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Abstract: Recent studies on seafloor mapping have presented different modelling methods for
the automatic classification of seafloor sediments. However, most of these studies have applied
these models to seafloor data with appropriate numbers of ground-truth samples and without
consideration of the imbalances in the ground-truth datasets. In this study, we aim to address these
issues by conducting class-specific predictions using ensemble modelling to map seafloor sediment
distributions with minimal ground-truth data combined with hydroacoustic datasets. The resulting
class-specific maps were then assembled into a sediment classification map, in which the most
probable class was assigned to the appropriate location. Our approach was able to predict sediment
classes without bias to the class with more ground-truth data and produced reliable seafloor sediment
distributions maps that can be used for seafloor monitoring. The methods presented can also be
used for other underwater exploration studies with minimal ground-truth data. Sediment shifts of a
heterogenous seafloor in the Sylt Outer Reef, German North Sea were also assessed to understand the
sediment dynamics in the marine conservation area during two different short timescales: 2016–2018
(17 months) and 2018–2019 (4 months). The analyses of the sediment shifts showed that the western
area of the Sylt Outer Reef experienced sediment fluctuations but the morphology of the bedform
features was relatively stable. The results provided information on the seafloor dynamics, which can
assist in the management of the marine conservation area.

Keywords: ensemble modelling; seafloor mapping; sediment change analysis; seafloor classification;
acoustic mapping; small sample size; ensemble map

1. Introduction

The need for accurate seafloor sediment maps is especially important to monitor areas
with heterogenous and dynamic seafloor, on which changes in sediment distribution can
alter the behavior and distribution of benthic species [1–9].

Advances in automated seafloor classification have been made in recent years. Seafloor
habitat mappers have utilized machine learning classification methods to improve the
identification of seafloor characteristics using hydroacoustic data, oceanographic variables,
and ground-truth samples [10–15]. Some of the most common modelling techniques are
classification tree analysis (CTA), generalized boosted models (GBM), artificial neural
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networks (ANN), and most prominently, random forest (RF) [11,16–20]. Comparisons of
different classification modelling techniques have been conducted but there is no consensus
in the literature on which model performs best [16,19,21,22]. Some studies attempted to
address this issue by combining multiple modelling algorithms (ensemble modelling) to
derive accurate spatial predictions of seafloor sediment [21]. The general idea behind
ensemble modelling is to simulate more than one set of initial conditions using different
modelling techniques and to derive a general prediction from all (or a part) of them [23–25].
Ensemble modelling avoids the selection of one single ‘best’ model and thus eliminates or
reduces model selection bias [25]. In fact, the ensemble modelling approach has already
been applied in the marine environment to map seabed sediments [21,22], submarine
geomorphology [26], and benthic habitats [27–29]. However, for automated seafloor sedi-
ment classification, it has been found that ensemble modelling does not yield significantly
different results as compared to using a single model [21,22]. Although, in these studies,
ensemble modelling was not applied in a class-specific approach (i.e., different sediment
classes were modelled at the same time).

In addition to ensemble modelling, ensemble mapping has been suggested as another
sediment mapping approach to alleviate the limitations of predicting sediment classes [30].
In ensemble mapping, predictions for each sediment class were generated using single or
multiple classification techniques and then the results were combined into a single map by
aggregating the modal classes. This method has been utilized to develop seafloor sediment
distribution maps as an alternative to the typical thematic mapping (i.e., predicting multiple
classes at the same time) [11,30]. However, in these studies each sediment class was
predicted using only a single model and not by ensemble modelling.

Most of the seafloor mapping studies that used classification models applied the
algorithms to data with appropriate numbers of ground-truth samples [11,15,17,30,31],
which raises the question of their applicability to studies with a smaller amount of data
(e.g., <50 of the total ground-truth dataset). Especially for wide-scale hydroacoustic seafloor
mapping, the time and budget for comprehensive ground-truth sampling is scarce [32].
Moreover, class imbalances in the ground-truth datasets are seldomly addressed during
sediment classification modelling. A dataset is imbalanced if it contains a small amount
of samples in one class as compared with the rest of the classes [33,34]. This can affect
the performance accuracy of the classification methods; a direct consequence is that the
minority classes cannot be well modeled and the final performance decays [35].

In this study, we propose an approach for addressing the limitation of an imbalanced
and minimal amount of available ground-truth datasets for automated seafloor sediment
classification using hydroacoustic data by conducting class-specific ensemble modelling
and ensemble mapping. Our main objective is to generate seafloor sediment distribution
maps of selected sites in the Sylt Outer Reef (German North Sea) and to examine spatiotem-
poral lateral shifts in sediment distribution. The selected sites are embedded within a large
continuous hydroacoustic dataset but only a limited amount of ground-truth data exist
locally. We assessed the applicability of our approach to different spatial scales, study areas,
and datasets. For this purpose, we (1) identify the important variables to predict different
sediment classes, (2) predict each sediment class using ensemble modelling, (3) collate
all class-specific predictions into one map through ensemble mapping, and (4) locate and
evaluate the changes based on the predicted seafloor sediment distribution maps.

2. Materials and Methods
2.1. Study Site

We selected two relatively well-investigated areas within the Special Area of Conser-
vation Sylt Outer Reef (SOR) (German North Sea). These areas, referred to hereafter as H3
and H5, are subsets representing the typical seafloor structure of the western Sylt Outer
Reef and will be used to test the performance of our modelling approach (Figure 1). The
areas have been the subject of the national seafloor mapping program SedAWZ, which
is coordinated by the Federal Maritime Hydrographic Agency (BSH) [36,37]. Mapping
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of the SOR was given importance because of the complexity of the seafloor habitats (i.e.,
boulder reefs, gravel patches, and sands) in the area, which stands out in the relatively
sand-dominated German North Sea. Semi- and fully-automated procedures for the detec-
tion of stones have been tested in area H3 [38] and sediment dynamics have been studied
in both areas [39,40].

The German Bight is a relatively shallow water body with a maximum depth of about
60 m and represents the south-eastern part of the North Sea. Typical depth-averaged
currents in the shallow part of the German Bight (depth < 20 m) are directed along the
coast in a counter-clockwise direction, driven by tidal residual circulation enhanced by
westerly and southwesterly winds (e.g., [41,42]).

Tidal dynamics, wave actions, wind-driven currents, and mixing determine the seabed
sediment dynamics. The geomorphology and surface sediments of the Sylt Outer Reef is
shaped by several glacial advances and retreats during the Pleistocene. Surface sediments
consist of heterogeneously distributed coarse-grained lag deposits, which are mostly
composed of siliciclastic material (reworked moraine deposits). The matrix grain size
varies from coarse sand to gravel, which can also be mixed with pebble to boulder-sized
particles. The coarse sediments are partly covered by Holocene marine fine- to medium-
grained sands [43]. Parametric sediment echosounder data revealed that the lag deposits
are submerged along the western boundary of the Sylt Outer Reef and form the eastern
shore of the Paleo Elbe Valley [44]. The surficial finer sediments are deposited by a series
of sedimentary infilling, which is driven by wind, waves, tides, and storm events during
the Holocene Transgression [44].

Study area H3 is approximately 4.7 km2, characterized by one large elongated sorted
bedform feature oriented towards the northwest –southeast direction. The bedform is
visible in the side-scan mosaics as a high backscatter area (dark pixels; gray values = 55–255)
and surrounded by low backscatter areas (light pixels; gray values = 0–54) (Figure 1, lower
left box). Water depth ranges from 28 to 36 m.
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Seafloor backscatter data was collected with an Edgetech 4200 MP side-scan sonar 
(SSS) (EdgeTech, West Wareham, MA, USA) at a frequency of 300 kHz and with a range 
of 75 m (H3) and 150 m (H5). The SSS was towed at a speed of 5 kn behind the vessel and 
was kept at 5–10 m above the seafloor. Surveys were designed to achieve a 10% overlap 
and 0.25 m along-track resolution of the SSS mosaics. Multibeam echosounder (MBES) 
data were simultaneously collected with a hull-mounted Kongsberg EM710 system 
(Kongsberg Maritime AS, Kongsberg, Norway). The MBES has two positioning units. The 
primary positioning system is from Trimble SP461 DGPS (0.5–3 m accuracy), while the 
secondary unit is DEBEG/Leica GPS (5–15 m accuracy). The very shallow mode with a 
frequency range of 65–106 kHz and pulse length of 0.2 msec, which is ideal for <100 m 
depth range [45], was used in our surveys. The default maximum reliable swath width 
was 90°. Side-scan data were processed using the QPS Fledermaus Geocoder Toolbox 
v.7.8.8 software (Quality Positioning Services BV, Zeist, the Netherlands) to reduce the 
artefacts in the raw data and produce SSS mosaics that were compatible for change anal-
yses (see [40] for details on the procedure). The process applied backscatter, beam pattern, 
and angle-varying gain corrections, and improved the spatial accuracy of the SSS mosaics 
(spatial accuracy: ±0.25 m). The SSS mosaics were gridded to 0.25 m resolution with deci-
bel(dB) values cropped to a ±3σ dB range and logarithmically mapped to an 8-bit scale. 
Post-processing of MBES data was conducted in QPS Qimera v2.0.1 software (Quality Po-
sitioning Services BV, Zeist, the Netherlands) to correct the raw MBES data from tidal 
effects and reject invalid soundings. The survey track distances, designed for SSS-survey, 
were too wide to achieve a swath overlap of the MBES data. Hence, the gaps in bathymet-
ric data (~30–100 m apart) were interpolated to generate a digital elevation model (DEM) 

Figure 1. The study sites are in the western side of the Sylt Outer Reef, a Special Area of Conservation.
The maps (left) show the two focus areas and the location of the sampling stations between 2016
and 2018.

H5 is a small area with a size of 1.8 km2, with two parallel bedform features with a
north–south orientation (Figure 1, upper left box). Side-scan backscatter intensity is high
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(gray values = 55–255) in the southwest but gradually decreases towards the northeast
(gray values = 0–54). The depth in H5 is slightly deeper than H3, with water depths ranging
between 36 and 42 m. High backscatter areas were observed in deeper areas, while low
backscatter regions dominated at shallow water depths [40].

2.2. Data Acquision and Processing

All data presented in this study were obtained during surveys performed between
2016 and 2018 in the two focus areas (Table 1). Focus area H3 was surveyed in October 2016
and March 2018 (17 months apart), while H5 was surveyed in November 2017 and March
2018 (4 months apart). Surveys were conducted with the German research vessel “Heincke”
(Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Germany).

Seafloor backscatter data was collected with an Edgetech 4200 MP side-scan sonar
(SSS) (EdgeTech, West Wareham, MA, USA) at a frequency of 300 kHz and with a range of
75 m (H3) and 150 m (H5). The SSS was towed at a speed of 5 kn behind the vessel and was
kept at 5–10 m above the seafloor. Surveys were designed to achieve a 10% overlap and
0.25 m along-track resolution of the SSS mosaics. Multibeam echosounder (MBES) data
were simultaneously collected with a hull-mounted Kongsberg EM710 system (Kongsberg
Maritime AS, Kongsberg, Norway). The MBES has two positioning units. The primary
positioning system is from Trimble SP461 DGPS (0.5–3 m accuracy), while the secondary
unit is DEBEG/Leica GPS (5–15 m accuracy). The very shallow mode with a frequency
range of 65–106 kHz and pulse length of 0.2 msec, which is ideal for <100 m depth range [45],
was used in our surveys. The default maximum reliable swath width was 90◦. Side-scan
data were processed using the QPS Fledermaus Geocoder Toolbox v.7.8.8 software (Quality
Positioning Services BV, Zeist, the Netherlands) to reduce the artefacts in the raw data
and produce SSS mosaics that were compatible for change analyses (see [40] for details
on the procedure). The process applied backscatter, beam pattern, and angle-varying
gain corrections, and improved the spatial accuracy of the SSS mosaics (spatial accuracy:
±0.25 m). The SSS mosaics were gridded to 0.25 m resolution with decibel(dB) values
cropped to a ±3σ dB range and logarithmically mapped to an 8-bit scale. Post-processing
of MBES data was conducted in QPS Qimera v2.0.1 software (Quality Positioning Services
BV, Zeist, the Netherlands) to correct the raw MBES data from tidal effects and reject invalid
soundings. The survey track distances, designed for SSS-survey, were too wide to achieve
a swath overlap of the MBES data. Hence, the gaps in bathymetric data (~30–100 m apart)
were interpolated to generate a digital elevation model (DEM) using the Topo-to-Raster
function of ArcGIS v.10.7.1(Environmental Systems Research Institute-ESRI, Redlands,
CA, USA), which is an interpolation method specifically designed for the creation of
hydrologically correct DEM.

Ground-truth information was collected from both underwater video and sediment
grain-size sampling (Table 1). Underwater videos were obtained using a Kongsberg
OE14-366 Color Zoom Camera (Kongsberg Maritime AS, Kongsberg, Norway; horizontal
Resolution 460/470 TV lines) and a GOPRO 3+ Black Edition (GoPro, Inc., San Mateo, CA,
USA; resolution: 1920 x 1440, 47.95 frames per s). The cameras were mounted on a robust
metal frame with a laser scale (spacing: 10 cm). The GPS system of the research vessel
was connected to the on-board control unit of the camera for geographic referencing. The
cameras were deployed underwater as close as possible to the seafloor surface for at least
five minutes and towed while the ship was drifting at a speed of less than 1 kn. Videos were
initially screened for image quality to omit blurred footage. The remaining videos were
then converted into individual images at two-second intervals using the scene video filter
of the VLC media player (VideoLan project, version 3.2.1.0). Subsequently, photos with a
clear image of the seafloor were selected manually and the coordinates were recorded.

Sediment samples were collected with a Van Veen grab sampler (HELCOM standard).
Sites for sampling were selected based on their backscatter characteristics in the SSS mosaic
of the study area, which was processed on-board upon acquisition. In the home laboratory,
carbonate and organic matter were removed from the sediment using chemical treatment
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according to the procedures described in [46] and analyzed using a CILASS 1180 L laser
particle sizer (LPS, range: 0.04–2500 µm). Particles larger than 2000 µm were removed by
sieving before measurement. Grainsize statistics were calculated in GRADISTAT v8.0© [47].

All samples including the grain size data were categorized according to Folk and
Ward’s [48] and BSH [36] sediment classification as: sand, coarse sediment (gravely sand,
sandy gravel, and gravel), and lag sediment (sediments of different grain size with gravel
and stones). The Level A category of the BSH sediment classification scheme, which
encompasses different sediment types, was used to classify our ground-truth samples
(Table 2). However, the backscatter properties of the sand class in the SSS mosaics of H3
and H5 are different. Sand was reflected as medium-high backscatter in H5 rather than the
low backscatter in H3 (Figures 2–4). Hence, we differentiate the two sand classes based on
their backscatter properties: sand low-backscatter (SLBS) and sand high-backscatter (SHBS).

In total, 106 ground-truth samples (both sediment and video stills) were obtained at
H3, while 76 samples were collected at H5 (Table 3). However, it must be noted that only a
subset of the total ground-truth samples from each study area was used in each model run
(Table 3).

Table 1. Date of offshore surveys conducted with the German research vessel “Heincke” and the
data collected.

Survey Code Date Survey Area Data Collected

HE 474 12–20 Oct 2016 H3 Backscatter, bathymetry,
sediment, and video samples

HE 501 15–28 Nov 2017 H5 Backscatter, bathymetry,
sediment, and video samples

HE 505 13–20 Mar 2018 H3 and H5 Backscatter, bathymetry,
sediment, and video samples

Table 2. BSH sediment classification scheme for seafloor mapping in German marine waters [36].
Level A category was used to classify our ground-truth samples.

Level A Level B Level C

Fine sediment (FSed)

not specified * not classified **
mud (M)

not classifiedsandy mud (sM)
muddy Sand (mS)

Sand (S) sand (S)
fine sand (fSa)
medium sand (mSa)
mixed sand (mxSa)
coarse sand (cSa)

Coarse sediment (CSed)

not specified not classified
gravelly sand (gS)
sand gravel (sG)
gravel (G)

Mixed sediments (MXSed)

not specified not classified
gravelly mud (gM)
gravelly muddy sand (gmS)
muddy sandy gravel (msG)
muddy gravel (mG)

Lag sediment (LagSed) not classified not classified

not specified not specified not specified
* Not specified = lack of information and/or knowledge for the exact classification. ** Not classified = cannot be
classified further in this level.
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Table 3. Summary of the ground-truth datasets that were used for the class-specific ensemble models. All ground-truth
data were georeferenced to the spatial resolution of the DGPS (±0.25 m) of the research vessel.

Study Area Sediment Class * Field
Survey Data Type Georeference

Quality
Number of

Samples

H3
Lag sediment

(LagSed)
2016 grab sample, videos, and photographs DGPS 14
2018 grab sample, videos, and photographs DGPS 58

Sand low
backscatter (SLBS)

2016 grab sample, videos, and photographs DGPS 13
2018 grab sample, videos, and photographs DGPS 21

H5

Coarse sediment
(Csed)

2017 grab sample, videos, and photographs DGPS 13
2018 grab sample, videos, and photographs DGPS 18

Sand high
backscatter (SHBS)

2017 grab sample, videos, and photographs DGPS 19
2018 grab sample, videos, and photographs DGPS 26

Total presence data 2016–2018 point data DGPS 182

* The two sand classes were classified based on their backscatter properties: sand low-backscatter (SLBS) and sand high-backscatter (SHBS)
(see Section 3.1).

2.3. Modelling Approach

The idea of our approach is to predict each sediment class separately using ensem-
ble modelling and then combine the resulting class-specific predictions into a sediment
distribution map. In this regard, different models were built for each sediment class per
study area. Additionally, we developed models for each year of the datasets to evaluate
the changes in sediment distribution. We modelled eight different datasets in total.

Ensemble Modelling

Ensemble models predict distributions of the response variable (i.e., sediment type)
by combining different modelling techniques to derive a general prediction.

Here, we utilized the ‘BIOMOD2′ package within the statistics software R (CRAN)
v.4.0.3 [24,49] to perform ensemble modelling. BIOMOD2 is the updated object-oriented
version of the BIOMOD package and has been developed for ecologists to predict species
distribution, but can also be used to model any binomial data (i.e., binary presence–absence
object) in function of any explanatory variables [24]. BIOMOD2 has been used to predict
macroalgal habitats [50], to map the distribution of medicinal plant species [51], and for
ecological niche modelling of basking sharks [52], but it has not been applied to predict
seafloor sediments.

Four machine-learning approaches that are commonly used in seafloor mapping were
selected from the BIOMOD2 package: classification tree analysis (CTA), artificial neural
networks (ANN), random forest (RF), and generalized boosted models (GBM). In CTA, a
decision tree is grown by repeatedly splitting the data and then the complex tree is pruned
back to the desired size using specific rules to reduce overfitting [53]. In ANN, models
were run several times and the mean prediction was used or the best fitting model was
selected [23]. It uses sets of adaptive weights to link the response to the predictors [25].
RF grows each tree with a randomized subset of predictors and several trees are grown as
the predictors are aggregated by averaging [53]. Lastly, GBM uses a forward stage-wise
procedure that iteratively fits simple trees to the training data, while gradually increasing
focus on poorly modelled observations [25]

2.4. Input Data for the Models
2.4.1. Sediment Data

The sediment and video sample data were converted into points and binary format
for the model. For example, locations in which sand was observed were assigned 1, while
areas in which there was no sand i.e., the location was categorized as pseudo-absence
or as another sediment class based on the sediment samples, were assigned 0. Pseudo-
absences are artificial absence data, which represent places in which the response variable
is supposed (but not confirmed) to be absent [54,55]. Pseudo-absences data was built for
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each sediment class because most of the models require both presence and absence data.
To generate pseudo-absences, we conducted three iterations using random strategy with a
selection of 200–500 pseudo-absences to prevent sampling bias [25].

2.4.2. Predictor Variables

Geophysical and textural features were extracted from processed MBES and SSS data,
and from oceanographic models that were developed for the German Bight. These features
were then used to predict the probability of occurrence of each sediment class. A total of
348 predictor variables were generated for this study.

Bathymetry, slope, northing, and easting were derived from our MBES data using the
Benthic Terrain Modeler v3.0 Toolbox of ArcGIS 10.7.1 [56]. Spatial data on near-bottom
(averaged over 1 m-layer above the seabed) tidal residual currents and tide-induced
maximum friction velocities were derived from the barotropic multi-layer setup for the
south-eastern North Sea. The FESOM-C coastal ocean model was used as a numerical tool.
It was validated through a series of experiments with a particular focus on the North Sea
area and its tidal dynamics in particular [57–59].

Textural features of the SSS mosaics were extracted using the gray-level co-occurrence
matrix package in R (GLCM v.1.6.5.) to identify the spatial characteristics of the mosaics.
GLCM evaluates the co-occurrence of pixel gray-level values at given offsets to enhance
image classification [60,61]. We applied gray levels of 32, window sizes of 9, and inter-pixel
distances of 5 and 10, which are the recommended settings for GLCM analysis using SSS
data [19]. Feature calculation was conducted on different orientations: 0◦, 45◦, 90◦, 135◦,
and the mean of all directions. A total of 80 statistical features were extracted for each
side-scan mosaic. The list of the calculated GLCM statistics and geophysical features used
in this study can be found in Supplementary Table S1.

2.4.3. Feature Selection

The combination of few presence data and many predictor variables can easily cause
model overfitting [62]. In addition, correlation between two or more predictor variables in
a statistical model can induce multi-collinearity [63]. Therefore, as we are working with a
small number of occurrences, the selection of predictor variables is an important step in
our approach. A general rule of thumb is the 1:10 ratio of presence data and predictors,
which means to include only two predictors for twenty presence data points [62,64].

Predictor variables were selected in an iterative process. Initially, the variance inflation
factor (VIF) was used to detect collinearity between predictors and to remove redundant
variables. The VIF is based on the square of the multiple correlation coefficient (R2)
resulting from regressing the predictor variable against all other predictor variables [63]. A
VIF greater than 10 indicates a collinearity problem [65]. Here, VIF analysis was performed
using the ‘vifstep’ function in the R package ‘usdm’ [66]. All predictor variables were
analyzed in a stepwise procedure, whereas variables with VIF of >5 were removed. Further
feature selection was conducted during model calibration based on the variable importance
score of the predictors. In the BIOMOD2 package, the variable importance function uses
a machine-learning approach to randomize one of the variables in each permutation and
calculate a correlation score between the standard prediction and the new prediction. The
higher the value, the more importance the predictor variable has on the model.

The variable importance score was calculated through 10 permutations and predictor
variables with a low mean variable importance value (≤0.1) were excluded from the
modelling. The variable importance score of the predictors that were used in our models
are presented in Supplementary Table S2.

We have set a maximum of five predictors to model each sediment class and avoid
model overfitting and multicollinearity.
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2.5. Model Calibration and Validation

The parameters and complexity of each model were modified depending on the
sediment class, number of predictor variables, and presence data.

Initially, single models (i.e., RF, CTA, ANN, and GBM models) were calibrated using
70% of the presence data and validated with the remaining 30%. The cross-validation
procedure was repeated 20 times for each model. During calibration, the settings and
complexity of the single models were repeatedly modified until the optimal TSS value
(≥0.7) was achieved. Model performance was assessed by the threshold-independent
receiver operator characteristics (ROC), threshold-dependent true skill statistics (TSS), and
Cohen’s Kappa [67]. TSS ranges from −1 to +1, where +1 indicates perfect agreement and
values of zero or less indicate a performance no better than random. This is different from
Kappa because TSS is not affected by the size of the validation set and prevalence. A TSS
score of 0.7 or higher indicates good or exceptionally good performance of the model [68].
ROC assesses the relationship between the false positive fraction (specificity) and the
sensitivity for a range of thresholds. Kappa indicates the best possible agreement [68].

Subsequently, only single models with a TSS value of ≥0.7 were included in the
ensemble model of each sediment class. TSS is used to select the “best” model, i.e., the
model providing greater accuracy on the test data for sediment class. Ensemble models
were calculated based on the committee average, mean, and coefficient of variation of the
model predictions (Table 4). Here, we used the committee-averaged ensemble models to
build the sediment distribution maps because it gives both the prediction and measure
of uncertainty. In committee averaging, each model decides whether the sediment class
is either present or absent, and then the sum is divided by the number of models. For
example, when the prediction is around 0.5, it means that half of the models predict 1 and
the other half predict 0 [24,25]. Moreover, to remove the bias across the selected models,
BIOMOD applied the same weight to all predictions to derive a consensus prediction. The
weights are calculated based on models’ predictive accuracy on test data [24].

As a result of multiple model parameters, a total of 240 models were built for each
sediment class (4 algorithms x 20 cross-validation runs x 3 pseudo-absences sampling).
A total of 960 single models and eight (8) ensemble models were generated for the two
study areas (Table 4). The R script used to perform the ensemble modelling can be found
in Supplementary Material 1.

Table 4. Summary of the total numbers of models that were built for each study area and sediment
class, and the number of models that were kept in the final ensemble model.

Study Area and Year Sediment Class * Total Number of
Models Built

Total Number of
Models Kept in the

Ensemble Model

H3

2016 LagSed 240 92
2016 SLBS 240 168

2018 LagSed 240 113
2018 SLBS 240 143

H5

2017 CSed 240 99
2017 SHBS 240 20
2018 CSed 240 56
2018 SHBS 240 39

* Abbreviations: LagSed, lag sediment; CSed, coarse sediment; SLBS, sand low-backscatter; and SHBS, sand
high-backscatter.
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2.6. Ensemble Mapping and Map Accuracy Assessment

The committee-averaged ensemble predictions for each sediment class were aggre-
gated to create an ensemble map. The procedure was conducted using the raster analysis
tools of ESRI ArcGIS 10.7.1 and is explained in Appendix A. In summary, we used the
maximum cell values of each sediment class as the parameter to combine them into one
map. The output is an ensemble map of the predictions where the most probable class was
assigned to the location.

The accuracy of the ensemble maps was calculated using the ‘confusionMatrix’ func-
tion of the ‘caret’ package in R [69]. A separate testing dataset, including 30% of the
presence data of each sediment class per year, was used to extract the predicted values
in the ensemble maps in the location of the testing data, after which a confusion table
was constructed to calculate statistics such as overall accuracy. The overall accuracy in-
dicates the percentage of areas that were correctly predicted. The Kappa coefficient, a
commonly-used accuracy index in seafloor mapping, was also calculated but was not used
to evaluate the accuracy of the ensemble maps, because recent findings suggest that it is an
inappropriate index to describe the classification accuracy of thematic maps obtained by
image classification [70].

2.7. Detecting Changes in Seafloor Sediment Maps

To determine if there are changes in the seafloor sediment maps of different years, we
applied the change detection method for habitat classification maps of Rattray et al. [71].
The method uses a transition matrix that is a conventional method of assessment of land
cover changes [72,73]. In this method, the two sediment classification maps from different
years were cross-tabulated to derive the statistics that describe temporal changes (i.e., net
change, persistence, etc.). In recent years, it has been adapted to detect changes in benthic
habitat maps and seafloor sediments [19,71,74].

The ‘from-to’ transition of the sediment classes, persistence, and amount of gain/loss
were calculated for H3 and H5. Gain refers to the increase in the area coverage of a given
class, while loss refers to the decrease. Persistence indicates no change in the sediment
class [71,72].

3. Results
3.1. Sediment Classes Based on Field Survey

According to grab samples and underwater videos, lag sediments (LagSed) and sand-1
(SLBS) were the sediment classes in H3 (Figures 2 and 3). Lag sediments were observed
in high-backscatter areas (dark pixels) and as clusters and patches of gravel, cobbles,
and boulders with attached biotic species (Figure 2). SLBS class areas were observed in
low backscatter zones (lighter pixels) and were seen as small oscillation ripples (~10 cm
wavelength) in the underwater videos (Figure 2).

We have identified two sediment classes from our survey data in H5, namely coarse
sediment (CSed) and sand-2 (SHBS) (Figures 2 and 4). CSed was observed in high-
backscatter areas in the SSS mosaic (Figure 4). In the underwater images, the CSed class
is characterized by bedforms with coarse sediments and shell fragments on the lee slope.
Conversely, the SHBS class is reflected as medium-high backscatter in the SSS mosaics
(Figure 4). When viewed at 25 cm-resolution of SSS data, the SHBS area shows presence
of ripples with approximately >20 cm of wavelength. This was subsequently verified in
the underwater images as bedforms with shell fragments and coarser sediments on the
troughs (Figure 2).
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3.2. Ensemble Model Performance

Of the 240 individual models that were created, only models with a TSS value of >0.70
were included in the final ensemble model, which was used to predict the sediment classes
(Table 4). The predictive power and accuracy of the ensemble models are excellent with
high statistical reliability (TSS > 0.8/ROC > 0.9) (Table 5). The agreement between the
response and explanatory variables was also good (Kappa= 0.4–0.9).

Table 5. Performance score of the committee-averaged ensemble models for H3 and H5 according to
their TSS, ROC and Kappa. Only models with TSS > 0.7 from the single model runs were included in
the ensemble model.

Study Area Date and Sediment Class TSS ROC Kappa

H3

2016 LagSed 0.91 0.98 0.63
2016 SHBS 0.90 0.98 0.66

2018 LagSed 0.91 0.99 0.90
2018 SHBS 0.85 0.98 0.72

H5

2017 CSed 0.82 0.95 0.61
2017 SLBS 0.90 0.97 0.49
2018 CSed 0.86 0.96 0.40
2018 SLBS 0.83 0.97 0.60

Based on the TSS and ROC scores of the four algorithms, GBM and RF performed the
best in predicting coarse sediments (LagSed and CSed), while ANN and GBM predicted
sand very well. CTA had the poorest performance in predicting sediment classes with a
small sample size and few predictor variables. However, despite the poor performance
of the CTA algorithm, it was still able to generate models with TSS scores of 0.7 that were
included in the final ensemble. We observed that using only two to three models, rather
than four, decreased the predictive accuracy of the ensemble model.

The importance of the predictor variables in predicting performance of the algorithms
is listed in Supplementary Table S2. Briefly, GLCM variables such as correlation, second
moment, homogeneity, and contrast highly influence the predictive performance of the
model. Side-scan mosaic, slope, and easting are also important predictor variables. Notably,
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we found that SSS mosaic and slope can predict sand areas very well, while the GLCM
features of the SSS mosaic can discriminate LagSed and CSed areas.

3.3. Seafloor Sediment Distribution in H3
3.3.1. Predicted Sediment Distribution in 2016 and 2018

The ensemble models have predicted around 41% of the total area of H3 (1.92 km2 of
4.71 km2) to be LagSed (TSS = 0.91, Table 5) and the remaining 59% of the area as Sand-1
(TSS = 0.85–0.90) based on the 2016 dataset (Figure 5, Table 5). LagSed was predicted with
high accuracy (TSS = 0.91, Table 5) within the sorted bedform area. SLBS surrounds the
bedform feature in the southwest and northeast (Figures 5 and 6).
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According to the 2018 dataset, the area of LagSed had slightly increased in 2018 from
41% to 49% of the total area (Figure 5). Sand dominated 51% of the area around the bedform
and some small patches of sand were located within it (Figure 5). The accuracy is reliable
except inside the bedform area, in which the predictions seem to be artefacts from the
side-scan mosaics that were used as input data in the models; hence, they were excluded in
the committee-averaged predictions (Figure 6).

3.3.2. Seafloor Sediment Distribution Maps of H3

Overlaying the class-specific predictions into one map based on the percentage of
their probability of occurrence have resulted in a statistically reliable seafloor sediment
map with an overall accuracy of 100% (Table 6, Figure 6). Both maps were able to classify
the high backscatter bedform as LagSed and its surrounding area as sand (Figure 6).
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Table 6. Statistical summary of the accuracy assessments of the ensemble maps.

Study Area Date Overall Accuracy

H3
2016 1.00
2018 1.00

H5
2017 0.94
2018 0.86

3.3.3. Changes in Seafloor Sediment Distribution Maps of H3

The transition analysis of the seafloor sediment maps in H3 showed that most of the
changes within the 17 months had happened around the boundary of lag sediment and the
sand-1 (SLBS) class area (Figure 6). Lag sediment class was more affected by the transition
than the surrounding sand areas that were mostly unchanged (persistence = 2.03 km2 of
4.71 km2) (Table 7).

Table 7. Summary of the gains and losses per sediment class. Values presented are calculated in respect to the total study
area (H3= 4.71 km2 and H5 = 1.81 km2).

H3 2016 2018 Gain Loss Persistence

LagSed 1.92 km2 (41%) 2.32 km2 (49 %) 0.76 km2 (16%) 0.37 km2 (8%) 1.55 km2 (33%)
SLBS 2.78 km2 (59%) 2.39 km2 (51%) 0.37 km2 (8%) 0.76 km2 (16%) 2.03 km2 (43%)

Total 1.36 km2 (24%) 1.36 km2 (24%) 3.58 km2 (76%)

H5 2017 2018
Csed 0.67 km2 (37%) 0.67 km2 (37.2%) 0.16 km2 (8.72%) 0.16 km2 (8.68 %) 0.52 km2 (29%)
SHBS 1.13 km2 (62.8%) 1.14 km2 (62.9%) 0.16 km2 (8.68 %) 0.16 km2 (8.72%) 0.98 km2 (54%)

Total 0.32 km2 (17.4%) 0.32 km2 (17.4%) 1.5 km2 (83%)
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Along the boundary of the two classes, we noticed that most sand class shifted into
the LagSed class, particularly in the northeast and southwest portion (Figure 7). Moreover,
most of the sand-to-LagSed transitions occurred within the bedform area. This transition
had caused a 16.3% increase in the area coverage of LagSed in 2018 and resulted in an
8% loss of the sand class area in the map (Table 7). However, this loss for sand class is
lower than its 43% area coverage, which had remained unchanged for two years.
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Overall, 2.26 km2 (48%) of the map had changed in 2018, where LagSed was the most
affected class.

3.4. Seafloor Sediment Distribution in H5
3.4.1. Predicted Sediment Distribution in 2017 and 2018

The two parallel bedform features in H5 were predicted as the CSed class, while the
surrounding areas were classified as Sand-2 (SHBS). Some areas outside the features were
also predicted as CSed especially in the 2018 map but the accuracy of this prediction is low
(Figure 7).

In 2017, the two features have been predicted as CSed with good accuracy (TSS = 0.82,
Table 5). However, some areas in the northeast of the bedforms were not classified
(Figure 7). Around 63% of the total area of H5 (1.81 km2) was predicted as SHBS and
only 37% was predicted as CSed. The prediction of SHBS in 2017 is particularly good
(TSS = 0.90) (Table 5, Figure 7).

In 2018, some areas in the northeastern portion of H5 were predicted as CSed
(TSS = 0.86, Table 5) but with higher uncertainty (Figure 7). The prediction has also more
visible noise or artefacts compared to the 2017 modelled data. The prediction of SHBS in
2018 has lower probability than in 2017 (TSS = 0.83) (Figure 7). In both maps, the CSed
class is well-defined in the southwest but seems to fade towards the northeast.

3.4.2. Seafloor Sediment Distribution Map of H5

The ensemble maps of H5 have both received a comparable and good statistical score
(Figure 8 and Table 6). Despite the artefacts in the original data (Figure 4), the 2017 map
still obtained a 94% overall accuracy (Table 6, Figure 8). The 2018 ensemble map has a
lower but still good accuracy of 86%, which indicates that the observed data (ground-truth)
were classified correctly (Table 6, Figure 8).
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Although, interpretation of the map must be done with care because of the artefacts in
the raw data. The final ensemble maps (Figure 8) can be used to guide the interpretation
if map accuracy is the main concern. These maps were generated using the committee-
averaged ensemble models, of which the areas with high uncertainty were excluded in the
final prediction.

3.4.3. Changes in Seafloor Sediment Distribution Maps of H5

By 2018, 35% (0.63 km2) of the 2017 sediment distribution map had changed within
four months. These changes were observed along the boundary of the classes and in the
north-northwest portion of H5 (Figure 8). However, both sediment classes have gained and
lost almost the same amount (Table 7). For example, CSed gained 8.72% of area coverage
in 2018 from SHBS but also lost 8.68% of its area to SHBS in the same year.

We observed that the CSed-to-Sand class transition mainly occurred in the north-
northeast facing side of the bedforms and the CSed class gained more area in the northwest
(Figure 8).

Overall, the CSed class transitioned the most (29%) and ~54% (0.98 km2) of the SHBS
class area remained the same.

4. Discussion
4.1. Predicting Seafloor Sediments with Limited Ground-Truth Samples

The accuracy of the predicted seafloor sediments in a heterogenous area such as
the Sylt Outer Reef can be influenced by several factors that may negatively influence
the results of the modelled sediment distribution maps [30]. These factors include (1)
an inadequacy of the selected classification system, (2) a low discriminatory power of
the predictors, or (3) a mismatch between the response (i.e., grab sample) and predictor
variables (e.g., backscatter mosaic). In addition, an unequal number of samples between
sediment classes may result in under or overpredictions in the modelling results [52].
Furthermore, discrepancies between different techniques can be very large and some
models may be more sensitive to sampling bias, which might reduce model transferability
and selection [24,62,75]. These issues can be alleviated by creating an ensemble map that
aggregates individual predictions into one map and by adopting a class-specific modelling
approach that models the spatial distribution of grain-size classes without bias to the
dominant class [11,30,34]. Moreover, ensemble modelling can compensate for unwanted
inter-model variability and model selection bias by aggregating the results of multiple
models into one general prediction [24,25].

The probability of occurrence of different sediment classes was modelled for two
different locations and different temporal scales. In this regard, we first assumed that we
would produce highly variable results but we achieved comparable outputs. For example,
GBM and RF models were able to predict coarse sediments (i.e., LagSed and CSed) in both



Water 2021, 13, 2254 16 of 23

H3 and H5. Moreover, there have been similarities in the important variables that predict
specific sediment classes (Supplementary Table S1). In this regard, we have tested the
potential of our approach to different study areas, different spatial scales (larger or smaller
scale), and for repeated surveys.

However, the most important factor that influenced our results is the quality of input
data. Environmental predictor variables influence the probability of occurrence [25]. As
we have seen, the nadir artefacts from the SSS mosaics were reflected in the probability of
occurrence maps (Figures 5 and 7). This implies that the quality of the data is important
when performing our methodological approach.

In addition, we observed that the spatial distribution of the ground-truth samples
highly influenced the prediction. This issue was addressed by generating three sets of
randomly selected pseudo-absences, which substantially improved the model predictions.
In species distribution modelling, pseudo-absences are meant to be compared with the
presence data and help to differentiate the conditions under which species can occur or not.
Therefore, selecting the appropriate number and strategy of generating pseudo-absences
may optimize model performance [55].

In this regard, survey design is important before collecting field data to ensure that all
samples for each sediment class are well-distributed (spatially). The outputs of this study
can be utilized for this purpose. For example, the probability of occurrence and uncertainty
maps can guide scientists or seafloor mappers to guide the sampling campaign and thus
make the survey more precise and time efficient.

Overall, predicting multiple sediment classes one-by-one using ensemble models has
improved the accuracy of our predictions. The class-specific modelling approach (i.e.,
classifying the classes one-by-one) has improved the predictions because it lessens the bias
to the dominant class and reduces the effect of data imbalance. This approach differentiates
our study from other studies on sediment mapping, which applied ensemble modelling
and supervised classification methods but modelled multiple sediment classes at the same
time [11–13,17,21,30,31].

4.2. Seafloor Sediment Distribution in the Sylt Outer Reef from 2016 to 2018

Sediment distribution is an important parameter for the understanding of benthic
habitats, the management of maritime economic activities, and the monitoring of impacts of
human activities on the seafloor [9,76,77]. We predicted and mapped the possible seafloor
sediment types for two areas in the Sylt Outer Reef Special Area of Conservation.

In H3, the bedform feature was predicted to be composed of lag sediments and
surrounded by sand. Among the two sediment classes, the LagSed class was more affected
by sediment shifts that occurred within the bedform area. We observed that more of the
LagSed class appeared especially nearby the boundary of the bedform, while more of
the sand class was seen inside the bedform after two years. Boundaries of the bedforms
were observed to be the most vulnerable to sediment shifts [39,40,78–80]. In contrast, the
surrounding sandy areas seemed to be stable over the period of observation.

The sediment class in H5 was more difficult to predict than in H3 because of the
mismatch of the ground-truth data with the predictor variables (acoustic data). For example,
areas that were interpreted to be sand based on grain-size analysis appeared as areas with
medium-high backscatter strength (dark pixels), rather than showing low backscatter
strength (light pixels) as for the sandy area in H3 (Figure 3). The stronger backscatter
response of the sandy area can be explained by the more varied morphology and sediment
composition of H5, as observed in the underwater videos (Figure 2). In some parts of the
sandy areas of H5, the seafloor was characterized by the presence of small wave ripples
(>20 cm wavelength) and was partly covered by coarse sediments (Figure 2). Moving a
few meters away from the wave ripples, the seafloor became dominated by small ripples
and finer sand fractions. These variations in seafloor roughness influenced the backscatter
intensity that was recorded by the sonar. Rough and hard surfaces return high backscatter
intensity, while smooth and soft surfaces send low backscatter intensity to the sonar [81,82].
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As a result, the sandy areas of H5 appeared as patches of medium-high backscatter in
the SSS mosaics, in contrast to the low backscatter response of the sandy areas in the H3
mosaics (Figure 2).

As seen in H3, shifts in sediment class occurred along the boundaries of the two
bedforms in H5. Although the quantity of transition between the two classes are almost
the same, it does not imply that changes did not occur but rather signifies that the intensity
of changes are low. Shifts from the CSed class to the SHBS class occurred at the northeast-
facing side of the bedform features, while Sand-to-CSed transitions were observed in the
north-northwest area of H5.

In summary, sediment shifts were observed along the boundaries of the bedform
features but the morphology of the bedforms were relatively stable: no additional bedforms
or drastic changes were documented. These findings are in accordance with our previous
study [40] and with other studies on changes in sediment distribution in the North Sea,
in which the gravel/coarse substrates and fine substrates fluctuated but overall were
stable [39,74,83]. In our previous study, we monitored the boundary lines to detect sediment
shifts, but here we looked at the changes in the modelled sediment distribution maps. The
results of both studies are comparable, i.e., the sediment shifts were mainly observed in the
northeast and southwest direction of the bedforms. The spatial sediment transitions that
we detected in this study may be attributed to the fluctuations of the sandy materials along
the boundary. The deposition or erosion (winnowing) of mobile sand fractions covers or
uncovers the coarser sediments underneath, which is largely driven by tidal currents and
storm events [39,40,80]. The mobilization of sandy materials along the boundary caused
the oscillation of the boundaries rather than moving the boundaries in one direction [40].

4.3. Sediment Transitions and Their Implications

Monitoring changes in sediment distribution maps is especially important in areas
with heterogenous seafloor cover, for which tidal currents, wave actions, and wind-driven
flows determine the seabed dynamics and may induce drastic changes in the sediment
distribution pattern [30,74,84]. Moreover, sediment transition can be used to predict species
responses to habitat change [1,3,4,85]. Changes in sediment composition along sediment
gradients/boundaries can alter the behavior and distribution of benthic species. For
example, the loss of coarse sediments forced benthic invertebrate communities to leave
their habitat and move to fine sediments, which consequently changed the community
compositions (taxa presence and absence) [5]. In addition, changes in detrital resources
(i.e., coarse sediments), which serves as a refuge in soft sediment systems, causes decline in
macroinvertebrate species [6]. Therefore, the monitoring of changes in seafloor sediments
is vital for the conservation of benthic biodiversity and detrital resources, especially for
important marine protected areas such as the Sylt Outer Reef.

Accurate prediction of sediment class is necessary to be able to detect the actual seabed
change in a highly complex area [30,74,84]. In this regard, sediment distribution maps
need to be updated to develop and implement appropriate strategies to manage maritime
activities and marine conservation areas. However, the question concerns how often we
must update these maps.

In this study, the sediment transitions imply that sediment dynamics in the western
part of the Sylt Outer Reef are highly active and can cause conceivable changes in the
sediment distribution maps in a short period of time. For example, approximately 48% of
the sediment distribution map of H3 appears to have changed after two years, while 35%
of the maps in H5 experienced changes in just four months.

Therefore, in areas of the Sylt Outer Reef with seafloor features such as in H3 and
H5, seafloor monitoring can be conducted at approximately no more than 5 years because
by then, the sediment distribution may have changed substantially at the boundaries of
the features. This approximation is based on our findings for the two sites in the Sylt
Outer Reef, in which we observed that this survey interval is necessary to provide reliable
recommendations for monitoring purposes. Moreover, to find out whether the observed
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changes have happened constantly between the studied time periods or because of an
extreme event (e.g., severe storms), additional surveys ideally before and after a storm
are necessary. The surveys can verify the actual cause of these changes and evaluate the
impact of storms to the sediment distribution pattern.

Seafloor dynamics are likely to be as variable as tidal currents or ocean climate patterns
and thus a regular interval (i.e., 5 years) may miss important dynamics. However, monitor-
ing a large area can be time consuming and costly. In this regard, repeated monitoring of
subsets of areas, as in this study, can be an alternative to evaluate seafloor changes until it
becomes evident that a new “full” survey is necessary. Moreover, as coarse sediments (i.e.,
LagSed and CSed) in the German Bight are important habitats for epibenthic assemblages
and sediment transitions can have adverse effects in their ecosystem, mapping these areas
is important for habitat monitoring and conservation efforts [38,85].

4.4. Outlook

Information on sediment distribution was found to be a very good predictor of benthic
species densities and distribution [8,50,86,87]. Hence, our modelled prediction of sediment
distribution can be used for marine conservation studies as input for species distribution
modelling [1,50,87] and for monitoring of the impacts of human activities [2,9,76,88].

Moreover, the seafloor sediment maps that were generated in this study can provide
information for future seafloor mapping efforts. The maps can be used by seafloor mappers
in planning their survey and to design a systematic ground-truth sampling approach,
which may improve the accuracy of the seafloor sediment maps in the future.

In this study, we utilized bathymetric derivatives from BTM, hydrodynamic models,
and textural features from SSS backscatter to predict sediment distribution. Another
approach that can be explored in the future is to incorporate other predictor variables
to model sediment distribution from MBES data, such as spectral features from dual-
frequency MBES [89], marine geomorphometry features [90], and features from angular
response analysis of MBES backscatter [91]. Moreover, the methods performed in this
study can be tested to model multiple sediment classes (i.e., more than two) and to test its
applicability to a larger spatial scale.

Furthermore, the methodological approach that we presented can also be applied to
other types of underwater exploration studies in which ground-truth data is scarce, such as
reef mapping [12], deep-sea sediment mapping [15], habitat modelling in remote areas [50],
and to detect sunken structures for underwater archaeology [92]. Hence, the methods
in this study can be adapted not only by geologists but also by biologists, ecologists,
archaeologists, and environmental scientists.

5. Conclusions

In this study, we tested the capacity of class-specific ensemble modelling using
BIOMOD2 as a reliable and reproducible approach for seafloor sediment mapping and
monitoring. Unlike the usual thematic mapping, we conducted class-specific predictions
using BIOMOD2 to classify areas with limited or lacking ground-truth data. We demon-
strated how our approach can address the limitation of a minimal amount of available
ground-truth data by reducing the effect of the data imbalance and by combining multiple
model predictions. We have shown that by aggregating bits of information, we can generate
reliable information on seafloor integrity. Moreover, the methodological approach and
results that we presented can be used as a tool for seafloor mapping and monitoring, and
provides information on the seafloor sediment dynamics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13162254/s1: Supplementary Table S1; and Supplementary Table S2. Supplementary
Material 1(R Script) is available online at: https://github.com/galvezDS/galvezDS_seafloorSed_
ensembleModelling.git (accessed on 10 August 2021).
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Appendix A

Steps of Ensemble Mapping
The procedure was conducted using the raster analysis tools of ESRI ArcGIS 10.7.

Steps to assemble each class-specific prediction into a single map were as follows:

1. The raster for each sediment class was converted into integer format to allow raster
analysis.

2. Majority filter using the closest eight cells as a filter was run to join the small cells
with the majority cells to reduce the noise in the raster.

3. Using the cell statistics function of ArcGIS, the maximum value (highest probability %)
of the input rasters (e.g., raster for all sediment classes in H3 in 2016) was computed.
The output is the overlaid maximum scores of the sediment classes in one raster map
(OverallMax).

4. After generating the OverallMax, each original raster (i.e., majority filtered) was
subtracted from the OverallMax raster, where 0 would be the cells with the max
value in each. Two new rasters were created and called hereafter as ClassMax1 and
ClassMax2.

5. For each of the ClassMax rasters, the 0 values to 1 for ClassMax1 and 2 for ClassMax2
were set using the Con function in a raster calculator (e.g., Con (ClassMax1 = 0,1,0)).
The result would be two new raster files with reclassified cell values: ClassCon 1
with the cells of maximum scores assigned as 1 and ClassCon2 with maximum scores
assigned as 2. For example, the max scores of LagSed were assigned 1 and max scores
of sand were assigned 2.

6. Finally, the two ClassCon rasters were mosaicked to a new raster, where the cell value
of the overlapping areas are the maximum value of the overlapping cells. The output
is the ensemble map of the predictions of the two sediment classes, for which the
most probable class was assigned to the location.

References
1. Rousi, H.; Peltonen, H.; Mattila, J.; Bäck, S.; Bonsdorff, E. Impacts of Physical Environmental Characteristics on the Distribution

of Benthic Fauna in the Northern Baltic Sea. Boreal Environ. Res. 2011, 16, 521–523.
2. Rumohr, H. The Impact of Trawl Fishery on the Epifauna of the Southern North Sea. ICES J. Mar. Sci. 2000, 57, 1389–1394.

[CrossRef]
3. Thrush, S.; Hewitt, J.; Norkko, A.; Nicholls, P.; Funnell, G.; Ellis, J. Habitat Change in Estuaries: Predicting Broad-Scale Responses

of Intertidal Macrofauna to Sediment Mud Content. Mar. Ecol. Prog. Ser. 2003, 263, 101–112. [CrossRef]
4. Dernie, K.M.; Kaiser, M.J.; Richardson, E.A.; Warwick, R.M. Recovery of Soft Sediment Communities and Habitats Following

Physical Disturbance. J. Exp. Mar. Biol. Ecol. 2003, 285–286, 415–434. [CrossRef]
5. Burdon, F.J.; McIntosh, A.R.; Harding, J.S. Habitat Loss Drives Threshold Response of Benthic Invertebrate Communities to

Deposited Sediment in Agricultural Streams. Ecol. Appl. 2013, 23, 1036–1047. [CrossRef]
6. Bishop, M.J.; Coleman, M.A.; Kelaher, B.P. Cross-Habitat Impacts of Species Decline: Response of Estuarine Sediment Communi-

ties to Changing Detrital Resources. Oecologia 2010, 163, 517–525. [CrossRef]

http://doi.org/10.1006/jmsc.2000.0930
http://doi.org/10.3354/meps263101
http://doi.org/10.1016/S0022-0981(02)00541-5
http://doi.org/10.1890/12-1190.1
http://doi.org/10.1007/s00442-009-1555-y


Water 2021, 13, 2254 20 of 23

7. Heery, E.C.; Bishop, M.J.; Critchley, L.P.; Bugnot, A.B.; Airoldi, L.; Mayer-Pinto, M.; Sheehan, E.V.; Coleman, R.A.; Loke, L.H.L.;
Johnston, E.L.; et al. Identifying the Consequences of Ocean Sprawl for Sedimentary Habitats. J. Exp. Mar. Biol. Ecol. 2017, 492,
31–48. [CrossRef]

8. Yates, M.G.; Goss-Custard, J.D.; McGrorty, S.; Lakhani, K.H.; Durell, S.E.A.L.V.D.; Clarke, R.T.; Rispin, W.E.; Moy, I.; Yates, T.;
Plant, R.A.; et al. Sediment Characteristics, Invertebrate Densities and Shorebird Densities on the Inner Banks of the Wash. J.
Appl. Ecol. 1993, 30, 599–614. [CrossRef]

9. Rijnsdorp, A.D.; Hiddink, J.G.; van Denderen, P.D.; Hintzen, N.T.; Eigaard, O.R.; Valanko, S.; Bastardie, F.; Bolam, S.G.; Boulcott,
P.; Egekvist, J.; et al. Different Bottom Trawl Fisheries Have a Differential Impact on the Status of the North Sea Seafloor Habitats.
ICES J. Mar. Sci. 2020, 77, 1772–1786. [CrossRef]

10. Ierodiaconou, D.; Schimel, A.C.G.; Kennedy, D.; Monk, J.; Gaylard, G.; Young, M.; Diesing, M.; Rattray, A. Combining Pixel and
Object Based Image Analysis of Ultra-High Resolution Multibeam Bathymetry and Backscatter for Habitat Mapping in Shallow
Marine Waters. Mar. Geophys. Res. 2018, 39, 271–288. [CrossRef]

11. Misiuk, B.; Diesing, M.; Aitken, A.; Brown, C.J.; Edinger, E.N.; Bell, T. A Spatially Explicit Comparison of Quantitative and
Categorical Modelling Approaches for Mapping Seabed Sediments Using Random Forest. Geosciences 2019, 9, 254. [CrossRef]

12. Menandro, P.S.; Bastos, A.C.; Boni, G.; Ferreira, L.C.; Vieira, F.V.; Lavagnino, A.C.; Moura, R.L.; Diesing, M. Reef Mapping Using
Different Seabed Automatic Classification Tools. Geosciences 2020, 10, 72. [CrossRef]

13. Brown, L.S.; Green, S.L.; Stewart, H.A.; Diesing, M.; Downie, A.-L.; Cooper, R.; Lillis, H. Semi-Automated Mapping of Rock in the
Irish Sea, Minches, Western Scotland and Scottish Continental Shelf ; JNCC: Peterborough, UK, 2017; p. 33.

14. Diesing, M.; Green, S.L.; Stephens, D.; Lark, R.M.; Stewart, H.A.; Dove, D. Mapping Seabed Sediments: Comparison of Manual,
Geostatistical, Object-Based Image Analysis and Machine Learning Approaches. Cont. Shelf Res. 2014, 84, 107–119. [CrossRef]

15. Diesing, M. Deep-Sea Sediments of the Global Ocean. Earth Syst. Sci. Data 2020, 12, 3367–3381. [CrossRef]
16. Pillay, T.; Cawthra, H.C.; Lombard, A.T. Characterisation of Seafloor Substrate Using Advanced Processing of Multibeam

Bathymetry, Backscatter, and Sidescan Sonar in Table Bay, South Africa. Mar. Geol. 2020, 429, 106332. [CrossRef]
17. Mitchell, P.J.; Aldridge, J.; Diesing, M. Legacy Data: How Decades of Seabed Sampling Can Produce Robust Predictions and

Versatile Products. Geosciences 2019, 9, 182. [CrossRef]
18. Kågesten, G.; Fiorentino, D.; Baumgartner, F.; Zillén, L. How Do Continuous High-Resolution Models of Patchy Seabed Habitats

Enhance Classification Schemes? Geosciences 2019, 9, 237. [CrossRef]
19. Zelada Leon, A.; Huvenne, V.A.I.; Benoist, N.M.A.; Ferguson, M.; Bett, B.J.; Wynn, R.B. Assessing the Repeatability of Automated

Seafloor Classification Algorithms, with Application in Marine Protected Area Monitoring. Remote Sens. 2020, 12, 1572. [CrossRef]
20. Janowski, L.; Madricardo, F.; Fogarin, S.; Kruss, A.; Molinaroli, E.; Kubowicz-Grajewska, A.; Tegowski, J. Spatial and Temporal

Changes of Tidal Inlet Using Object-Based Image Analysis of Multibeam Echosounder Measurements: A Case from the Lagoon
of Venice, Italy. Remote Sens. 2020, 12, 2117. [CrossRef]

21. Diesing, M.; Stephens, D. A Multi-Model Ensemble Approach to Seabed Mapping. J. Sea Res. 2015, 100, 62–69. [CrossRef]
22. Turner, J.A.; Babcock, R.C.; Hovey, R.; Kendrick, G.A. Can Single Classifiers Be as Useful as Model Ensembles to Produce Benthic

Seabed Substratum Maps? Estuar. Coast. Shelf Sci. 2018, 204, 149–163. [CrossRef]
23. Araujo, M.; New, M. Ensemble Forecasting of Species Distributions. Trends Ecol. Evol. 2007, 22, 42–47. [CrossRef]
24. Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD-A Platform for Ensemble Forecasting of Species Distributions.

Ecography 2009, 32, 369–373. [CrossRef]
25. Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models: With Applications in R; Cambridge

University Press: Cambridge, UK, 2017; ISBN 978-1-139-02827-1.
26. Pearman, T.R.R.; Robert, K.; Callaway, A.; Hall, R.; Lo Iacono, C.; Huvenne, V.A.I. Improving the Predictive Capability of Benthic

Species Distribution Models by Incorporating Oceanographic Data–Towards Holistic Ecological Modelling of a Submarine
Canyon. Prog. Oceanogr. 2020, 184, 102338. [CrossRef]

27. Georgian, S.E.; Anderson, O.F.; Rowden, A.A. Ensemble Habitat Suitability Modeling of Vulnerable Marine Ecosystem Indicator
Taxa to Inform Deep-Sea Fisheries Management in the South Pacific Ocean. Fish. Res. 2019, 211, 256–274. [CrossRef]

28. Robert, K.; Jones, D.O.B.; Roberts, J.M.; Huvenne, V.A.I. Improving Predictive Mapping of Deep-Water Habitats: Considering
Multiple Model Outputs and Ensemble Techniques. Deep Sea Res. Part. I: Oceanogr. Res. Pap. 2016, 113, 80–89. [CrossRef]

29. Rahman, A. Benthic Habitat Mapping from Seabed Images Using Ensemble of Color, Texture, and Edge Features. Int. J. Comput.
Intell. Syst. 2013, 6, 1072–1081. [CrossRef]

30. Diesing, M.; Mitchell, P.J.; O’Keeffe, E.; Gavazzi, G.O.A.M.; Bas, T.L. Limitations of Predicting Substrate Classes on a Sedimentary
Complex but Morphologically Simple Seabed. Remote Sens. 2020, 12, 3398. [CrossRef]

31. Downie, A.L.; Dove, D.; Westhead, K.; Diesing, M.; Green, S.L.; Cooper, R. Semi-Automated Mapping of Rock in the North Sea; JNCC
Report No. 592.; Joint Nature Conservation Committee: Peterborough, UK, 2016.

32. Diesing, M.; Mitchell, P.; Stephens, D. Image-Based Seabed Classification: What Can We Learn from Terrestrial Remote Sensing?
ICES J. Mar. Sci. 2016, 73, 2425–2441. [CrossRef]

33. Zou, Q.; Xie, S.; Lin, Z.; Wu, M.; Ju, Y. Finding the Best Classification Threshold in Imbalanced Classification. Big Data Res. 2016,
5, 2–8. [CrossRef]

34. Wang, C.Y.; Hu, L.L.; Guo, M.Z.; Liu, X.Y.; Zou, Q. ImDC: An Ensemble Learning Method for Imbalanced Classification with
MiRNA Data. Genet. Mol. Res. 2015, 14, 123–133. [CrossRef]

http://doi.org/10.1016/j.jembe.2017.01.020
http://doi.org/10.2307/2404240
http://doi.org/10.1093/icesjms/fsaa050
http://doi.org/10.1007/s11001-017-9338-z
http://doi.org/10.3390/geosciences9060254
http://doi.org/10.3390/geosciences10020072
http://doi.org/10.1016/j.csr.2014.05.004
http://doi.org/10.5194/essd-12-3367-2020
http://doi.org/10.1016/j.margeo.2020.106332
http://doi.org/10.3390/geosciences9040182
http://doi.org/10.3390/geosciences9050237
http://doi.org/10.3390/rs12101572
http://doi.org/10.3390/rs12132117
http://doi.org/10.1016/j.seares.2014.10.013
http://doi.org/10.1016/j.ecss.2018.02.028
http://doi.org/10.1016/j.tree.2006.09.010
http://doi.org/10.1111/j.1600-0587.2008.05742.x
http://doi.org/10.1016/j.pocean.2020.102338
http://doi.org/10.1016/j.fishres.2018.11.020
http://doi.org/10.1016/j.dsr.2016.04.008
http://doi.org/10.1080/18756891.2013.816055
http://doi.org/10.3390/rs12203398
http://doi.org/10.1093/icesjms/fsw118
http://doi.org/10.1016/j.bdr.2015.12.001
http://doi.org/10.4238/2015.January.15.15


Water 2021, 13, 2254 21 of 23

35. López, V.; Fernández, A.; Moreno-Torres, J.G.; Herrera, F. Analysis of Preprocessing vs. Cost-Sensitive Learning for Imbalanced
Classification. Open Problems on Intrinsic Data Characteristics. Expert Syst. Appl. 2012, 39, 6585–6608. [CrossRef]

36. BSH. Guideline for Seafloor Mapping in German Marine Waters Using High-Resolution Sonars; BSH No. 7201; Federal Maritime and
Hydrographic Agency (BSH): Hamburg, Germany; Rostock, Germany, 2016; p. 147.

37. Papenmeier, S.; Hass, H.C.; Propp, C.; Thiesen, M.; Zeiler, M. Map of Sediment Distribution in the German EEZ (1:10.000). 2019.
Available online: www.geoseaportal.de (accessed on 10 April 2021).

38. Michaelis, R.; Hass, H.C.; Mielck, F.; Papenmeier, S.; Sander, L.; Ebbe, B.; Gutow, L.; Wiltshire, K.H. Hard-Substrate Habitats in
the German Bight (South-Eastern North Sea) Observed Using Drift Videos. J. Sea Res. 2019, 144, 78–84. [CrossRef]

39. Diesing, M.; Kubicki, A.; Winter, C.; Schwarzer, K. Decadal Scale Stability of Sorted Bedforms, German Bight, Southeastern North
Sea. Cont. Shelf Res. 2006, 26, 902–916. [CrossRef]

40. Galvez, D.S.; Papenmeier, S.; Hass, H.C.; Bartholomae, A.; Fofonova, V.; Wiltshire, K.H. Detecting Shifts of Submarine Sediment
Boundaries Using Side-Scan Mosaics and GIS Analyses. Mar. Geol. 2020, 430, 106343. [CrossRef]

41. Port, A.; Gurgel, K.-W.; Staneva, J.; Schulz-Stellenfleth, J.; Stanev, E.V. Tidal and Wind-Driven Surface Currents in the German
Bight: HFR Observations versus Model Simulations. Ocean. Dyn. 2011, 61, 1567–1585. [CrossRef]

42. Callies, U.; Gaslikova, L.; Kapitza, H.; Scharfe, M. German Bight Residual Current Variability on a Daily Basis: Principal
Components of Multi-Decadal Barotropic Simulations. Geo-Mar. Lett 2017, 37, 151–162. [CrossRef]

43. Papenmeier, S.; Hass, H. Detection of Stones in Marine Habitats Combining Simultaneous Hydroacoustic Surveys. Geosciences
2018, 8, 279. [CrossRef]

44. Papenmeier, S.; Hass, H.C. Revisiting the Paleo Elbe Valley: Reconstruction of the Holocene, Sedimentary Development on Basis
of High-Resolution Grain Size Data and Shallow Seismics. Geosciences 2020, 10, 505. [CrossRef]

45. Kongsberg Maritime, A. Instruction Manual EM Series Multibeam Echo Sounders.Datagram Formats. 2018. Available on-
line: https://www.kongsberg.com/globalassets/maritime/km-products/product-documents/160692_em_datagram_formats.
pdf. (accessed on 1 February 2021).

46. Hass, H.C.; Kuhn, G.; Monien, P.; Brumsack, H. Climate Fluctuations during the Past Two Millennia as Recorded in Sediments
from Maxwell Bay, South Shetland Islands, West Antarctica. Geol. Soc. Lond. Spec. Publ. 2010, 344, 243–260. [CrossRef]

47. Blott, S.J.; Pye, K. GRADISTAT: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments.
Earth Surf. Process. Landf. 2001, 26, 1237–1248. [CrossRef]

48. Folk, R.L.; Ward, W.C. Brazos River Bar [Texas]; a Study in the Significance of Grain Size Parameters. J. Sediment. Res. 1957, 27,
3–26. [CrossRef]

49. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
2020. Available online: http://www.r-project.org/index.html (accessed on 10 December 2020).

50. Jerosch, K.; Scharf, F.K.; Deregibus, D.; Campana, G.L.; Zacher, K.; Pehlke, H.; Falk, U.; Hass, H.C.; Quartino, M.L.; Abele, D.
Ensemble Modeling of Antarctic Macroalgal Habitats Exposed to Glacial Melt in a Polar Fjord. Front. Ecol. Evol. 2019, 7, 207.
[CrossRef]

51. Kaky, E.; Nolan, V.; Alatawi, A.; Gilbert, F. A Comparison between Ensemble and MaxEnt Species Distribution Modelling
Approaches for Conservation: A Case Study with Egyptian Medicinal Plants. Ecol. Inform. 2020, 60, 101150. [CrossRef]

52. Austin, R.A.; Hawkes, L.A.; Doherty, P.D.; Henderson, S.M.; Inger, R.; Johnson, L.; Pikesley, S.K.; Solandt, J.-L.; Speedie, C.; Witt,
M.J. Predicting Habitat Suitability for Basking Sharks (Cetorhinus Maximus) in UK Waters Using Ensemble Ecological Niche
Modelling. J. Sea Res. 2019, 153, 101767. [CrossRef]

53. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees. Biometrics 1984, 40, 874. [CrossRef]
54. Sillero, N.; Barbosa, A.M. Common Mistakes in Ecological Niche Models. Int. J. Geogr. Inf. Sci. 2021, 35, 213–226. [CrossRef]
55. Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting Pseudo-Absences for Species Distribution Models: How, Where

and How Many? How Use Pseudo-Absences Niche Model? Methods Ecol. Evol. 2012, 3, 327–338. [CrossRef]
56. Walbridge, S.; Slocum, N.; Pobuda, M. Dawn Wright Unified Geomorphological Analysis Workflows with Benthic Terrain

Modeler. Geosciences 2018, 8, 94. [CrossRef]
57. Androsov, A.; Fofonova, V.; Kuznetsov, I.; Danilov, S.; Rakowsky, N.; Harig, S.; Brix, H.; Wiltshire, K.H. FESOM-C v.2: Coastal

Dynamics on Hybrid Unstructured Meshes. Geosci. Model. Dev. 2019, 12, 1009–1028. [CrossRef]
58. Fofonova, V.; Androsov, A.; Sander, L.; Kuznetsov, I.; Amorim, F.; Hass, H.C.; Wiltshire, K.H. Non-Linear Aspects of the Tidal

Dynamics in the Sylt-Rømø Bight, South-Eastern North Sea. Ocean. Sci. 2019, 15, 1761–1782. [CrossRef]
59. Kuznetsov, I.; Androsov, A.; Fofonova, V.; Danilov, S.; Rakowsky, N.; Harig, S.; Wiltshire, K.H. Evaluation and Application of

Newly Designed Finite Volume Coastal Model FESOM-C, Effect of Variable Resolution in the Southeastern North Sea. Water
2020, 12, 1412. [CrossRef]

60. Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. ManCybern. 1973, SMC-3,
610–621. [CrossRef]

61. Baron, J.; Hill, D.J. Monitoring Grassland Invasion by Spotted Knapweed (Centaurea Maculosa) with RPAS-Acquired Multispec-
tral Imagery. Remote Sens. Environ. 2020, 249, 112008. [CrossRef]

62. Breiner, F.T.; Guisan, A.; Bergamini, A.; Nobis, M.P. Overcoming Limitations of Modelling Rare Species by Using Ensembles of
Small Models. Methods Ecol. Evol. 2015, 6, 1210–1218. [CrossRef]

http://doi.org/10.1016/j.eswa.2011.12.043
www.geoseaportal.de
http://doi.org/10.1016/j.seares.2018.11.009
http://doi.org/10.1016/j.csr.2006.02.009
http://doi.org/10.1016/j.margeo.2020.106343
http://doi.org/10.1007/s10236-011-0412-9
http://doi.org/10.1007/s00367-016-0466-2
http://doi.org/10.3390/geosciences8080279
http://doi.org/10.3390/geosciences10120505
https://www.kongsberg.com/globalassets/maritime/km-products/product-documents/160692_em_datagram_formats.pdf.
https://www.kongsberg.com/globalassets/maritime/km-products/product-documents/160692_em_datagram_formats.pdf.
http://doi.org/10.1144/SP344.17
http://doi.org/10.1002/esp.261
http://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
http://www.r-project.org/index.html
http://doi.org/10.3389/fevo.2019.00207
http://doi.org/10.1016/j.ecoinf.2020.101150
http://doi.org/10.1016/j.seares.2019.101767
http://doi.org/10.2307/2530946
http://doi.org/10.1080/13658816.2020.1798968
http://doi.org/10.1111/j.2041-210X.2011.00172.x
http://doi.org/10.3390/geosciences8030094
http://doi.org/10.5194/gmd-12-1009-2019
http://doi.org/10.5194/os-15-1761-2019
http://doi.org/10.3390/w12051412
http://doi.org/10.1109/TSMC.1973.4309314
http://doi.org/10.1016/j.rse.2020.112008
http://doi.org/10.1111/2041-210X.12403


Water 2021, 13, 2254 22 of 23

63. Naimi, B.; Araújo, M.B. Sdm: A Reproducible and Extensible R Platform for Species Distribution Modelling. Ecography 2016, 39,
368–375. [CrossRef]

64. Harell, F.E.; Lee, K.L.; Mark, D.B. Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and
Adequacy, and Measuring and Reducing Errors. Stat. Med. 1996, 15, 361–387. [CrossRef]

65. Chatterjee, S.; Hadi, A.S. Regression Analysis by Example, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006.
66. Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where Is Positional Uncertainty a Problem for Species

Distribution Modelling? Ecography 2014, 37, 191–203. [CrossRef]
67. Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
68. Thuiller, W.; Lafourcade, B.; Araujo, M. Presentation Manual for BIOMOD 2010. Available online: https://www.semanticscholar.

org/paper/Presentation-Manual-for-BIOMOD-Lafourcade-Araujo/55222d3a8501206807a9a0a32a2b7e62260f53af (accessed on
10 May 2021).

69. Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Software 2008, 28, 1–26. [CrossRef]
70. Foody, G.M. Explaining the Unsuitability of the Kappa Coefficient in the Assessment and Comparison of the Accuracy of

Thematic Maps Obtained by Image Classification. Remote Sens. Environ. 2020, 239, 111630. [CrossRef]
71. Rattray, A.; Ierodiaconou, D.; Monk, J.; Versace, V.; Laurenson, L. Detecting Patterns of Change in Benthic Habitats by Acoustic

Remote Sensing. Mar. Ecol. Prog. Ser. 2013, 477, 1–13. [CrossRef]
72. Pontius, R.G.; Shusas, E.; McEachern, M. Detecting Important Categorical Land Changes While Accounting for Persistence. Agric.

Ecosyst. Environ. 2004, 101, 251–268. [CrossRef]
73. Braimoh, A.K. Random and Systematic Land-Cover Transitions in Northern Ghana. Agric. Ecosyst. Environ. 2006, 113, 254–263.

[CrossRef]
74. Montereale-Gavazzi, G.; Roche, M.; Lurton, X.; Degrendele, K.; Terseleer, N.; Van Lancker, V. Seafloor Change Detection Using

Multibeam Echosounder Backscatter: Case Study on the Belgian Part of the North Sea. Mar. Geophys Res. 2018, 39, 229–247.
[CrossRef]

75. Randin, C.F.; Dirnbock, T.; Dullinger, S. Are Niche-Based Species Distribution Models Transferable in Space? J. Biogeogr. 2006, 33,
1689–1703. [CrossRef]

76. Eriksson, B.K.; van der Heide, T.; van de Koppel, J.; Piersma, T.; van der Veer, H.W.; Olff, H. Major Changes in the Ecology of the
Wadden Sea: Human Impacts, Ecosystem Engineering and Sediment Dynamics. Ecosystems 2010, 13, 752–764. [CrossRef]

77. van Overmeeren, R.; Craeymeersch, J.; van Dalfsen, J.; Fey, F.; van Heteren, S.; Meesters, E. Acoustic Habitat and Shellfish
Mapping and Monitoring in Shallow Coastal Water–Sidescan Sonar Experiences in The Netherlands. Estuar. Coast. Shelf Sci. 2009,
85, 437–448. [CrossRef]

78. Rosenberger, K.J. Morphodynamics of a Field of Crescent-Shaped Rippled Scour; Depressions Northern Monterey Bay, CA. Mar.
Geol. 2019, 407, 44–59. [CrossRef]

79. Murray, A.B.; Thieler, E.R. A New Hypothesis and Exploratory Model for the Formation of Large-Scale Inner-Shelf Sediment
Sorting and “Rippled Scour Depressions”. Cont. Shelf Res. 2004, 24, 295–315. [CrossRef]

80. Mielck, F.; Holler, P.; Bürk, D.; Hass, H.C. Interannual Variability of Sorted Bedforms in the Coastal German Bight (SE North Sea).
Cont. Shelf Res. 2015, 111, 31–41. [CrossRef]

81. Lurton, X. An Introduction to Underwater Acoustics: Principles and Applications, 2nd ed.; Springer Praxis Books & Praxis Publishing:
Chichester, UK, 2010.

82. Lurton, X.; Lamarche, G. Chapter 1-Introduction to Backscatter Measurements by Seafloor-Mapping Sonars. In Backscatter
Measurements by Seafloor-Mapping Sonars-Guidelines and Recommendations; Lurton, X., Lamarche, G., Eds.; 2015; pp. 11–23.

83. Anthony, D.; Leth, J.O. Large-Scale Bedforms, Sediment Distribution and Sand Mobility in the Eastern North Sea O¡ the Danish
West Coast. Mar. Geol. 2002, 182, 247–263. [CrossRef]

84. Montereale-Gavazzi, G.; Roche, M.; Degrendele, K.; Lurton, X.; Terseleer, N.; Baeye, M.; Francken, F.; Lancker, V.V. Insights into
the Short-Term Tidal Variability of Multibeam Backscatter from Field Experiments on Different Seafloor Types. Geosciences 2019,
9, 34. [CrossRef]

85. Michaelis, R. Epibenthic Assemblages of Hard-Substrate Habitats in the German Bight (South-Eastern North Sea) Described
Using Drift Videos. Cont. Shelf Res. 2019, 175, 30–41. [CrossRef]

86. Biernbaum, C.K. Influence of Sedimentary Factors on the Distribution of Benthic Amphipods of Fishers Island Sound, Connecticut.
J. Exp. Mar. Biol. Ecol. 1979, 38, 201–223. [CrossRef]

87. Gogina, M.; Zettler, M.L. Diversity and Distribution of Benthic Macrofauna in the Baltic Sea. J. Sea Res. 2010, 64, 313–321.
[CrossRef]

88. Bruns, I.; Holler, P.; Capperucci, R.M.; Papenmeier, S.; Bartholomä, A. Identifying Trawl Marks in North Sea Sediments. Geosciences
2020, 10, 422. [CrossRef]

89. Trzcinska, K.; Janowski, L.; Nowak, J.; Rucinska-Zjadacz, M.; Kruss, A.; von Deimling, J.S.; Pocwiardowski, P.; Tegowski, J.
Spectral Features of Dual-Frequency Multibeam Echosounder Data for Benthic Habitat Mapping. Mar. Geol. 2020, 427, 106239.
[CrossRef]

90. Lecours, V.; Dolan, M.F.J.; Micallef, A.; Lucieer, V.L. A Review of Marine Geomorphometry, the Quantitative Study of the Seafloor.
Hydrol. Earth Syst. Sci. 2016, 20, 3207–3244. [CrossRef]

http://doi.org/10.1111/ecog.01881
http://doi.org/10.1002/(SICI)1097-0258(19960229)15:4&lt;361::AID-SIM168&gt;3.0.CO;2-4
http://doi.org/10.1111/j.1600-0587.2013.00205.x
http://doi.org/10.1177/001316446002000104
https://www.semanticscholar.org/paper/Presentation-Manual-for-BIOMOD-Lafourcade-Araujo/55222d3a8501206807a9a0a32a2b7e62260f53af
https://www.semanticscholar.org/paper/Presentation-Manual-for-BIOMOD-Lafourcade-Araujo/55222d3a8501206807a9a0a32a2b7e62260f53af
http://doi.org/10.18637/jss.v028.i05
http://doi.org/10.1016/j.rse.2019.111630
http://doi.org/10.3354/meps10264
http://doi.org/10.1016/j.agee.2003.09.008
http://doi.org/10.1016/j.agee.2005.10.019
http://doi.org/10.1007/s11001-017-9323-6
http://doi.org/10.1111/j.1365-2699.2006.01466.x
http://doi.org/10.1007/s10021-010-9352-3
http://doi.org/10.1016/j.ecss.2009.07.016
http://doi.org/10.1016/j.margeo.2018.10.006
http://doi.org/10.1016/j.csr.2003.11.001
http://doi.org/10.1016/j.csr.2015.10.016
http://doi.org/10.1016/S0025-3227(01)00245-6
http://doi.org/10.3390/geosciences9010034
http://doi.org/10.1016/j.csr.2019.01.011
http://doi.org/10.1016/0022-0981(79)90068-6
http://doi.org/10.1016/j.seares.2010.04.005
http://doi.org/10.3390/geosciences10110422
http://doi.org/10.1016/j.margeo.2020.106239
http://doi.org/10.5194/hess-20-3207-2016


Water 2021, 13, 2254 23 of 23

91. Che Hasan, R.; Ierodiaconou, D.; Laurenson, L.; Schimel, A. Integrating Multibeam Backscatter Angular Response, Mosaic and
Bathymetry Data for Benthic Habitat Mapping. PLoS ONE 2014, 9, e97339. [CrossRef] [PubMed]

92. Janowski, L.; Kubacka, M.; Pydyn, A.; Popek, M.; Gajewski, L. From Acoustics to Underwater Archaeology: Deep Investigation of
a Shallow Lake Using High-resolution Hydroacoustics—The Case of Lake Lednica, Poland. Archaeometry 2021, 12663. [CrossRef]

http://doi.org/10.1371/journal.pone.0097339
http://www.ncbi.nlm.nih.gov/pubmed/24824155
http://doi.org/10.1111/arcm.12663

	Introduction 
	Materials and Methods 
	Study Site 
	Data Acquision and Processing 
	Modelling Approach 
	Input Data for the Models 
	Sediment Data 
	Predictor Variables 
	Feature Selection 

	Model Calibration and Validation 
	Ensemble Mapping and Map Accuracy Assessment 
	Detecting Changes in Seafloor Sediment Maps 

	Results 
	Sediment Classes Based on Field Survey 
	Ensemble Model Performance 
	Seafloor Sediment Distribution in H3 
	Predicted Sediment Distribution in 2016 and 2018 
	Seafloor Sediment Distribution Maps of H3 
	Changes in Seafloor Sediment Distribution Maps of H3 

	Seafloor Sediment Distribution in H5 
	Predicted Sediment Distribution in 2017 and 2018 
	Seafloor Sediment Distribution Map of H5 
	Changes in Seafloor Sediment Distribution Maps of H5 


	Discussion 
	Predicting Seafloor Sediments with Limited Ground-Truth Samples 
	Seafloor Sediment Distribution in the Sylt Outer Reef from 2016 to 2018 
	Sediment Transitions and Their Implications 
	Outlook 

	Conclusions 
	
	References

