taihuensis and
H. nobilis, the herbivorous food chain from aquatic macrophyte to C. idellus, M. skolkovii and
P. pekinensis, and the benthic food chain from aquatic detritus, zoobenthos to benthivores
fish (P. fulvidraco, C. carpio and C. auratus). The planktonic food chain was relatively
important. Comparing the dry and wet seasons, we found significant differences in
predator-prey connections (Figure 5). The addition of fish species to the food web during
the wet season further complicated the linkages among consumers.

3.2. SIA Food Web

The observed isotope values of samples were brought into the BIMM for diet predicted
analysis of each component in the food web, and the predicted diet matrix and food web
were constructed (Figures 6 and 7). The GCA diet matrix was compared with the SIA diet
matrix to analyse correlation. Result demonstrated that strong correlation was observed
between the two diet matrixes, which indicated that there had the very high consistency
between the consumers’ diet and the predicted diet based on BIMM in the food web
(p < 0.001, Figure 8).
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Figure 7. Predicted food web based on BIMM in the Ganjing River. (a) Dry season. (b) Wet season. The thickness of the line
and sizes of the circle indicate the degree of trophic links, and thicker line and bigger circle manifest stronger trophic links

between species.
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Figure 8. Correlation analysis of diet matrix based on gut content analysis and diet matrix predicted by BIMM. (a) Dry
season. (b) Wet season.

Results from the SIA diet matrix showed that zooplankton and zoobenthos were the
major food sources of fish in the Ganjing River, followed by aquatic macrophyte and POM,
which were consistent with the GCA diet matrix. Besides, the SIA food web showed that
during the dry season, the planktonic food chain from POM to zooplankton to planktivore
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fish was dominant in the food web, whereas the benthic food chain from aquatic detritus
to zoobenthos and finally to omnivorous fish was relatively less important. During the
wet season, the planktonic food chain from POM to zooplankton to planktonic fish was
dominant in the food web, followed by the herbivorous food chain from aquatic macro-
phyte to herbivorous fish, and the benthic food chain from aquatic detritus to zoobenthos
and finally to benthivores fish had lower relative importance. Additionally, H. molitrix,
H. nobilis and zooplankton had a high degree of connection in the planktonic food web
during the dry season, so did C. idellus, M. skolkovii and zooplankton during the wet season,
which manifested that the GCA food web agreed well with the SIA food web.

4. Discussion

Rivers around the world are increasingly going through different ways of modification
and hydrological regulation to provide services ranging from flood control to power
generation [29,30]. In addition, under the influence of monsoon climate, precipitation has
apparent seasonal and interannual variations in China, which makes the river flow show a
certain periodicity. All these can cause change in water level of rivers. Seasonal water level
fluctuations are a key factor affecting ecosystem function, although other potential factors
such as ambient temperature and day length also play roles. Numerous environmental
factors (such as water temperature, dissolved oxygen concentration, water velocity and
nutrient concentration, etc.) and biological factors (such as primary production, organic
carbon contents and fish densities, etc.) are affected by changes in water level [31-33].
Fishes that survive in it play a quite important role in ecosystems, which are the crucial
link between the littoral zone and the deep water in food webs [34]. However, related
researches showed that the regulation of water level in the Yangtze River basin has affected
the diversity of fish species [4].

Water-level fluctuations may contribute to the exchange of matter and energy between
the water body and the terrestrial sources in the littoral zone of the rivers [35], and thus
change the basal food sources supporting the food web. In the present study, we have
concluded that the contributions of endogenous and exogenous carbon to consumers were
different in different hydrological periods. Basal resources for major consumers were
endogenous carbon sources such as POM, zooplankton and benthic animals during the
dry season in the Ganjing River, which was consistent with the finding that food web in
the shallow turbid lakes relied largely on phytoplanktonic carbon sources, rather than
terrestrial materials [36]. In the wet season, floods could expose fish consumers to a greater
abundance and diversity of food sources [10,31,37]. Terrestrial organic sources were ab-
sorbed by terrestrial vegetation in dissolved form and enter the food web [38,39]. However,
the relative availability of endogenous carbon to consumers is affected by low light and low
temperatures that limit phytoplankton production during winter and spring [40]. Thus,
the contribution of exogenous materials such as terrestrial detritus to fish increased during
the wet season in the Ganjing River. Although the contribution of terrestrial detritus to
aquatic consumers increased during the wet season, the contribution of terrestrial detritus
and attached algae remained relatively low compared to other important carbon sources
such as plankton and benthic organisms, which may be associated with the low production
of these two sources, and thus insufficient to maintain the biomass of species.

As a continuous variable, trophic levels contain the dynamic changes of the pop-
ulations and predator—prey relationships to provide a crucial framework for studying
the interrelations among species and energy transfer and transfer efficiency in ecosys-
tems [11,41]. In the river ecosystem researches, stable nitrogen isotope is usually used to
construct the food web structure and to evaluate the trophic position of organisms [33,42,43].
Our results indicated the !N values of fish species showed significant seasonal variations
in the Ganjing River, which may be related to different food sources. An increase of 51°N
values in most fish species from the wet season to the dry season were of great significance
for the piscivores and omnivores species. The trophic levels of fish in the dry season were
greater than that in the wet season because of the limited sources of animal food items
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in the low water period. During the dry season, gradual drying up of floodplains led to
an increase in fish densities, and predator—prey interactions among species intensified as
habitat diminished and resources availability decreased [32]. That led to an increase in
piscivores fish during the dry season, which in turn caused an increase in the trophic levels
of predators [10]. In contrast, during the wet season, the abundance and species diversity
of fish were greater than that in the dry season (as shown in Table S1), which contributed to
a more complex and interconnected food web. Since there was a large amount of biomass
which was easy to obtain in the river, fish tended to feed on aquatic plants (e.g., aquatic
macrophyte) with low 8'°N value during the wet season, and thus exhibited low §°N
value [10]. Meanwhile, the larger water area allowed fish to spread their range more widely
and reduce the risk of predation. Fish interactions may be limited by lower fish densities,
so some piscivores species may be less selective, feeding on invertebrates or fish [44,45].
Furthermore, allochthonous and littoral sources were more varied and the contribution
proportion of organic detritus increased as water level rose, so high levels of omnivory
occurred in fish consumers [31]. Interestingly, it has been demonstrated that the addition
of a certain intensity of omnivory can locally stabilize the food web [46].

Environmental factors affect the food web structure and function by changing the
energy flow pathways and the trophic levels of populations [1]. The water-level fluctuation
caused by natural or anthropogenic disturbance usually changes the freshwater ecosys-
tem from a clear water state dominated by macrophyte to a turbid state dominated by
phytoplankton [6,47,48], which has notable deleterious impacts on aquatic organisms (e.g.,
survival of attached algae and distribution of invertebrates) [49,50]. According to our
findings, several studies have also demonstrated that dramatic changes in water state
were likely to alter the connections among consumers in the food web and may lead to
changes in the dietary structure of organisms that could choose alternative energy channel
to replace or increase food sources [51,52]. After the regime shift in the Ganjing River, the
carbon sources for consumers became more abundant as the biomass of aquatic plants and
the contribution of terrestrial detritus increased during the wet season, thus earning energy
subsidies to help stabilize the food web. With the increase of species abundance, the food
web structure presented with a more complex form. Therefore, the trophic structure of the
food web exhibited remarkable temporal heterogeneity in the Ganjing River owing to the
strong seasonal changes in hydrological characteristics and the diversity of food sources.
Hence, water level fluctuations can alter the diet composition by affecting the productivity
of the basal resources and the available carbon sources for consumers, and further change
the trophic relationship between predator and prey and the trophic structure of food web.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w13172371/s1, Figure S1: Observed and predicted isotope values distribution of carbon and
nitrogen in BIMM. (a) Dry season. (b) Wet season. There was no significant difference between the
modelling predicted values of carbon and nitrogen isotopes and the observed values of samples, and
the coincidence degree between two data was high, which indicated that the prediction effect of the
model was very well, Table S1: Total sample size of fish in the Ganjing River.
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