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Abstract: Water quality has deteriorated in recent years as a result of rising population and unplanned
development, impacting ecosystem health. The water quality parameters of Qaroun Lake are
contaminated to varying degrees, particularly for aquatic life consumption. For that, the objective
of this work is to improve the assessments of surface water quality and to determine the different
geo-environmental parameters affecting the lake environmental system in Qaroun Lake utilizing the
weighted arithmetic water quality index (WAWQI) and four pollution indices (heavy metal pollution
index (HPI), metal index (MI), contamination index (Cd), and pollution index (PI), that are enhanced
by multivariate analyses as cluster analysis (CA), principal component analysis (PCA), and support
vector machine regression (SVMR). Surface water samples were collected at 16 different locations
from the lake during years 2018 and 2019. Thirteen physiochemical parameters were measured and
used to calculate water quality indices (WQIs). The WQIs of Qaroun Lake such WAWQI, HPI, MI,
Cd, PI revealed a different degree of contamination, with respect to aquatic life utilization. The WQIs
result revealed that surface water in the lake is unsuitable, high polluted, and seriously affected by
pollution for an aquatic environment. The PI findings revealed that surface water samples of Qaroun
Lake were significantly impacted by Al, moderately affected by Cd and Cu, and while slightly
affected by Zn due to uncontrolled releases of domestic and industrial wastewater. Furthermore,
increasing salinity accelerates the deterioration of the lake aquatic environment. Therefore, sewage
and drainage wastewater should be treated before discharging into the lake. The SVMR models
based on physiochemical parameters presented the highest performance as an alternative method to
predict the WQIs. For example, the calibration (Val.) and the validation (Val.) models performed
best in assessing the WQIs with R2 (0.99) and with R2 (0.97–0.99), respectively. Finally, a combination
of WQIs, CA, PCA, and SVMR approaches could be employed to assess surface water quality in
Qaroun Lake.
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1. Introduction

The natural environment has been severely distorted by industrialization and un-
controlled urbanization. Lakes are the world’s most productive, varied, and interacting
ecosystems. The aquatic ecosystem is made up of the biological community, physiochemical
elements, and their interactions. A complex interplay of physical and biological processes
exists within the aquatic environment, and changes do not occur in isolation. On the other
hand, an ecosystem has often evolved over time, with species becoming adapted to their
surroundings [1,2].

Water quality indicators have received a lot of attention in recent years in water
environment research because of the potential for toxic effects, persistence, and bioaccu-
mulation issues that can harm aquatic ecosystems [3,4]. Agricultural activities, several
industrial, and urbanization processes can pollute the environment and lead to water
ecosystem contamination, endangering aquatic biota and humans [5,6]. Water quality is a
crucial component of surface water management, thus evaluating surface water quality
for aquatic environments in developing nations is a critical issue in recent times. One of
Egypt’s most important inland-aquatic habitats is Qaroun Lake, which is a closed basin
that serves as a primary reservoir for agricultural drainage water in Fayoum Province [6].
During the autumn and winter seasons, the lake is an important location for fishing, salt
manufacture, tourism, and migrating birds [7]. Because of the greatest richness in biological
life, archeological monuments, and geologic formations [8], both natural processes (rain,
abrasion, soil erosion, etc.) and human inputs (urban, agricultural, and industrial activities)
impose pressure on surface water quality in the lake [9,10]. Along the lake’s southern
edge, there are several pollution sources, including agricultural and urban wastewater
discharged by Fayoum Province, as well as fisheries [11,12].

Fayoum Province discharges 450 million m3 of untreated effluent into the lake each
year [13]. El-Bats and El-Wadi are the two primary drains that receive massive volumes
of household, industrial, and agricultural wastewater, which putting a lot of strain on
aquatic life in the lake. The quantity and quality of water supply from various sources
has a significant impact on water quality, because lakes are still waters that cannot clean
themselves, they are more vulnerable to contamination than other water bodies [14].
Because of the growing human population and the associated increase in pollution dangers,
lake monitoring and evaluation has become an important issue of lake management. As
a result, lake water quality management is required to analyze these effects and provide
a path to the long-term socioeconomic and environmental sustainability of this essential
resource [13].

The physiochemical parameters such as temperature, pH, TDS, Al, Ba, Cd, Cr, Cu,
Fe, Pb, Mn, Ni and Zn are regarded as key indicators and essential markers of water
quality and a crucial characteristic in determining water suitability for aquatic life. Since
the increasing of trace elements above the limit of quantification can affect water quality
and damage the environment and anthropogenic activities [15,16]. The heavy metal; as Zn
is poisonous in excessive amounts, despite the fact that it is “vital” components for life
organisms [17].

Water quality has deteriorated in recent years because of rising population and un-
planned development, impacting ecosystem health. In order to understand the impacts
on water quality and living creatures, it is necessary to investigate water quality param-
eters in aquatic environments. Natural and human processes, as well as the transfer of
nutrients and trace elements to surface waters have an impact on water quality in any
region [9,10,18,19]. Water quality indices (WQIs) are crucial in this process, which are
considered a communication tool for transferring water quality data and should be cal-
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culated to monitor water quality [20–22]. Therefore, some documented water quality
indices, such as WAWQI, HPI, MI, Cd and PI were utilized in this research to determine the
current state of surface water hydrochemistry and the appropriateness of water for aquatic
ecosystems. PIs are helpful techniques for assessing surface water quality which reflect the
cumulative impacts of trace elements to indicate overall water quality and contamination
degree [23–25]. Water pollution indices are considered an efficient method of ensuring
safety by developing a control plan for monitoring the development, expansion, urban
production, and direction of human activities in order to prevent negative effects on water
quality resources [26–28].

The WAWQI is an arithmetic weighted technique for classifying water quality based
on purity levels [29]. The HPI is a useful tool for assessing the impact of specific trace
elements on overall water quality and perceptions of surface water suitable for human
consumption [30]. Furthermore, the MI takes into account the cumulative effects of trace
elements, allowing for a quick evaluation of overall water quality [31]. The Cd evaluates
the degree of pollution impacts on water quality in terms of specific trace elements. In
addition, PI evaluates the relative toxicity of particular metals separately, which represents
the combined impact of all metals on water quality and contamination level [32]. Therefore,
the degree of pollution by trace element is measured as a combination of the individual
contamination parameters via means of cumulative effects of trace elements that are
regarded harmful to the aquatic environment.

Multivariate analysis of environmental data is widely used to identify potential pol-
lution sources that affect water systems, and it is a significant approach for dependable
water resource management as well as quick pollution issue solutions [33–35]. In the
evaluation and monitoring of trace element contamination of water, cluster analysis (CA)
and principal component analysis (PCA) are often used [36,37]. The CA and PCA were
used to classify metals or investigated parameters into distinct factors/groups based on the
predicted source of contribution and also, can assist in the organization and simplification
of huge data sets in order to give useful insight [38]. Furthermore, water quality may be
evaluated utilizing a geographic information system (GIS) as well as multivariate statistical
modeling. Through interconnected layers of component geographical information, GIS can
reflect the real environment [39,40]. GIS makes it simpler to analyze landscape features
by providing spatial data that are not readily available through field research [41,42]. The
geoprocessing models are crucial because they automate and record various phases of
geospatial processing, as well as the complete geospatial data management process [43].
Pollution indices assist in identifying and mapping pollution levels, as well as determining
present and prospective negative impacts on the aquatic system.

Combination of the WAWQI and PIs is a useful and practical method for detecting
surface water quality using machine learning models such as support vector machine
regression (SVMR), which are necessary for policymakers to understand the current state of
surface water quality and its control mechanisms. In addition, this is useful in determining
the best treatment techniques to address specific problems [28,44–47]. To calculate these
indices by tradition equations methods require several steps, accuracy in the calculation,
time and high effort to convert a large number of water characterization data into a single
value (WAWQI or PIs) to describe the level of water quality [29,48]. To overcome this
problem, the SVMR could be used since it is a common method for specifying non-linear
between a set of independent variables and response variables [45,49,50]. The SVMR use a
several data of water characterization as into a single index to improve water parameter
estimation. As a result, the water indices such as WAWQI and PIs can be analyzed
simultaneously using this approach throughout a wide range of water characterization
data. The SVM can translate data into a new high-dimensional space using a kernel
function. Then, using a subset of sample cases known as support vectors, a predictive
model is formed [49–51]. To the best of our knowledge, little research has compared the
performance of SVMR in predicting WQIs using water characterization data. Several
distinct water quality indexing methods are used in this study to offer a comparison
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outcome of their results. Therefore, the objectives of this work were to (i) assess the
appropriateness of surface water for aquatic environments using the WAWQI; (ii) assess
the contamination risk of surface water using PIs; (iii) classify physiochemical parameters
into distinct groups/factors using CA and PCA; and (iv) evaluate the efficiency of SVMR
models based on physical parameters and trace elements to predict the WAWQI as well as
based on trace elements to predict PIs.

2. Materials and Methods
2.1. Study Area

Qaroun Lake is part of the Fayoum Depression, which was produced by natural
circumstances in the northeastern section of Egypt’s Western Desert. It is considered a
closed shallow semi-saline lake lying between longitudes 30◦24′ and 30◦50′ E and latitudes
29◦24′ and 29◦33′ N (Figure 1), with an area of about 200 km2 and forming the deepest part
in the Fayoum Depression with no outflow except evaporation [52]. The research area is
rectangular and elongated in shape, with average measurements of 45 km in length, 5.7 km
in width, and 4.2 m in depth [53]. The urban and agricultural regions border the lake on
the south and east, while the uninhabited desert lands border it on the north and west.
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Figure 1. Location map of Qaroun Lake and measuring points.

Qaroun Lake serves as a large natural reservoir for various effluents (agricultural,
household, sewage, and industrial wastes) that flow through the eastern and southern
drains from a great portion of Fayoum Province [7]. The drainage system has two major
drains (El-Bats and El-Wadi) as well as several subsidiary drains (Sheikh Allam and Bahr
Qaroun) that go to the lake (Figure 1). The investigated catchment is located in Egypt’s
desert region, where the temperature is typically warm and dry, with a hot, long dry
summer and a moderate, short winter [53]. Low seasonal rainfall (10 mm/y) and a high
evaporation rate (7.3 mm/day) are further characteristics of the study area [54,55].

2.2. Sampling and Analyses

Water samples were obtained from 16 points across Qaroun Lake in July (dry season)
over two years 2018 and 2019 (Figure 1). The location of the collected samples was deter-
mined by UTM coordinates using handheld MAGELLAN GPS 315. Physical properties
of the water samples such as T ◦C, pH, and TDS were measured in situ using a calibrated
YSI Professional Plus handheld multi-parameter instrument (Hanna HI 9811-5). Some
500 mL polyethylene bottles with pre-marked labels and acidified with nitric acid to a
pH less than 2 were used to collect surface water samples. The bottles were immediately
closed and stored in a 4 ◦C refrigerator until further examination. Standard analytical
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procedures [56] were used to analyze trace elements such as Al, Ba, Cd, Cr, Cu, Fe, Pb, Mn,
Ni and Zn using inductively coupled plasma mass spectrometer (ICAP TQ ICP-MS Thermo
Fisher Scientific Inc., Waltham, MA, USA) at Environmental and Food Lab, University of
Sadat City, which accredited according to ISO/IEC 17025/2017. The findings are shown in
Table 1. Duplicates were performed during the analysis for quality assurance and quality
control (QA/QC) of the surface water samples to provide better data confidence from the
analytical procedure. Also, the precision of the method was certain by testing certified
reference materials (ERM-CA713).

Table 1. The WAWQI estimates for the surface water parameters are based on the arithmetic weights
in the present study.

Parameter Aquatic Life * Arithmetic
Weight (Wi)

Sub-Quality
Index (Qi)

WAWQI

Temp. 28 0.00007 92.22 0.006379047
pH 6.5–9 0.00002 107.85 0.002398024
TDS 500 0.00001 6908.32 0.008601328
Al 0.1 0.00623 170.00 1.058306921
Ba 0.05 0.01245 97.60 1.215185358
Cd 0.001 0.62253 240.00 149.4080359
Cr 0.01 0.06225 38.00 2.365627235
Cu 0.004 0.15563 275.00 42.79917694
Fe 0.3 0.00208 5.26 0.010928921
Pb 0.007 0.08893 97.14 8.63924017
Mn 0.05 0.01245 9.40 0.117036295
Ni 0.025 0.02490 59.20 1.474159287
Zn 0.05 0.01245 143.64 1.788414189

∑wi = 1
* All physicochemical parameters are expressed in mg/L except temperature (T ◦C) and pH.

2.3. Indexing Approach
2.3.1. Weighted Arithmetic Water Quality Index (WAWQI)

The WAWQI assess water quality based on the degree of purity using the most
routinely measured water quality criteria. The WAWQI is the most appropriate index for
determining the overall quality of surface water for aquatic utilization, and it is defined by
mathematical approaches using the equation published by Rown et al. [29]. The weighted
arithmetic approach is used to compute the WAWQI according to Equation (1):

WAWQI =
n

∑
i=1

QiWi (1)

Each variable’s sub-quality index is called Qi, Wi the weight unit of the specified vari-
able is Wi, and there were 13 physicochemical characteristics (n = 13) that were expressed in
mg/L. According to the Canadian Council of Ministers of the Environment, the calculated
value of Qi is based on the surface water concentration (Ci) and the standard (Si) for each
surface water parameter’s aquatic life value [57], as shown in Equation (2):

Qi =
Ci
Si
× 100 (2)

Wi =
wi

∑ wi
(3)

The recommended standards are used to calculate wi for each parameter [57] by
Equation (4):

wi = K/Si (4)

The proportionality constant is K.
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To calculate the WAWQI, a weight must be assigned to each surface water parameter
(wi), and the relative weight (Wi) and quality rating range (Qi) must be calculated. Therefore,
Wi values were assigned for selected physicochemical (Table 1), while wi was computed
using Equation (4). The arithmetic weight approach was used to assign weighted values.
The weights (wi) and arithmetic weights (Wi) for the water parameters are presented in
Table 2.

Table 2. Arithmetic rating method for computation of HPI, MI, Cd and PI.

Trace Element
(mg/L)

Si (mg/L)
(CCME, 2007) MACi

Unit Weight
Wi

Sub Index
Qi

Wi × Qi

Al 0.1 100 0.00623 130 0.809368515
Ba 0.05 50 0.01245 88.2 1.098250815
Cd 0.001 1 0.62259 220 136.9700563
Cr 0.01 10 0.06226 33 2.054550845
Cu 0.004 4 0.15565 317.5 49.41817373
Fe 0.3 300 0.00208 4.53 0.009408044
Pb 0.007 7 0.08894 82.85 7.369446444
Mn 0.05 50 0.01245 8.2 0.102104951
Ni 0.025 25 0.02490 56.8 1.414527127
Zn 0.05 50 0.01245 191 2.378298251

∑(Wi) = 1 ∑(Wi × Qi)

2.3.2. Pollution Indices (PIs)

HPI, proposed by Prasad and Bose [58], MI, proposed by Tamasi and Cini [48], Cd,
established by Backman et al. [59], and PI, proposed by Caerio et al. [32], are the four
techniques utilized in this work. The pollution indices including the HPI, MI, Cd and PI
were assessed for the concentrations of selected ten trace elements in Table 1 according to
the following equations:

Heavy Element Pollution Index (HPI)

Each chosen parameter was given a rating or weight (Wi) to create the HPI index [60].
A toxicity index (HPI) based on mathematical weights of trace elements were used to reflect
overall water quality with respect to the recommended standard guidelines (Si) for each
metal for aquatic environment [57]. The concentration limits, i.e., the standard permitted
value (Si) and maximum desired value (Ii) for each parameter, were obtained from the [57]
standards (Table 2) for computing the HPI for the current water quality data. Therefore,
the HPI values were estimated according to Equation (5):

HPI =
∑n

i=1 WiQi

∑n
i−1 Wi

(5)

where Wi and Qi indicate the unit weights and the sub-indices for selected trace elements
in Table 1 and the number of trace elements being tracked is n = 10.

The sub-index (Wi) and (Qi) are calculated by Equations (6) and (7):

Wi = K/Si = 1/Si (6)

where K is the proportionality constant and Si is the ith parameter’s standard allowable value.

Qi =
n

∑
i=1

(Mi − Ii)

(Si − Ii)
× 100 (7)

The monitored value of heavy metal, ideal, and standard values of I parameter,
respectively, are M, I and S. The symbol (−) denotes the numerical difference between the
two numbers, but the algebraic sign is ignored. Low trace element pollution (HPI < 100),
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trace element pollution with threshold risk (HPI = 100), and excessive heavy metal pollution
(HPI > 100) were the three categories for HPI values [58,61,62].

Metal Index (MI)

The Metal Index (MI) is a technique for determining the overall quality of water
in terms of metals. It is based on a complete trend evaluation of the current state [61].
Therefore, the MI according to Equation (8) represents water quality conditions under
metal stress.

MI =
n

∑
i=1

Hc

Hmax
(8)

where Hc is the concentration of trace elements, Hmax is the maximum permitted concentra-
tion for each metal, and i is the ith sample [48].

Contamination Index (Cd)

The degree of contamination (Cd) was calculated and measured based on the contami-
nation factors of specific trace elements that exceeded acceptable limits [32,61], according
to Equations (9) and (10):

Cd =
n

∑
i=1

Cfi (9)

Cfi =
CAi
CNi
− 1 (10)

where Cfi is the contamination factor for each trace element, the analytical value for each
metal is CAi, CNi is the acceptable concentration for each metal, and CNi is referred to as
MAC (Table 2).

Pollution Index (PI)

For trace elements, pollution impact on surface water was assessed using PI values
based on individual metal computations and classified into five groups (Table 3), which
reflect the individual contamination effect of each trace element on surface water quality
according to Equation (11):

PI =

√
[(Ci

Si
)2

max + (Ci
Si
)2

min]

2
(11)

where Ci is the metal concentration and Si is the metal level in relation to the metal
concentration in water [32,63].

Table 3. Levels of pollution according to PI.

Class PI Value Effect

1 <1 No effect
2 1–2 Slightly affected
3 2–3 Moderately affected
4 3–5 Strongly affected
5 >5 Seriously affected

2.4. Data Analysis

The physicochemical parameters and WQIs were statistically analyzed using to com-
pute statistical variables (e.g., minimum, maximum, mean, and standard deviation). The
Pearson correlation coefficient was utilized to establish the relationships between WQIs,
physical and chemical characteristics of water samples, as well as the significance thresh-
olds at 0.05 and 0.001. For water quality evaluations, the CA and PCA are applied to
enhance the identification of effective contaminant components in surface water based
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on transforming data from chemical analyses into recognizable patterns [64–67]. The
CA and PCA were utilized to recognize the sources or factors that were responsible for
changes in water quality by converting the original variables into a new set. PAST software
(version 3.25) was used to process above statistically analyzed of the physicochemical
parameters and WQIs, Pearson correlation coefficient and the analytical chemical findings
of the physicochemical concentrations for CA and PCA. The maps are created using GIS
methodology version 10, which is based on inverse distance weighted interpolation (IDW),
which is one of the most basic and widely used interpolation methods for mapping various
characteristics [6,68,69]. Using ArcGIS’s IDW tool, the statistical relationships between the
known locations were identified, and the concentrations of trace elements in the research
area were calculated.

2.5. Support Vector Machine Regression

The SVMR algorithm is a machine learning theory that can be used to classify and
recognize patterns. Version 10.2 of the unscramble X program (CAMO Software AS,
Oslo, Norway) was used to construct the SVMR models. The SVMR model was used to
establish calibration (Cal.) and validation (Val.) models of the WAWQI based on three
physical parameters and ten trace elements as input data and for PIs with respect to ten
trace elements (Table 1). For example, the SVMR of calibration model for testing a single
dependent variable (e.g., contamination index (Cd) used several independent variables
(e.g., Al, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Ni and Zn). The measured datasets were randomly
divided into two sets of progressions, 67 percent training and 33 percent testing datasets, to
construct the models. The performance of SVMR for (Cal.) and (Val.) models was evaluated
to predict the WQIs based on four criteria (determination coefficient (R2), root mean square
error (RMSE), mean absolute deviation (MAD), and accuracy (Acc). The optimal model
was selected based on the lowest RMSE and MAD, as well as the highest R2 and Acc.

R2, is computed according to Equations (12)–(15) as the following:

R2 = 1−
∑n

i=1

(
WQIoi −WQI f i

)2

∑n
i=1(WQIoi)

2 (12)

The RMSE is calculated with the following equation:

RMSE =

√√√√∑n
i=1

(
WQIoi −WQI f i

)2

n
(13)

The MAD determines the precision of constant variables, as seen below:

MAD =
∑n

i=1

∣∣∣WQIoi −WQI f i

∣∣∣
n

(14)

The Acc is calculated with the following equation:

Acc = 1− abs(mean
WQI f i −WQIoi

WQIoi
) (15)

WQIoi represents the observed value, and n represents the number of data points.
WQIfi, on the other hand, is the predicted value.

3. Results and Discussion
3.1. Physicochemical Data

Physiochemical parameters play an important role in water quality evaluations and are
a valuable source for learning about water chemistry and quality. Table 4 shows statistical
descriptions of physicochemical characteristics regarding trace elements in surface water
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samples taken from Qaroun Lake over two years. Temperature is a key element in the
aquatic environment and one of the variables that determines water quality, which controls
biological, physical, and chemical activities in water. The water temperature varied between
a minimum of 28.8 ◦C to maximum of 34.2 ◦C; with an annual average of 31.5 ◦C during
summer across two years. Although, water in Qaroun Lake lies in the optimal range for
most of the aquatic organisms, the steep temperature gradients, can have direct harmful
effects on fish according to CCME [57] for aquatic life. In addition, the surface water pH
values varied from 7.8 to 8.4, with a mean of 8.2, which fell in the range of acceptable water
for the aquatic environment system according to the guidelines of the CCME [57]. The pH
values of the surface water samples indicated a slightly acidic to alkaline water as well
as an increase in planktonic algae photosynthetic activity [70]. The TDS values for the
collected samples ranged between 27,652.27 mg/L and 39,056.09 mg/L, with a mean value
of 35,679.37 mg/L. Because of the effect of evaporation associated with very high solute
dissolution and continuous recharging from agricultural, domestic, sewage, and industrial
wastes in the closed lake, the TDS values in the obtained samples revealed that the surface
water at Qaroun Lake was semi-saline type (e.g., 10,000–100,000 mg/L).

Table 4. Statistical description of water quality parameters in Qaroun Lake over two years.

Water Quality Parameters

T ◦C pH TDS Al Ba Cd Cr Cu Fe Pb Mn Ni Zn

First year 2018 (n = 16)

Min 29.4 7.800 27,652.270 0.040 0.045 0.002 0.003 0.002 0.016 0.006 0.004 0.011 0.061
Max 34.2 8.400 38,752.040 0.720 0.068 0.005 0.005 0.022 0.029 0.008 0.008 0.020 0.163

Mean 31.356 8.244 35,580.940 0.299 0.053 0.003 0.004 0.013 0.021 0.007 0.006 0.016 0.102
SD 1.168 0.136 2634.437 0.246 0.007 0.001 0.004 0.005 0.004 0.001 0.001 0.003 0.037

Second year 2019 (n = 16)

Min 29.4 7.8 28,840.43 0.04 0.0447 0.0024 0.003 0.0017 0.0155 0.0057 0.0042 0.011 0.06052
Max 34.2 8.4 39,056.09 0.72 0.0678 0.0045 0.0054 0.0219 0.029 0.0081 0.0077 0.0204 0.16271

Mean 31.35625 8.24375 35,777.81 0.2985 0.053025 0.003259 0.004075 0.012551 0.021119 0.0068 0.005638 0.016256 0.101624
SD 1.167886 0.136473 2442.075 0.245747 0.00724 0.001757 0.000686 0.00525 0.004255 0.000593 0.001052 0.002841 0.037036

Data across two years (n = 32)

Min 29.4 7.8 27,652.27 0.04 0.0447 0.0024 0.003 0.0017 0.0155 0.0057 0.0042 0.011 0.06052
Max 34.2 8.4 39,056.09 0.72 0.0678 0.0045 0.0054 0.0219 0.029 0.0081 0.0077 0.0204 0.16271

Mean 31.35625 8.24375 35,679.37 0.29 0.053025 0.003259 0.004075 0.012551 0.021119 0.0068 0.005638 0.016256 0.101624
SD 1.148895 0.134254 2500.774 0.24175 0.007122 0.001745 0.000674 0.005165 0.004186 0.000584 0.001035 0.002795 0.036433

All water quality parameters are expressed in mg/L except temperature (T ◦C) and pH, SD: standard deviation.

On the other hand, the trace element concentrations of Al, Ba, Cd, Cr, Cu, Fe, Pb, Mn,
Ni and Zn showed mean values of 0.29, 0.053, 0.21, 0.016, 0.012, 0.10, 0.0068, 0.005, 0.004,
and 0.003 mg/L, respectively as the following trend: Al > Ba > Fe > Ni > Cu > Zn > Pb
> Mn > Cr > Cd. To the best of our knowledge, trace elements in water come from two
sources: natural (rock weathering and soil leaching) and anthropogenic (urban residential
and industrial waste and chemical fertilizer usage). The trace elements concentrations in
the collected water samples differed significantly between samples, indicating that the
surface water was contaminated by Al, Ba, Cd, Cu, Mn, and Zn, at levels that were higher
than the proposed permissible limits for the protection of aquatic life according to the
CCME [57]. The obtained physicochemical results for the studied area were agreement with
the results reported by many studies in this region [26,71]. For example, the result averages
of the researched parameters were compared with the variables studied of Wadi El-Rayan
Lakes in Fayoum Province utilizing eight heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and
Zn) to assess metal pollution in the Lakes’ water [26]. According to the findings, Pb and
Cd concentrations in the upper lake exhibited a temporal significant difference (p < 0.05),
but Fe, Ni, Zn, and Cu values showed a highly spatial significant difference (p < 0.01).
These findings revealed that the discharge of untreated effluents, sewage, and agricultural
chemicals into the lakes via the El-Wadi drain and the increasing rate of water evaporation
result in increased metal levels, potentially reversing the dramatic transformation story of
Qaroun Lake and the deterioration of the aquatic environment.
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Furthermore, a long-term change of water quality characteristics and metal pollution
load of Fe, Mn, Zn, Cu, and Cd of heavily polluted Mediterranean Lakes in Egypt, were
investigated [72]. The comparison of the five lakes revealed an increase in most metal
values at Qaroun Lake, Mariut Lake, Manzala Lake, and Burullus Lake, except Mn, which
had higher levels than Manzala Lake. Burullus Lake was rated third, followed by Idku
Lake. The results (Table 5) revealed that the values of all examined metals in several
northern Egyptian lakes exceed the CCME permitted levels [57].

Table 5. Comparison between heavy metals content (mg/L) in Qaroun Lake and some northern Egyptian Lakes.

Egyptian Lakes Fe Mn Zn Cu Cd Ref.

Qaroun 0.015–0.029 0.004–0.007 0.060–0.162 0.001–0.021 0.0024–0.0045 Present study
Mariut 0.522–1.952 0.02–0.085 0.023–0.0865 0.003–0.088 0.0025–0.0127 [72]

Manzalah 0.447–1.212 0.334–0.925 0.036–0.093 0.003–0.008 0.0022–0.0056 [73]
Burullus 0.025–0.06 - 0.018–0.055 0.011–0.033 0.0029–0.0085 [74]

Idku 0.08–1.89 0.003–0.088 0.004–0.05 0.002–0.024 ND–0.008 [75]
Permissible level 0.3 0.05 0.03 0.002 0.001 [57]

3.2. Water Quality Indices

Table 6 presented statistical descriptions of water quality indices such as the WAWQI,
HPI, MI, and Cd over two years. The WAWQI values ranged from 154.591 to 358.788, with a
mean value of 252.461, and the findings obtained revealed that 100% of water samples were
unsuitable water categories and not recommended for the aquatic environment (Table 7).
The spatial distribution map of WAWQI values of the surface water in the study area
increasing from northwest to southeast direction indicates that most of the surface water
quality degradation was observed near the downstream of drainage network in front
El-Bats and El-Wadi drains at the end of drain discharging in the lake (Figures 2a and 3a).
This may be attributed to runoff untreated agricultural and municipal wastewater into
the lake.

The HPI values ranged from 154.5875 to 358.8039, with a mean value of 252.4668, which
presented that 100% of samples were above the critical HPI value, representing water highly
polluted by trace elements (Figures 2b and 3b). The MI values of the surface water samples
ranged from 6.343048to 22.7259, and according to the MI findings, trace elements had a
significant impact on all surface water samples (Table 7). Based on the spatial variation
map of MI findings, in the northeastern and southwestern regions of the lake, surface water
samples were more influenced by trace elements (Figures 2c and 3c). The PIs including the
HPI, and MI showed that surface water of Qaroun Lake was highly polluted and seriously
affected by heavy metals for the aquatic ecosystem. The heavy metal pollution increased
gradually from the southeast to northwest direction (Figures 2b,c and 3b,c).

The computed values for Cd of water samples presented that the Cd values ranged
from −3.65695 to 12.7259. The Cd calculated found that 50% of surface water samples
had positive values (Cd > 1), indicating highly contaminated surface, and about 16% of
samples indicating medium contaminated water (Figures 2d and 3d), while the remaining
samples about 34% had negative values (Cd < 1), indicating better water quality for aquatic
environment with respect to trace elements (Figures 2d and 3d). The Cd values revealed
the degree of contamination by metals across two years resulting from continuous rapped
discharging of untreated wastewater from the drains, especially in the front of the lake
(Figures 2d and 3d).

A comparison of the spatial distribution maps of the WAWQI and PIs findings
(Figures 2 and 3) indicated a decrease in surface water quality for aquatic utilization. There
are no noticeable changes in the spatial distribution of WQIs for the lake between two years
because of slight increase in physicochemical characteristics across two years.

The water quality degradation in Qaroun Lake showed that according to HPI, surface
water was severely polluted, and heavy metals had a significant impact, according to MI.
While significant levels of water contamination for Al, Cd, Cu, and Zn revealed differences
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in the evaluation schemes for metal concentrations [57]. The study area’s surface water
quality was deteriorating due to rising amounts of swept-out effluents from various drains
into the lake.

Table 6. Statistical description of water quality indices in Qaroun Lake over two years.

Water Quality Indices (WQIs)

WAWQI HPI MI Cd

First year 2018 (n = 16)

Min 154.591 154.5875 6.343048 −3.65695
Max 321.625 321.6374 20.69338 10.69338

Mean 234.5054 234.5096 12.9214 2.921396
SD 55.81393 55.81947 4.366384 4.366384

Second year 2019 (n = 16)

Min 177.240 177.2382 7.883352 −2.11665
Max 358.788 358.8039 22.7259 12.7259

Mean 269.1347 270.424 14.68734 4.687343
SD 63.3035 61.37765 4.753074 4.753074

Data across two years (n = 32)

Min 154.591 154.5875 6.343048 −3.65695
Max 358.788 358.8039 22.7259 12.7259

Mean 252.461 252.4668 13.80437 3.804369
SD 60.51976 60.5257 4.578364 4.578364

SD: standard deviation.

Table 7. Classification of surface water sampling for aquatic life according to water quality indices (WQIs).

WQIs Range Water Class
Samples (%)

First Year (2018) Second Year (2019) Across Two Years

Weighted
arithmetic water

quality index
(WAWQI)

0–25 Excellent 0 0 0
26–50 Good 0 0 0
51–75 Poor 0 0 0

76–100 Very poor 0 0 0
>100 Unsuitable 100% (16 samples) 100% (16 samples) 100% (32 samples)

Metal index (HPI)
<100 Low polluted 0 0 0
>100 High polluted 100% (16 samples) 100% (16 samples) 100% (32 samples)

Trace element
evaluation index

(MI)

<0.3 Very pure 0 0 0
0.3–1.0 Pure 0 0 0
1.0–2.0 Slightly affected 0 0 0

2.0–3.0 Moderately
affected 0 0 0

3.0–6.0 Strongly affected 0 0 0
>6.0 Seriously affected 100% (16 samples) 100% (16 samples) 100% (32 samples)

Contamination
index
(Cd)

>1 Low 37% (6 samples) 31% (5 samples) 34% (11 samples)
1–3 Medium 19% (3 sample) 13% (2 sample) 16% (5 samples)
<3 High 44% (7 samples) 56% (9 samples) 50% (16 sample)
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Based on the classification of PI levels, the PI data revealed two groups of trace element
effects (Table 8). The PI values obtained demonstrated that Al had a severe impact on the
surface water samples (Figure 4). (PI = 3.51), moderately affected by Cd (PI = 2.43) and
Cu (PI = 2.76), and slightly affected by Zn (PI = 1.69), while there were no effects exerted
by Ba, Cr, Fe, Pb, Mn, and Ni (PI < 1.0) as shown in Figure 4. The PI results revealed that
the surface water points were strongly affected by Al and moderately affected by Cd and
Cu, while slightly affected by Zn (Table 2). According to the obtained PI results, the high
loadings of Al and Cu may be attributed to industrial activities, while the high loading
of Cd and Zn revealed anthropogenic activities and poor sanitation infrastructure. For
example, Goher et al. [26] applied PIs for assessing the water quality status in Wadi El-
Rayan Lakes. According to metal index values, all selected surface water samples from the
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Lakes are seriously threatened with metal pollution, and the PI values showed that surface
water of Wadi El-Rayan Lakes were slightly affected by Cr, and Pb and moderately affected
by Cd and Cu, while no pollution effect by Fe, Mn, Zn, and Ni for aquatic utilization.

Table 8. Assessment of surface water quality according to the effects of trace elements across two
years.

Trace
Element

PI

Class Effect
First Year Second

Year
Across Two

Years

Al 3.41 3.61 3.51 IV Strongly affected
Ba 0.72 0.81 0.765 I No effect
Cd 2.30 2.55 2.425 III Moderately affected
Cr 0.28 0.31 0.295 I No effect
Cu 2.77 2.75 2.76 III Moderately affected
Fe 0.05 0.05 0.05 I No effect
Pb 0.65 0.71 0.68 I No effect
Mn 0.08 0.09 0.085 I No effect
Ni 0.48 0.46 0.47 I No effect
Zn 1.63 1.74 1.685 II Slightly affected
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According to foregoing findings, the PIs in Qaroun Lake have tended to rise, because
of uncontrolled releases of domestic and industrial wastewater. Therefore, combining the
WAWQI and PIs is a useful and practical method for assessing surface water quality in
aquatic ecosystems using physicochemical characteristics in relation to trace elements.

3.3. Correlation Matrix between WQIs and Physicochemical Parameters

The correlation between physiochemical parameters, WAWQI and three PIs were
computed via simple regressions as presented in Figure 5. The WAWQI vs. HPI, MI and
Cd showed a high positive and significant correlation, with r = 0.91 for MI and Cd and with
r = 0.91 for HPI. The significant correlation coefficients for the matrix of physiochemical
parameters, WAWQI and three PIs varied from 0.51 to 1.00. The correlations among four
water quality indicators and physiochemical parameters indicated that TDS, temperature,
Ba, and Ni showed non-significant correlation with the four water quality indicators.
On other hand, there were positive and strong correlation between four water quality
indicators with Al, Cd, Cr, Cu, Fe, Mn and Zn and r varied from 0.64 to 0.95. Moderate
correlation between WAWQI and HPI was found, with r = 0.59. Al showed the highest
correlation coefficient with the MI and Cd with r = 0.95, Cd showed the highest correlation
coefficient with the WAWQI and HPI, with r = 0.94 and Zn showed the highest correlation
coefficient with the MI and Cd, with r = 0.85.
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3.4. Multivariate Statistical Analysis
3.4.1. Cluster Analysis

The CA was used to identify water quality changes and to classify various physico-
chemical characteristics by transforming the initial variables into a new set of variables
associated with water. Three forms of clustering were discovered in the CA findings for
trace elements, including Al and Zn (Cluster I). Another cluster includes Ba (Cluster II),
which was further split into two sub-clusters, one representing Fe, Cu, and Ni and the
other representing Cd, Cr, and Mn (Figure 6a). High contributions of Al, Zn, and Ba
may be attributable to industrial and agricultural wastewater arising from human actions,
according to the CA of the physicochemical (Figure 6a). Trace elements such as Fe, Cu,
Ni, Cd, Cr, Pb and Mn are included in a distinct cluster, revealing anthropogenic activities
and quickly increasing industry sectors in Fayoum Province. Therefore, the main causes of
trace element pollution in Qaroun Lake revealed industrial leaching and precipitation with
increasing human activities [76,77].
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3.4.2. Principal Component Analysis

Figure 6b shows the results of a PCA for physicochemical characteristics regarding
trace elements for surface water stations over two years. PC1 explained 50.193% of total
variance was prevailed by large positive loading of T ◦C, Zn, Cd, Al, Mn, Cr, Cu, Ni, Fe, Pb,
and Ba especially from sample 1 to 9. PC2, (pH and TDS) 14.431% of the total variations
were highly associated at samples 12 and 15, (Figure 6b). All trace components were
clustered together in positive loading combinations, which revealed a strong relationship
between the variables. The existence of ten essential main principal components showed
the influence of trace elements on surface water quality in the research region, according
to the PCA results. Therefore, PC1 showed maximum loading of T ◦C, Al, Cd, Mn, Fe,
Pb and Zn in samples No. 2, 3, 4, 5, and 8, while PC2 showed maximum loading of pH
and TDS in samples No. 1, 6, and 9 (Figure 6b). The PCA of surface water samples for the
physicochemical parameters revealed the loadings of Al, Cd, Ba, Ni, Cu, Cr, Mn, Fe, Pb and
Zn on PC1 and the loadings of pH and TDS on PC2 (Figure 6b). These findings could be
attributable to industrial and anthropogenic operations in the research region [78–80], that
lead to contamination of Qaroun Lake by individual metals, especially the high loadings of
Ba, Cr, Cd, and Zn. Furthermore, phosphorus fertilizers are a source of several harmful
trace metals such as Cd, Cr, and Zn, which are mostly anthropogenic origin [16,81,82].

Most surface water locations in the research area had high contaminated water, as
shown by a strong agreement between PCA and Cd. Agriculture runoff, discharge of
industrial wastewater, and urban sewage through the estuary have all developed near the
research area in recent years, as evidenced by the integration of trace element contributions
in PCA and PIs. Therefore, combining PCA and PI for surface water quality assessment
regarding trace elements is a beneficial and adaptable approach that holds exceptional
potential and provides unique insights.
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3.5. The Support Vector Machine Regression Models to Predict Water Quality Indices

The mathematical methods can be used to calculate accurate estimation of the WAWQI,
HPI, MI and Cd of surface water based on physiochemical parameters. Although, these
methods are accurately but require more time, efforts, and several steps to converts several
input data to obtain on single value as output data. The SVMR is easy method to predict
single model including multiple response variables as input data [46,50,83]. The SVMR
model can solve both regression and classification problems, as well as mapping low-
dimensional nonlinear input to high-dimensional output [49,51].

Table 9 shows the R2, RMSE, MAD, and Acc of the calibrating and validating datasets
of the SVMR models based on all three physical parameters and ten trace elements to
predict WAWQI and based on ten trace elements to predict HPI, MI and Cd of surface
water quality. Generally, the SVMR models provide a more accurate estimation of the
different WQIs in both calibrating and validating datasets. For example, R2 was 0.99 in the
calibrating datasets and from 0.97 to 0.99 in the validating ones. The RMSE of validation
model was 12.64, 12.65, 0.63 and 0.63 for WAWQI, HPI, MI and Cd, respectively. The
MAD of validation model was 11.16, 11.23, 0.56 and 0.56 for WAWQI, HPI, MI and Cd,
respectively. The Acc of the Cal. models varied from 0.995 to 0.999 and the Acc of the Val.
models varied from 0.966 to 0.998. Measured data plotted against the predicted WAWQ
and HPI values are in Figure 7; the plots for MI and Cd are in Figure 8.

Table 9. Performance criteria of SVMR models for four water quality indices.

Water Quality Indices (WQIs)
Performance Criteria

R2 RMSE MAD Acc

Calibration
models

WAWQI 0.99 *** 6.70 6.14 0.995
HPI 0.99 *** 6.18 5.60 0.997
MI 0.99 *** 0.48 0.42 0.999
Cd 0.99 *** 0.48 0.42 0.996

Validation
models

WAWQI 0.97 *** 12.64 11.16 0.998
HPI 0.99 *** 12.65 11.23 0.989
MI 0.99 *** 0.63 0.56 0.966
Cd 0.99 *** 0.63 0.56 0.970

R2, RMSE, MAD, and Acc indicate coefficient of determination, root mean square error, mean absolute deviations,
and accuracy of the model, respectively. Levels of significance: ***: p < 0.001.

From the calibrating to validating testing periods, the SVMR model demonstrated a
very minimal decline in performance quality (R2, RMSE, MAD, and Acc) for all four WQIs
(Table 9 and Figures 7 and 8). Figures 7 and 8 show matching and 1:1 scatter plot and of
the measured and predicted values of calibration and validation models of the WAWQI
and PIs of SVMR for water samples analysis. A very small discriminating insight emerges
in Figures 7 and 8, which displays the small difference between predicted and measured of
four indices values for the calibrating and validating phases. The equation slope of the Cal.
models varied from 0.957 to 1.045 and the equation slope of the Val. models varied from
0.851 to 1.045 (Figures 7 and 8).

To the best of our knowledge, the topic of applying machine learning (SVMR) to
predict the WAWQI, HPI, MI, and Cd using physiochemical factors has not been addressed.
Recently, multivariate regression models based on partial least squares regression (PLSR),
and stepwise multiple linear regressions (SMLR) can accurately predict water quality
indices [28]. For both the Cal. and Val. Models, Gad et al. [28] reported that PLSR based
on data for many trace elements was accurate to predict PLs and drinking water quality
index (DWQI) and R2 ranged from 0.98 to 1.00 for the Cal. models and 0.88 to 0.99 for
the Val. models. As well as PIs and the DWQI of the SMLR models, which included
major ions and heavy metals as input data, provided the best prediction for both indices
with R2 = 1. Principal component regression (PCR) and SVMR were found to be robust
models for predicting six irrigation water quality indices in the Cal. and Val. models by
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Elsayed et al. [46], with R2 ranging from 0.48 to 0.99. In addition, multiple linear regression
(MLR) including physicochemical parameters as input data were found by Chen and
Liu [84] to be useful in estimating water quality variables such as chlorophyll disk depth,
total phosphorus and, dissolved oxygen, with R2 values of 0.55, 0.31, and 0.64, respectively.
Finally, the findings of this research show that SVMR has the ability to predict WAWQI,
HPI, MI, and Cd in surface water.
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4. Conclusions

In this study, water quality indices (IWQs), multivariate statistical techniques such
as CA and PCA and machine learning as SVMR based on physicochemical were tested
to characterize the suitability of surface water quality for aquatic utilization in Qaroun
Lake, Egypt. According to the acquired analytical data, the surface water in the analyzed
area of Qaroun Lake was semi-saline water type, and the trace element contents as the
following trend of Al > Ba > Fe > Ni > Cu > Zn > Pb > Mn > Cr > Cd. The surface water was
heavily influenced by Al, moderately influenced by Cd and Cu, while slightly influenced
by Zn. Surface water quality of Qaroun Lake has deteriorated due to widespread use of
agricultural fertilizer and pesticides, industrial activity, and insufficient drainage networks.
As well as the WQIs, which are confirmed by multivariate statistical analysis, indicate
that industrial effluents and landfill leachates/municipal sewage were considering the
primary sources of trace element contamination in Qaroun Lake. So that, the use of effective
wastewater treatment procedures prior to disposal into the lake will contribute to greater
remediation of surface water quality deterioration in the investigated region. In calibration
and validation datasets, the SVMR models performed well in estimating the four WQIs
of surface water quality in Qaroun Lake, with the best R2 values, lowest RMSE and MAD
values, and maximum slope values. From the calibrating to validating testing periods, the
SVMR model demonstrated a very minimal decline in performance quality (R2, RMSE,
MAD, and Acc) for all four WQIs. Therefore, utilization of physicochemical parameters and
water quality indices supported by GIS techniques, multivariate modelling and machine
learning is a useful and practical method for determining the quality of surface water and
its progression.
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