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Abstract: A new sweep-search algorithm (SSA) is developed and tested to identify the channel
geometry transitions responsible for numerical convergence failure in a Saint-Venant equation (SVE)
simulation of a large-scale open-channel network. Numerical instabilities are known to occur at
“sharp” transitions in discrete geometry, but the identification of problem locations has been a matter
of modeler’s art and a roadblock to implementing large-scale SVE simulations. The new method
implements techniques from graph theory applied to a steady-state 1D shallow-water equation
solver to recursively examine the numerical stability of each flowpath through the channel network.
The SSA is validated with a short river reach and tested by the simulation of ten complete river
systems of the Texas–Gulf Coast region by using the extreme hydrological conditions recorded
during hurricane Harvey. The SSA successfully identified the problematic channel sections in all
tested river systems. Subsequent modification of the problem sections allowed stable solution by
an unsteady SVE numerical solver. The new SSA approach permits automated and consistent
identification of problem channel geometry in large open-channel network data sets, which is
necessary to effectively apply the fully dynamic Saint-Venant equations to large-scale river networks
or for city-wide stormwater networks.

Keywords: Saint-Venant equations; large-scale river modeling; numerical instability; hydrodynamics;
river network simulation

1. Introduction

Solution of the full unsteady Saint-Venant equations (SVE) across large-scale open-
channel networks has been shown to be computationally practical [1], but there remain
a variety of roadblocks to effective and efficient applications for regional-to-continental
scale river systems or city-wide stormwater networks. In particular, the SVE are prone
to develop instabilities at sharp transitions due to the nonlinearities in the equations and
interactions between fluxes, acceleration terms, and pressure gradients. Practitioners using
SVE models (e.g., unsteady HEC-RAS [2]) are well-aware of such problems, typically using
past experience and “engineering judgement” to smooth or remove troublesome geometry
and obtain stable simulations. Such ad hoc fixes are readily applied in reach-scale hydraulic
simulations where the location of the simulation instability and the appropriate fix can
be diagnosed by simple visualization of results and trial-and-error geometry adjustments.
However, our experience is that the ad hoc approaches become impractical over large-scale
channel networks, which might consist of 104 to 105 reaches. When reaches are further
subdivided to improve spatial resolution, a continental river dynamics model or the full
SVE for a mega-city stormwater network could easily require 106 or more computational
elements. For such systems we need automated methods to (i) identify locations and
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(ii) “fix” channel geometry that causes computational instabilities. Neither issue has been
previously investigated in the literature. As this is the first study of numerical instabilities
for large-scale flow networks simulated with implicit time-marching of the Saint-Venant
equations, herein we focus solely on the issue of identifying troublesome geometry locations
using an automated approach that is demonstrated at regional river network scales and
is arguably practical at continental scales. The issue of automated approaches for fixing
geometry problems is reserved as a subject for future research.

Motivating this work is our experience since Liu and Hodges [1] introduced the Simu-
lation Program for River Networks (SPRNT). We have found that stable time-marching
simulations are readily conducted using synthetic (prismatic) channel geometry, which can
be generated using either hydrological characteristics or geographical features. However,
the introduction of realistic geometry complexities with surveyed cross-section data tends
to produce instabilities in the time-marching solution where sharp geometric transitions
violate the underlying need for smoothness in numerical approximations of partial differen-
tial equations (see Yu et al. [3] for a discussion of non-smoothness effects of channel bottom
slope). Unfortunately, the specific locations in a large network that cause an instability
cannot be found simply from the convergence failure of the Newton solver in a nonlinear
matrix Ax = b solution. Such convergence failure is generally diagnosed by an L2 norm
that does not reduce or may increase with an instability. As a global measure, the L2
norm cannot provide information on the specific locations of the problematic geometry.
Furthermore, the behavior of the L∞ norm at non-convergence or behavior of the local
error in the matrix cannot be used to identify the discrete locations causing instability—the
iterative solution of a nonlinear matrix leads to the instability error being distributed
throughout the A of the system. If we wish to confine the future to the study of large
networks with simplified prismatic cross-sections, then the state-of-the-art is satisfactory.
However, with the availability of high-resolution bathymetry from recent advances in
hyperspectral remote-sensing data and multi-beam sonar, we can expect future researchers
and practitioners will introduce complex geometry into large-scale flow network simu-
lations. There is a clear knowledge gap in how to efficiently analyze such networks to
identify problematic geometry.

In our experience, the level of difficulty in identifying the geometry locations causing
numerical instability in a Saint-Venant simulation will depend on both the overall scale of
the network and the complexity of the geometry data. Unfortunately, trial-and-error meth-
ods that are easily applied in a single river reach become cumbersome in a large dendritic
network with thousands of possible paths. The most obvious automated trial-and-error
framework for a large network is applying independent “single-reach” simulations for all
possible single-line paths through the flow network. Such an approach faces two key chal-
lenges: (i) identification of boundary conditions for each simulation, and (ii) comparative
analyses of the set of simulations to identify locations of geometry problems. To address
these issues, the approach to automated identification of problem geometry (as developed
herein) uses successive simulations of a computationally-efficient steady-state SVE solver
within a graph-theory method to isolate computational elements that cause numerical
instabilities. The effectiveness of the approach is demonstrated with unsteady simulations
of regional-scale river networks. This study builds on the steady-state SVE model of
Yu et al. [4] developed from the unsteady SVE solver of Liu and Hodges [1]. Herein we
propose a “sweep search algorithm" (SSA) that can systematically isolate any “choking
points" in a large-scale open-channel network simulation. We use the characteristics of the
dendritic river network and a simple traversal technique from graph theory for successive
simulations with the steady-state SVE solver. The approach uses recursion to effectively
examine the numerical convergence in every reach in the network. The information on
convergence in the different branches provides automated identification of the locations of
divergent behavior. The problem locations can be fixed by adjusting cross-section geometry.
The SSA approach is demonstrated in two different open channel networks of O(103) and
O(105) elements.
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Background

For regional-to-continental scales, the transition from hydrological river models (i.e.,
reduced-physics such as [5,6]) to dynamic models (full SVE over all reaches, e.g., Liu and
Hodges [1], Saleh et al. [7]) remains challenging, and the fundamental issues outlined in
Hodges [8] have yet to be fully addressed. As noted therein, a key dynamic computational
issue is that “problems at a single river cross-section can form a pinch point with numerical
errors rapidly cascading through large sections of the network”. In city-wide stormwater
modeling, variants of the US EPA Stormwater Management Model (SWMM) are often used,
but the SVE—or “dynamic wave” approach—is recognized to have stability, convergence,
and mass conservation issues [9]—which often causes users to switch to the reduced-
physics kinematic wave option.

The transition from hydrologic network models to hydraulic network models has
often been accompanied by the use simplified cross-sectional shapes [7,10–12], which are
typically derived from hydrological characteristics such as cumulative drainage area or
mean annual flow that change gradually through space [12–16]. Such approaches result
in smooth geometry that is unlikely to cause instabilities and oscillations. However, as
hydrologic data systems improve, modelers are gaining access to high-resolution data sets
(e.g. Danielson and Gesch [17]) and river channel geometry databases [18] that are not
artificially smoothed. Unfortunately, simple insertion of higher-resolution geometry into
an existing, stable hydraulic model can lead to instabilities and oscillations due to sharp
features in the high-resolution geometry.

The development and suppression of numerical instabilities and oscillations in SVE
solvers have been widely discussed in the literature (e.g., Nujic [19], Garcia-Navarro and
Vazquez-Cendon [20], Sanders [21], Tseng [22], Xing [23], Li et al. [24]) but there remains no
simple, universal, or settled solution. Such problems can be triggered by (i) abrupt changes
in lateral inflows [25,26], (ii) inconsistencies in initial conditions [4], (iii) non-Lipchitz source
terms in the SVE formulation [3,27], and (iv) sharp transitions in the channel geometry.
Herein, we focus only on the last issue.

Numerical oscillations/instabilities due to sharp changes in open-channel geometry
can be provoked both by (i) changes in channel slope and (ii) changes in cross-sectional
shape or area. The former issue is discussed and a solution provided in Yu et al. [3], where
a “Reference Slope” is introduced to algebraically ensure the slope in the source term of
an SVE model is a priori Lipschitz smooth. The latter issue, resolving sharp changes in
flow area, does not seem amenable to a similar algebraic manipulation and hence is our
focus herein. Such sharp transitions may be man-made (e.g., change in stormwater conduit
size) or entirely natural. Arguably, the instabilities and oscillations developed by sharp
transitions in open-channel cross-sectional shape could be addressed by creating an SVE
solver that is unconditionally stable to any and all possible transitions. Such an algorithm
cannot be proven unattainable, but it has been elusive thus far. Lacking a guaranteed
approach for model stability, developers have investigated a wide variety of approaches
to suppressing numerical instabilities. A popular approach is to suppress the non-linear
properties (e.g., inertia terms) in the governing equation that typically cause instabilities
in transitions across subcritical to supercritical flow [2,28,29]. Such ad hoc approaches can
damp incipient instabilities, but they inherently undermine the simulation fidelity and
limit the model applicability with trans-critical conditions.

For practitioners and researchers using a previously-developed model, issues of
instability and oscillation are typically addressed when they can be seen in simulation
results—with the challenge that an incipient numerical instability may only appear in
some simulations at some combinations of flow rate and water surface elevation. Most
model users do not have either the interest or time to delve into the numerical schemes
that affect instabilities and modify the model source code. So the practical manual “fix”
involves smoothing or replacing some channel geometry—typically with a trial-and-error
approach—until a satisfactory convergent simulation is achieved [30]. This approach
has two drawbacks: (i) the location causing the instability must be known, which can
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be problematic as a choke point causing a systematic network error might not be where
the strongest oscillations or instabilities are observed, and (ii) such post hoc analysis and
fixes are only effective until the next extreme event causes a new problem at a different
location, requiring further manual adjustment. As we lack a cogent theory for a priori
identifying problem geometry, what is needed (and is developed herein) is an efficient
systematic approach to network analysis with the SVE that can be applied over a range of
flow conditions. Our goal is a method that can be used to provide confidence that most, if
not all, of the problem geometries have been identified across a wide range of likely flow
conditions.

2. Methods
2.1. Governing Equations

The one-dimensional SVE, as proposed by de Saint-Venant [31], are the simplest
equations that capture the momentum dynamics of a river reach. The momentum SVE is
readily obtained by integrating the incompressible Navier-Stokes equations over a channel
cross-section and applying the hydrostatic approximation. The SVE are widely used in
both “conservative” [32,33] and “non-conservative” forms [34–38], although with non-
uniform geometry this classic distinction becomes somewhat arbitrary, as discussed in
Hodges [27]. In this study, we use the classic “non-conservative” form of the SVE from
Liu and Hodges [1] in a finite-difference solution where the cross-sectional area (A) and
flow-rate (Q) are primary solution variables of the numerical system. The local water depth
(h) and friction slope (S f ) are derived variables that are expressed in function of A and Q.
These SVE are written as

∂A
∂t

+
∂Q
∂x

= ql (1)

∂Q
∂t

+
∂

∂x

(
Q2

A

)
+ gA

∂h
∂x

= gA(S0 − S f ) (2)

where S0 is the local channel bottom slope and ql is the net lateral flow rate per unit length
of the river, including inflows from the landscape and outflows to the groundwater aquifer.
Variable h represents the local water depth and can be expressed by auxiliary function
h = h(A). The friction slope S f is computed by the Chezy-Manning equation, which can
be written as

AS f = ñ2Q2
(

P4

A7

)1/3

(3)

where ñ is the representative Manning’s n roughness coefficient for the cross-section, and P
is the wetted perimeter, which can be expressed as a function of A. Note that Yu et al. [3]
have shown that without degrading the representation of geometric complexity, S0 and h
can be replaced by a smooth reference slope (SR) and associated depth (ha) with functions
ha = f (A) to ensure that the right-hand-side of Equation (2) does not include sharp
transitions that are destabilizing. This new “Reference Slope” approach serves to isolate
sharp geometry changes in the A and ha terms in the momentum equation. The new
approach is recommended for practical large-scale SVE models, but is not used herein so
that the results of the present work are entirely independent of Yu et al. [3].

As shown in Yu et al. [4], the steady-state solution of the SVE—which implies ql in
Equation (1) is steady in time—can be easily solved for Q throughout a large network using
a depth-first search (DFS) graph traversal technique (e.g., Cormen et al. [39]). The Q at
any point in the “directed acyclic graph” (DAG) of the stream network is the sum of the
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upstream steady flows. With Q known everywhere, Equation (2) devolves into solving for
the set of A, h(A), and S f (A) that implicitly satisfies:

∂

∂x

(
Q2

A

)
+ gA

∂h
∂x

= gA
(

S0 − S f

)
(4)

Yu et al. [4] provides details of the Steady State Method (SSM) for solving this equation
using a Preissmann discretization consistent with the SPRNT unsteady model of Hodges
and Liu [40]. The SSM was shown to be superior to pseudo-time marching techniques that
solve the unsteady SVE until convergence to a steady-state solution.

We use the SSM steady-state solver as a proxy for the unsteady SVE in analyzing the
tendency of geometry to destabilize solutions in an open-channel network. Note that the
SVE, Equation (2), and the SSM, Equation (4) have identical nonlinear advective terms, so
it follows that failure of the steady-state solution to converge implies that the unsteady
solution is also unlikely to converge.

2.2. Flowpath Topological Dependence

To quantify the internal heterogeneity of the river network and the topological overlap
of flowpaths, we define the “flowpath topological dependence” (Π) as a mathematical
metric that represents the relationship of structural dependency between flowpaths. Topo-
logically, river networks are Directed Acyclic Graph (DAG) systems because flow can never
recirculate from downstream back to an upstream point. For simplicity herein, we will
limit our focus to DAG systems that have single outlet and are dendritic trees, i.e., flow
always accumulates in the downstream direction and distributaries (such as river deltas)
are not allowed. Under these conditions, each streamhead has an unique flowpath to the
outlet. Thus a river network system can be imagined as constructed of M flowpaths, with
individual flowpaths designated as Fi. Each Fi is composed of a series of channel segments
Fi(v) where v ∈ {1...Ni} and Ni is thus the number of segments in Fi. Flowpaths from
different streamheads will overlap in downstream channels, as illustrated in Figure 1.

1
2

Upper Onion Creek

Figure 1. Flowpaths from two streamheads with unique (red and green) and overlapping (black)
channels. Stream channels include the Upper Onion Creek, Texas, USA.
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It is convenient to define Π as a matrix whose i, j elements represent the fraction of
the Fi flow path that is shared with the Fj flow path. Formally, this is

Πij =
1
Ni

Ni

∑
v=1

si(v),j : i, j ∈ {1...M} (5)

where si(v),j is a sharing index for the v element of the i flowpath with all elements of the j
flowpath, defined such that si(v),j = 1 if channel segment v belongs to both flowpaths and
si(v),j = 0 if v is not in the j flowpath. The Π is asymmetrical in i and j as the v element of
Fi is not necessarily the v element of Fj. Thus, Πij 6= Πji.

To understand Π it is useful to consider two limiting cases. First, consider the sharing
relationship of some flowpath, e.g., F1, with itself—this implies Fj = Fi for the purposes
of the sharing index in Equation (5). The result will be identically Π11 = 1. Second, at
the other limit is where two flowpaths, F1 and F2, have no common segments (i.e., are in
different networks) in which case Π12 = 0 provides the metric for commonality of the two
paths. Between these limits we can imagine a flowpath F1 of 10 segments that shares 5 of
these segments with a flowpath F2 of 20 segments. We find for this case that Π12 = 0.5 and
Π21 = 0.25, which can be thought of as 50% of F1 is in common with F2, while only 25% of
F2 is in common with F1.

We use Π in the the Sweep Search Algorithm (below) to locate channel segments that
likely are causing convergence problems.

2.3. Sweep Search Algorithm (SSA)

Our approach is to use a “Sweep Search Algorithm” for successive computations
across each of the streamhead-to-outfall flowpaths (Fi) of the network. We can isolate the
channel locations that cause convergence problems by analysis of the Fi that fail to converge
and the Fj that share the same path and successfully converge. This is a form of “greedy”
algorithm, which has consequences and limitations as noted in the Discussion, below.

In theory the SSA could be applied with the full unsteady SVE, but it would be
extremely computational expensive to run the number of simulations required. Instead,
we use the computationally efficient SSM steady-state solver of Yu et al. [4], as discussed
in Governing Equations, above. A detailed workflow of the SSA is illustrated in Figure 2.
There are three parts to this workflow: preprocess, iteration, and identification.

The Preprocess Procedure (PP) of the SSA method includes three steps: (I) Q traversal,
(II) flowpath identification, and (III) boundary condition assignment. The Q traversal step
takes the given steady-state hydrological flow boundary conditions (e.g., inflow bound-
ary/lateral flow boundary) and uses the network topology to compute the corresponding
flowrate (Qk) in the each of the k segments of the network, as outlined in Yu et al. [4]. The
flowpath identification step identifies the v segments in the unique Fi(v) flowpath from
each streamhead node to the river network outlet. In this nomenclature v ∈ {1...Ni} are the
computational elements in the flowpath Fi. Lastly, the boundary condition assignment step
reassign the new boundary conditions to each identified flowpath base on the correspond-
ing flowrate (Qk) computed from the Q traversal step. The new boundary condition Bi(j)
is applied as node inflow to make sure the flow condition in each segment of the single
flowpath is consistent with the Qk in Q traversal step.

For steady flow, Qk is simply the sum of the connected segments upstream of the k
segment. The three steps of PP for an example river network with 7 reach segments are
illustrated in Figure 3.
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Figure 2. Flowchart of the SSA method.

The SSA Iteration Procedure (IP) uses the steady solver (SSM) to recursively examine
the numerical convergence of each flowpath in the river network. In this algorithm, the
SSM solver is designed to start the examination from the flowpath with the most upstream
streamhead, and sequentially proceed to downstream flowpaths. To satisfy the definition
of the numerical convergence in this study, the Jacobian matrix’s L2 norm (ε) between
the Newton iteration steps in the SSM must be below 10−6, which is an arbitrary criteria
set by the authors for model convergence. If the solver for the Fi flowpath converges
then the iteration moves on to the downstream flowpath, Fi+1. If the SSM solver does
not reach the converge criteria for the Fi flowpath, the algorithm successively examines
all other downstream flowpaths (Fj) with Πij > 0—i.e., all that share some part of the Fi
flowpath—until a converged Fj is found. It is not unusual that multiple Fj share the same
Πij value to Fi. Flowpaths belong to one lateral limb can have the identical Π value to the



Water 2021, 13, 2236 8 of 27

main stem flowpath. For instance, Π13 and Π14 in Figure 3 are identical since F3 and F4
share the same overlap channel segment with F1. To delineate the priority of flowpaths
with identical Π in the SSA iteration procedure, topological characteristic (in this study,
flowpath length) is used as a ranking index for the SSM examination. The successive
solutions begins with the Fj flowpath where Πij is a maximum for j ∈ {1...M} and j 6= i.
This corresponds to the Fj flowpath with the most overlapped channel segments. When a
converged Fj is found, we can know that the Fi geometry causing non-convergence is at
the upstream section of the overlapped channel between Fi and Fj.

Boundary Condition Assignment

Q Traversal

Flowpath Identification
(1) Identify streamheads:

1
2

3
4

(2) Identical flowpath Fi from each streamhead to outlet:

1

2

3

4

Flowpath F1

Flowpath F2

Flowpath F3

Flowpath F4

I4

I3

I2
I1

L2

L1

Steady Inflow Boundary
Steady Lateral Flow Boundary

S7

S5

S1

S2

S6

S3
S4

Example River Network

outlet

Q dire
ctio

n

Accumulated Qk at Sk

Q1 = I1 + L1

Q2 = I2

Q3 = I3

Q4 = I4

Q5 = I1 + I2 + L1

Q6 = I3 + I4 + L2

Q7 = ΣI + ΣL

Assign new boundary condition Bi(j) to jth segment in 
Fi for solving steady-state Fi in the Iteration Procedure 

Streamhead Outlet

B11 = Q1
B12 = Q5 – Q1
B13 = Q7 – Q5

B21 = Q2
B22 = Q5 – Q2
B23 = Q7 – Q5

B31 = Q3
B32 = Q6 – Q3
B33 = Q7 – Q6

B41 = Q4
B42 = Q6 – Q4
B43 = Q7 – Q6

Flowpath 1

B1(1) B1(2)

B1(3)

Flowpath 2
B2(1)

B2(2)

B2(3)

Flowpath 3
B3(1)

B3(2)B3(3)

Flowpath 4
B4(1)

B4(2)

B4(3)

Upstream inflow boundary condition
New boundary condition at the node

Figure 3. The three steps in the preprocess procedure: Q traversal, flowpath identification, and boundary condition
assignment steps are illustrated with an example river network with 7 channel segments.
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The third part of the SSA method—identification—provides an automated location of
a problem segment, but it requires human intervention to fix the problem by adjusting the
boundary conditions (channel reach geometry). The complexity of this procedure depends
on the river structure and the resolution of input data. As noted in the Introduction
Section above, our focus herein is on an automated approach for identifying the location
of problematic river reaches, but fixing the underlying cause at any given section remains
a matter of “art” that requires modeling judgement and, possibly, further trial-and-error
iterations of the SSA method.

3. Computational Tests
3.1. Overview

The performance of SSA is examined with three different river network simulations
with different scales. The scale of our test cases range from local-scale (with only two
branches) up to a large scales that cover (i) a single river basin and (ii) the entirety of the
Texas drainage basin (more than 35,000 stream segments). The number of computational
nodes range from O(102) to O(105) in these three test cases. In the first test case, with a
simple urban river topology, we demonstrate the SSA method by implanting an artificial
sharp geometry transition at a channel section. The instability of the SSM solution along
a flowpath with the new sharp transition and the convergence of flowpaths without the
sharp transition provide proof-of-concept for the SSA screening method. In the large-scale
test cases the SSA is applied to identify the problematic cross-section data in river networks
with more complex topologies. In these tests, no artificial sharp features are introduced, we
instead search for the expected discontinuities that typically occur in any large geometry
data set. To show that the identified features are indeed the problem, we replace the
cross-sections identified by the SSA with equivalent trapezoidal cross-sections and run
both steady (SSM) and unsteady solvers to demonstrate convergence. The performance of
the SSA is demonstrated and compared using both the required CPU time and number of
Newton’s iterations for converged solution or onset of instability. All test cases are run on
a Ubuntu Linux operating computer with 2.52 GHz Intel i7-870 CPUs with 16GB of RAM.
The SSA algorithm and simulation codes are written in Python 2.7 and C++, with a shell
script (bash) wrap-up.

3.2. Local-Scale Test Case—Waller Creek, Austin, Texas

A Y-shape urban river with high-resolution geometrical data in central Texas, Waller
Creek, is selected in this study as a proof-of-concept test case for validating the SSA method.
Following the “flowpath identification” in the preprocess procedure described in Methods
and Figure 3, Waller Creek can be decomposed into two independent flowpaths: main stem
(FM) and minor branch (FB) as shown in Figure 4. The 286 surveyed channel cross-sections
(data courtesy of City of Austin) are used for the model geometry. Among the 286 cross-
sections, 104 belong to the common channel section of FM and FB below the junction point
(included in both flowpaths), whereas 33 and 149 are from the upstream branches of FM
and FB (respectively) that occur in only one flowpath. The length of FM and FB flowpaths
are 10.5 and 5.2 km, with total elevation difference 87.06 m and 44.09 m, respectively.
The channel roughness coefficient (Manning’s n) of the computational elements in the
two flowpaths ranges between 0.035 and 0.065. The bottom slope of Waller Creek with
the closely-surveyed cross-sections includes sharp slope discontinuities, which herein
are replaced with uniform slopes so that we focus on effects of sharp-transition channel
geometry and exclude instabilities caused by a discontinuous bottom slope as these were
treated in Yu et al. [3]. For the upstream reaches of FM and FB above the junction point,
the S0 are 0.0083 and 0.0116 respectively, whereas the overlapped downstream reach is
set to 0.0071. The inflow boundary conditions are set to constant values of 50 m3/s and
30.63 m3/s at the upstream ends of FM and FB for steady-state Saint-Venant simulation in
the iteration procedure of SSA method.
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In this test case, we intentionally replace one cross-section in the upstream of the
FM branch (only) by an artificial channel cross-section with a sharp geometry transition.
This geometry simulates what might be either an unusual stream shape or an error in
a data set. The artificial cross-section has a deep (2.39 m) narrow (1.06 m) channel with
an approximately 19 m wide floodplain when water depth exceeds 2.3 m. The original
and artificial cross-sections and the location in Waller Creek are illustrated in Figure 4.
The sharp transition introduced between the very narrow incised channel and the flood
plain are typical of features that we have seen cause numerical instabilities in a steady or
unsteady solver. The SSM is used to simulate four different cases: (1) FM, (2) FB, (3) entirety
of Waller Creek with original survey data (WCO), and (4) entirety of Waller Creek with
replaced geometry (WCR). The numerical behavior and stability are analyzed in Results
below.
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Figure 4. In the preprocess procedure of SSA method, Waller Creek is decomposed to two flowpaths, FM and FB. The
corresponding channel geometries of each flowpath are also shown (river geometry survey data courtesy of the City
of Austin).

3.3. River-Basin Test Case—Lavaca River, Texas

A single river basin for the Lavaca River, Texas (USA) provides the second test
case. The dataset for this case is derived from Liu et al. [18] and uses the pre-defined
rivers/streams structure from the National Hydrography Dataset Plus (NHDPlus). The
Lavaca River network consists of 3049 km of river over a drainage area of 5971 km2. As first-
order streams typically contribute little to network dynamics, herein we replace these in the
data set with nodal inflows, which is similar to the approach of other researchers [41,42].
Removal of the first-order streams reduces the total channel length to 1291 km. The change
of channel elevation in the NHDPlus data set is smooth and ranges between 0 m and
22.88 m above sea level. The maximum and minimum slope of the natural channel (ex-
cluding spillways and man-made hydraulic structures) are 0.0017 and 0.0001 respectively,
with the average slope 0.0028. The mean annual flow at the outlet of the Lavaca River
network is 30.84 m3/s. The total number of computation nodes in this model is 6973, with
6615 segments and 292 junctions. The spatial interval between the computational nodes
ranges between 170 m to 200 m, with an average value of 183.3 m.
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As we do not have a consistent surveyed dataset for channel geometry over the entire
Lavaca River basin, we generate synthetic channel bathymetry following Zheng [43], which
uses the height above nearest drainage (HAND) approach of Nobre et al. [44] applied to
the National Elevation Dataset (NED). Although the HAND approximation is unlikely to
be reasonable proxy of the in-channel river bathymetry, it serves the present purposes by
providing a consistent and automated approach to generating non-prismatic cross-section
from known topography. Our goal is not to provide an accurate topography model or test
the validity of HAND, but to start from a model that we expect to have complex geometry
with sharp transitions that affect model convergence. The data for channel roughness
coefficient (Manning’s n) is acquired from the National Water Model (NWM) [45]. Values
for Manning’s n from this source are between 0.05 and 0.06. Where the HAND data
of Zheng [43] was incomplete, the missing channels were approximated as trapezoidal
cross-sections using data from the NWM.

The necessary artificial inflow boundary conditions for steady-state solution are
synthesized based on a uniform distribution of a typical downstream gauged flow over
the headwater streams. That is, we take the flowrate at a USGS gauge 08164000 on 20 June
2018 (103.9 m3/s) and divide it by the 67 headwater streams to provide 1.55 m3/s inflow
for each stream. Thus, for simplicity this test case has zero lateral inflows (i.e., zero local
hydrological runoff) and distributes the actual measured downstream flow in uniform
inflows over all the upstream branches. Clearly, this does not represent any real-world
distribution of flows over the network, but it ensures that all branches of the network
are activated and the total main-stream flow is representative of a real-world condition.
This approach is useful in setting up test cases for geometry as it ensures that abrupt
temporal changes in lateral inflows are not a confounding source of numerical instabilities.
The slopes provided in the NHDPlus data for the Lavaca river network are known to be
smooth (which is not true of every NHD network), so failure to converge a simulation for a
flowpath in the Lavaca system is indicative of a problem with cross-section geometry.

3.4. Large-Scale Test Case—The Texas–Gulf Watershed

In order to demonstrate the SSA method over large networks, we apply it to the ten
major river systems in the U.S. Hydrological Unit Code (HUC) Region 12—the Texas–
Gulf Region—which contains 60,518 individual channel reaches with at total length of
184,798 km. As in the Lavaca River test case, we excluded 24,382 first-order streams in all
river systems. Furthermore, the present approach has not been modified to handle channel
distributaries; thus, 1104 minor streams having more than one downstream connection
were excluded. The river topology and connectivity are derived from the divergence index
in the NHDPlus dataset. The exclusion of minor streams results in the total number of
reaches being 35,032 in the data set, with a total length of 90,693 km. The channel reaches
are subdivided to 335,823 computational segments with 395,086 computational nodes. The
average length of the computational segments is 192.54 m, with the range between 116.5 m
and 200 m.

The channel elevation varies from 1364.4 m (upstream of Brazos River) to 0 m (sea
level), with an average slope of 0.00283. Since the major scope of this study focuses on
numerical instabilities from cross-sectional geometry transition, we performed smoothing
on steep slopes greater than 0.005, which prevents instability-inducing slope discontinuities
in S0 of Equation (4). The smoothing reduces the overall average slope to 0.00272. As noted
for the Waller Creek test case, the correct slopes can be used without generating instabilities
through the Reference Slope method of Yu et al. [3], but the present work uses the smoothed
slopes so that we isolate the effects of the new approach. The Manning’s n coefficients for
all streams are retrieved from the National Water Model, ranging between 0.04 and 0.06.

Extending the approach in the Lavaca River test case, we used the HAND-generated
bathymetry dataset created by Zheng [43] for the channel geometries across the entire
HUC 12 region. The HAND dataset was filtered to exclude cross-sections deemed highly
questionable based on our prior experience; these were cross sections characterized by
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(i) wetted areas that were not monotonically increasing with depth, (ii) incomplete cross-
sectional bathymetry with less than 10 wetted area/depth data pairs, or (iii) inconsis-
tent geometry—top widths less than 1 m combined with mean annual flow greater than
500 m3/s. This preliminary filtering was necessary because these highly questionable
cross-sections can prevent the model from running, which is in contrast to more subtle
geometry problems that result in numerical instabilities. This filtering affected 96 out
of 34,504 reaches (0.27%). An additional 3116 reaches (11.6%) in our simulation did not
have the corresponding HAND-generated channel geometries in the Zheng [43] dataset.
Synthetic trapezoidal cross-sections as defined in the National Water Model [45] were used
to fill the data gap.

In theory, all the river basins could be handled by the SSA as a single data set since
Πi,j = 0 will be automatically defined where the i reach in one river system does not
possess a common segment with the j reach in another system. However, it is convenient
to divide the 10 river networks into 18 sub-networks for SSA analysis as illustrated in
Figure 5. This subdivision serves two purposes: (1) allowing upstream inflow boundary
conditions to effectively handle the steady-flow discontinuity implied by a reservoir, and
(2) computational efficiency. The first issue is discussed in more detail below and the
second issue is discussed in the Results Section. River network summary data are provided
in Table 1.

Brazos	(A)
Brazos	(B)
Brazos	(C)
Colorado	(A)
Colorado	(B)
Colorado	(C)
Guadalupe
Lavaca
Neches	(A)
Neches	(B)
Neuces	
Sabine	(A)
Sabine	(B)
San	Antonio
San	Jacinto
Trinity	(A)
Trinity	(B)
Trinity	(C)
Texas	major	inland	waterbodies
Selected	USGS	gauges

Figure 5. Spatial distribution of 18 subdivided networks from 10 major river systems in Texas–Gulf region. The 30 selected
USGS gauges for determining the flow condition in the test case are also shown.

The artificial inflow boundaries for this large-scale test case were developed from
measured data by using 30 active USGS gauges in the 10 river systems across the Texas–
Gulf basin shown in Figure 5. Since Texas rivers possess low flow during much of the year,
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the normal daily flowrates and mean annual flows will not necessarily result in geometry-
induced instabilities. Thus, the flows generated on the most severe day of Hurricane
Harvey, (daily measured maximum flowrates on 1 September 2017) were used for our
steady-state test flow conditions. This approach ensures that the SSM solver is severely
stressed.

The inflow boundaries use the same general approach as in the Lavaca River test
case above; in other words, evenly dividing a downstream river system flowrate across all
the associated upstream headwater reaches. However, USGS gauges in five of the river
networks (Brazos, Colorado, Neches, Sabine, and Trinity) showed increasing reservoir
storage during the time period. The steady-state SSM solver does not presently include the
ability to handle unsteady storage, but the discontinuity at a reservoir is readily handled by
breaking the larger river systems into smaller sub-systems, as illustrated in Figure 5. Thus,
the river sub-network upstream of a reservoir used the reservoir inflow as the downstream
flowrate for determining the headwater inflows, and the river sub-network downstream
of a reservoir used the flow data from the reservoir outlet as an upstream inflow into the
main stem. Using reservoir/dam as a natural internal boundary condition for connecting
adjacent river networks is a common engineering practice in large-scale river modeling
research [46]. Six out of eight subdividing points are selected based on active USGS gauges
at/below the reservoir locations. Two additional subdividing points were identified at
USGS gauges in the middle of the Brazos and Colorado river systems where significant
discrepancies were noted between accumulated headwater inflow from the upstream
network and the downstream gauge measurements. It is not uncommon to use the field
survey gauge locations as the dividing points for river subdivision, as a similar idea was
also employed in the NHDPlus HUC 4 watershed definition and delineation [47]. Details
on how the gauge data were used to synthesize boundary conditions across all the river
systems are provided in the Appendix A.

Table 1. Topological information of major river networks in the Texas–Gulf watershed (HUC 12) and
network dividend in each river network.

Network Name Channel
Length (km)

NHDPlus
Flowlines

Computational
Nodes

Inflow
Boundaries

Brazos (A) 6866 2545 37,138 316
Brazos (B) 7802 2742 43,125 447
Brazos (C) 3729 1498 19,715 234
Colorado (A) 5579 1414 29,825 216
Colorado (B) 7382 3188 41,596 547
Colorado (C) 1894 758 10,594 120
Guadalupe 3367 1379 18,968 236
Lavaca 1291 360 6973 67
Neches (A) 4444 1968 23,943 335
Neches (B) 1517 592 7892 71
Nueces 8677 3226 47,221 545
Sabine (A) 3926 1676 21,782 325
Sabine (B) 1522 741 7508 90
San Antonio 2733 1025 15,252 199
San Jacinto 1732 690 9659 116
Trinity (A) 4900 1854 27,106 339
Trinity (B) 4157 1930 23,349 345
Trinity (C) 686 249 3440 35

4. Results
4.1. Local-Scale Test Case—Waller Creek, Austin, Texas

The numerical convergence behaviors for solving steady-state Saint-Venant equations
by using geometries FM, FB, WCR, and WCO for the Waller Creek test case are shown
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in Figure 6. Unsurprisingly, the FM and WCR cases (with the artificial sharp-transition
geometry) failed to reach the convergence criteria (L2 norm < 10−6). In both cases, the
convergence value in successive Newton iterations is initially relatively stable (3 < L2 < 7)
but develops oscillatory behavior followed by a rapid climb near 600 iterations. This
behavior indicates the presence of a discontinuity in the Jacobian matrix that cannot be
converged by the solver.

By contrast, the FB and WCO simulations (without the artificial sharp-transition ge-
ometry) rapidly reached converged solutions within 13 and 19 iterations, respectively. All
four simulations were completed within 3 s of CPU time with a single computer core.
What should be emphasized is the different fate of WCO versus WCR and FM, as shown in
Figure 6. These results indicate that a single pinch point in the Saint-Venant simulation can
result in catastrophic results in numerical stability of the whole simulation. Furthermore,
the numerical stability of any flowpath containing the pinch point will be affected, which
is the idea underlying the structure of the new SSA method.

The difference in CPU time between convergent/divergent simulations is trivial due to
the simplicity of tested river network topology; however, a more significant difference can
be expected in larger river networks with higher connectivity complexity as demonstrated
in the following two cases.
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Figure 6. Comparison of convergence for Waller Creek test case with (FM, WCO) and without (FB, WCC) an artificial
sharp-transition cross-section that causes instabilities.

4.2. River-Basin Test Case—Lavaca River, Texas

Without application of the new SSA method, the steady-state Saint-Venant simulation
(SSM) for the Lavaca River network fails to converge under the flow conditions for 20 June
2018 (i.e., failed to reach the Newton iteration convergence criteria of an L2 norm < 10−6).
This failure occurs despite the smooth bed slope of this river network and the use of
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ordinary (non-hurricane) flow conditions and uniform, steady, and upstream inflow con-
ditions. Furthermore, without a viable initial steady solution, the unsteady solver cannot
be converged [4]. Applying the SSA algorithm identifies a single channel segment as the
problem. The location of the segment is illustrated in Figure 7. This segment caused failure
of solutions for three Fi flowpaths (red), while all other flowpaths (blue) were successfully
solved in the SSA.

Convergence	failure	flowpaths

Convergence	success	flowpaths

Legend

Failure	loca+on

Figure 7. The map of the Lavaca River network and the problematic channel segment identified by the SSA method.

The problematic channel section for the Lavaca network is composed of two NHD
flowlines, with mild local bed slopes (0.0001 and 0.0007 in the upstream and downstream
respectively). Such mild slopes are unlikely to be the cause the convergence failure. The
cross-sectional shapes of both NHD flowlines are illustrated in Figure 8. In addition,
hydraulic geometry relationships of the two NHD flowlines are shown in Figure 9. It is
clear that the upstream reach has smooth geometry across the full range of depths, whereas
the channel width in the lower reach is extremely narrow (<0.5 m) below 2 m depth, and
abruptly expands into a flood plain from 2–3 m depth. In other words, when water depth
exceeds 2 m, the transition from the upstream to the downstream reach can create a sharp
change in channel width between the cross-sections. The dramatic change of two adjacent
geometrical boundary conditions can severely jeopardize the Lipschitz continuity of the
discrete equations, required for a system to be differentiable and numerically stable [48].
From Equation (3) it follows that an sharp change in P with a smooth change in A for
uniform Q and ñ implies an sharp change in S f that is potentially destabilizing. As
illustrated in Figure 9, the reaches the SSA identified as causing the instability show a sharp
change in P from the upstream to downstream reach for water depths between 2 to 2.5 m.
Thus, the failure of the SSM to converge with the given HAND geometry is consistent with
theory for numerical instabilities.
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Figure 8. Cross-sectional geometries of the problematic adjacent channel segments highlighted in Figure 7.
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Figure 9. Hydraulic properties of the adjacent channel geometries for the problem reach of the Lavaca network test case.
Gradients δA/δY and δP/δY represent the changes in channel cross-sectional areas (A) and wetted perimeter (P) as a
function of local depth (Y) in the upstream and downstream reaches.

A variety of approaches might be proposed for fixing these problem geometries, but
such investigations are beyond the scope of the present work. Herein, the two problem
HAND cross-sections (for all computational elements in the problem reach) were replaced
with the trapezoidal cross-sections from the National Water Model, which is consistent
with the way the HAND dataset of Zheng [43] was supplemented for missing data (see
the Methods Section above). With these minor fixes, the original non-convergent SSM
simulation of the entire Lavaca River network was readily converged.

The SSA method is fairly rapid, with overall CPU times for the Preprocess and
Iteration steps of the SSA method applied to Lavaca River network shown in Table 2. Of
course, these computational times are about two orders of magnitude smaller than the
human intervention time required in the Identification procedure of the SSA for analyzing
cross-sectional data and implementing an appropriate fix.

To visualize the effect that the change in the geometry of the one segment has on the
solution of the entire Lavaca River network, Figure 10 shows the behavior of the conver-
gence norm for the SSM solver before and after the geometry change. The L2 convergence
norm for both simulations initially decreases and appears to be converging. However, the
original geometry never reaches the convergence cutoff and begins to show oscillatory
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behavior that it cannot overcome. Indeed, if the SSM is allowed to run indefinitely using
the original geometry an absurd spike of 1015 eventually appears in the L2 norm, indicating
that solution has gone from oscillatory to unstable. Similar behaviors can also be found
in the failure simulations in Waller Creek test case shown in Section 4.1. In contrast, the
numerical solution of the modified geometry case smoothly reaches convergence after
46 iterations—less than 3 s of CPU time.

Table 2. CPU time of applying SSA method on Lavaca River network.

Case Name Preprocess Procedure
CPU Time (s)

Iteration Procedure
CPU Time (s)

SSA Total
CPU Time (s)

Lavaca River 64.42 19.55 83.97

L2 norm < 10−6

L2 norm = 4.69 × 1015

Figure 10. Comparison of the L2 norm for Newton iterations in the Lavaca River network simulation with SSM solver. The
simulation with original geometry is shown in the star plot, and the modified geometry is shown in circle plot.

4.3. Large-Scale Test Case—Texas–Gulf Watershed

Among the eighteen river networks, seven of them failed to converge to a steady-state
Saint-Venant solution under the test flow condition. The SSA method applied to the entire
Texas–Gulf watershed identified convergence issues in 22 channel segments containing
153 NHDPlus flowlines. These problems occurred in seven subnetworks at the locations
illustrated in Figure 11.

The total CPU time for the automated SSA algorithm (Preprocessing and Iteration,
see Figure 3) for all 18 river networks are shown in Figure 12. Where no convergence
problems occurred the iteration procedure using the SSM solver took roughly one-fourth
of the computational time with the remainder being in the preprocessing procedure. When
convergence problems were found the cost of iteration increased to one-third to one-half
the overall computational time. Overall, running the SSA across the myriad of flowpaths
for the entire Texas-Gulf watershed took less then 2-1/2 h on a modest desktop computer
without any multi-threading optimization.
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SSA	identified	channel	segments
NHDPlus	flowline
Texas-Gulf	watershed	(HUC	region	12)

Figure 11. SSA method identified NHD flowlines with instability factors in bathymetry.
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Networks with convergent problems

Networks without convergent problems

64.32% 35.68%

55.46% 44.54%

52.81% 47.19%

54.87% 45.13%

52.97% 47.03%

67.63% 32.37%

63.51% 36.49%

67.99% 32.01%

64.44% 35.56%

68.59% 31.41%

79.9% 20.1%

73.76% 26.24%

78.2% 21.8%

65.56% 34.44%

73.93% 26.07%

77.91% 22.09%

71.15% 28.85%

76.03% : 23.97%

Figure 12. CPU time for executing the SSA algorithm in 18 river networks in the Texas–Gulf region. PP indicates SSA
Preprocessor Procedure. IP indicates SSA Iteration Procedure.

Despite what might be inferred from Figure 12, the presence or absence of convergence
problems is not an important factor in the overall SSA CPU time. As shown Figure 13, the
CPU time has a convincing linear regression (R2 = 0.883) with the size of the system. That
is, the number of flowpaths that must be preprocessed and iterated is the primary control
on CPU time. Thus, the results in Figure 12 simply indicate that convergence problems are
more likely to be found in larger systems with more flow paths.
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Among the 22 identified problem channel segments, 16 of them are located in the
Brazos ((A), (B)) and Colorado ((A), (B)) river subnetworks. From the distribution shown in
Figure 11, the majority are in streams with low Strahler stream orders (i.e., in the uplands
of the network). Relatively few of the problem segments are in main stem or downstream
channels. All the identified channel segments have hydraulic geometry issues with sharp
transitions similar to those illustrated for the problem segment in the Lavaca River, above.
Following the approach we used for fixing the problem segment in the Lavaca River,
trapezoidal channel cross sections extracted from the National Water Model were inserted
in place of the HAND geometry at each of the identified locations. With these changes, all
18 river networks successfully converged to stable steady-state solutions. The steady-state
SVEs solution of all 26,842 NHDPlus flowlines on 1st September 2017 is illustrated in
Figure 14.
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Figure 13. The relationship between SSA method CPU time and flowpath number of river networks.
Networks with problematic channel segments are underlined.

Figure 14. Steady SVEs simulation result on 1 September 2017 in Texas–Gulf Basin.
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To demonstrate that the steady-state analysis approach of the SSA is a useful basis
for unsteady modeling with the SVE, the steady solution in the main stem of San Antonio
River (589.15 km) is compared with simulation results from the companion unsteady
SVE solver [1] that is run until steady-state is achieved using identical inflow and lateral
boundary conditions. The map of the selected channel and the simulated wetted area (A)
from the two solvers are shown in Figure 15. The numerical results from the unsteady solver
are practically identical to the solution with the SSM simulation for the steady boundary
conditions—differences are of O(10−5). This indicates the SSM reflects the underlying
physics in the unsteady Saint-Venant equations with steady boundary conditions, which
is our foundational idea for developing the SSA as a screening tool for the interaction of
geometry and flow that leads to instabilities.

Merging point with Guadalupe
River close to the outlet

Figure 15. Comparison between steady (SSM) and unsteady simulated (full SVEs) wetted area in the
main stem (shown in red) of the San Antonio River.

5. Discussion

Overall, the SSA/SSM approach is successful in efficiently diagnosing locations where
interactions of geometry and steady flow cause non-convergence in a river network flow
model. However, there are a number of issues that deserve discussion, including (i) inherent
limitations of the method, (ii) limitations of the present implementation and testing, (iii) the
use of HAND, (iv) improving computational time by parallelization, and (v) the need for
automated approaches for fixing sharp transitions in geometry.

5.1. Inherent Limitations of SSA/SSM

The ability of the SSA/SSM method to diagnose locations that drive non-convergent
behavior in a full unsteady Saint-Venant solver depends on the non-convergence being
driven by the nonlinear advective term, the depth gradient term, or the source terms in
Saint-Venant momentum (Equation (2)). That is, the SSA using the SSM cannot diagnose
non-convergent behavior that is driven by unsteady phenomena—whether due to shocks
in hydrological boundary conditions or shocks developed in unsteady flow. In theory, the
SSA method could be extended to use an unsteady solver, but in practice the computational
time would likely be prohibitive. Typically, an unsteady solver requires 100× to 3000×
more CPU time than an steady solver [4].

Despite this limitation, the SSA/SSM approach should be broadly successful because
the interaction of the nonlinear advection term (in both steady and unsteady equations)
with sharp geometry changes is typically the major source of the numerical instabilities. In-
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deed, this term is addressed for non-smooth topography by a range of authors [28,30,49–51].
Further, the nonlinear term is commonly suppressed in models (e.g., HEC–RAS, LIS–
FLOOD) specifically to reduce oscillatory numerical behaviors [2,29]. Thus, the SSA/SSM
provides a step forward as a quantitative framework to examine and fix the development
of non-convergent solution behavior associated with sharp geometry changes.

A further limitation of the SSA method is that it requires the majority of the channel
geometry must be reasonable and lead to convergent solutions. That is, if every possible
flow path has non-convergent locations, the SSA method will not be able to isolate the
precise stream reaches that cause problems. It seems likely that this limitation could be
ameliorated by automated subdivision of networks to test flowpaths that are less than the
full streamhead to river mouth, but investigation and demonstration of such an approach
remains a subject for further investigation.

5.2. Limitations of the Present Implementation/Application

The present implementation of the SSA method is limited to strictly dendritic networks
(no loops) with a single outlet. However, this is really a limitation of our implementation
rather than the underlying concept. Loops and multiple outlets could be readily evalu-
ated with the SSA method as long as the additional flowpaths, Fi, associated with these
topologies are defined. To keep our code simple we have not included these more complex
configurations. Thus, our present code should be considered a proof-of-concept that needs
further extension to cover more general river networks.

The present tests have been limited to the solution of a single set of extreme steady
flow conditions for the Texas–Gulf watershed as a proof-of-concept exercise. However,
in using the SSA as a precursor to full unsteady modeling, a wider range of steady-state
conditions should be run to identify all the possible problem channels. It remains an open
research task to understand what range of flow conditions should be tested to be confident
that all possible instability-inducing geometries have been found.

5.3. Use of HAND-Generated Geometry

The present work appears to be the first large-scale application of HAND-generated
geometry for the Saint-Venant solution of river basin networks. However, the suitability of
using this proxy bathymetry dataset for SVE simulation remains an open question. Indeed,
it is still unclear how the problematic sharp geometry changes arise in the computation
of the HAND bathymetry and what this means for the physical reliability of HAND.
Thus, our use of HAND herein should not be taken as an endorsement of the method
for any particular application. It might be argued that such erroneous and abnormal
channels are unlikely to occur with surveyed channel cross-sectional data and can be easily
detected/fixed with simple screening functions. However, previous research has revealed
that remote sensing data can systematically introduce uncertainties into the generated
geometry of surface water-bodies [52,53]. Based on our experience and prior tests, these
uncertainties cannot be easily ruled out in large scale river network and will further develop
to instability factors in the simulation.

The reason for using HAND in our work simply because it is the only available com-
prehensive bathymetry data set. However, the SSA method could be similarly applied
to any future comprehensive data set. Evaluating river network solutions using HAND
against observed data and models applied with real cross-section bathymetry is a nec-
essary exercise before HAND geometry can be taken as a accurate basis for modeling,
but such efforts are beyond the present research scope. More details about the quality of
the bathymetry generated by the HAND method can be found in Zheng et al. [54] and
Godbout et al. [55].



Water 2021, 13, 2236 22 of 27

5.4. Computational Time and Parallelization

As illustrated in Figure 13, the computational time has linear increase with the number
of flowpaths that are screened with the SSA. Assuming the regression relationship holds,
the required CPU time for the entire Mississippi River basin with 107,815 flowpaths in
NHDplus would be approximately 63 h to test a single set of flow conditions. Thus, for
large-scale applications there is a need to improve the operational speed of the code. As
presented in Figure 2, the SSA algorithm is essentially serial. However, the Preprocess
procedure (which takes most of the computational time) is likely parallelizable, and also
can be duplicated as naive parallelization for different sets of flow conditions. Furthermore,
the iteration procedure also seems amenable to parallelization. Each SSM solution is only
a single flowpath and is entirely independent of every other flowpath. Hence, we could
naively parallelize the iteration procedure across computer processors (i.e., without break-
ing up any single SSM solution) as long as the number of computer processors is less than
the number of flowpaths. The identification and localization of non-convergent locations
is then a comparison across a limited number of flowpath solutions. Furthermore, for
finer parallelization a large dendritic network could be also parsed into subnetworks that
could be independently parallelized—but the effectiveness of such an approach depends
on whether a method can be created to synthesize Q, A internal boundary conditions at the
subdivision points. Thus, we believe the SSA method could be readily extended to rapid
solutions of continental river dynamics modeling using highly-parallel computers or GPU
processors.

5.5. The Need for Automated Geometry Fixes

For the present work, all the identified problematic channel segments were manually
examined and replaced with synthetic channel geometry from the NWM data set. We
lack a general criterion for channel geometry replacement and/or adjustment, which is
urgently needed to create a fully automated approach to fixing instability-inducing channel
geometries. A variety of methods for generating synthetic channel geometry based on hy-
drological characteristics have been proposed [12,56,57], but there remains open questions
as to the effects of introducing such synthetic geometry into a data set that is developed
by other means (e.g., surveyed cross-sections, remote sensing). Note that sharp geometry
problems might include both the local cross-section and its relationship to upstream and
downstream cross-sections. Thus, there is a clear need for an automated approach to ana-
lyze local and neighbor cross-section geometry to make minimally-intrusive adjustments to
reduce sharp transitions. An adequate theory for systematically analyzing river geometry
contributions to non-convergence remains to be found and is the outstanding challenge to
creating a fully automated approach for fixing sharp transitions.

6. Conclusions

In the pursuit of continental river dynamics modeling [8], we encounter increased
fragility of numerical models as the complexity of the geometry and the size of the network
are increased. As a practical matter, we can expect that any sufficiently large river network
data set will contain either outliers or outright errors that cause model convergence issues.
The SSA/SSM approach developed herein provides a framework for automated identifi-
cation of problem locations—although effectively fixing the problem geometry remains
a question of human intervention with some art and experience. As proof-of-concept we
substitute trapezoidal cross-sections at problem locations, which is not a recommended
long-term solution.

The SSA method uses a concept of Flowpath Topological Dependence to compare
individual flowpaths whose solutions converge/diverge. The comparison of these paths
allows isolation of the locations causing non-convergence. Herein, the SSA is tested in
conjunction with SSM, a steady-state Saint-Venant solver [4] that can rapidly solve a single
flowpath through a complex dendritic network. The SSA method is tested in a small
proof-of-concept case with a local-scale urban river network and at full scale to examine
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the behavior of larger river systems covering the entire Texas-Gulf region (HUC region
12). We used HAND-generated geometry to provide a complete and consistent set of cross-
section data over the entire network. Results showed that five of the river systems suffered
from non-convergent solutions using extreme flow conditions. The SSA/SSM method
effectively identified the 22 specific channel sections responsible for non-convergence in
each network. The bathymetry in these sections all had sharp transitions with adjacent
reaches. A simple “fix” using trapezoidal cross-sections from the National Water Model at
these locations allowed both steady and unsteady Saint-Venant solvers to provide stable,
converged solutions.

The overall computational costs of the SSA/SSM depends on both the river network
topology and density of input data. In this study, 2.3 h of CPU time on a single computer
core was required to analyze the 70,000 km of river reaches divided into 385,000 compu-
tational nodes over 10 river networks. The CPU time appears to increase linearly with
the number of flowpaths, which indicates that the method must be extended with paral-
lel computing and network partitioning techniques for use with continental-scale river
networks.

This study shows the SSA/SSM method can identify the few locations in a large river
network that cause convergence problems due to sharp geometry changes—a problem that
is entirely impractical to investigate by hand or with unsteady river network simulations.
The new method takes advantage of the computational speed-up obtained by recursively
solving single flowpaths with a steady-state model, and provides a likely solution for
troubleshooting nonconvergent hydrodynamic simulations in large-scale river network.
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Notation
A Cross-sectional area (m2)
g Gravitational acceleration (ms−2)
h Water depth (m)
n Manning’s roughness (m−1/3s)
Π Flowpath topological dependence
P Wetted perimeter (m)
Q Volumetric flow rate (m3s−1)
ql Flow rate per unit length through channel sides (m2s−1)
S0 Channel bottom slope
S f Channel friction slope
t Time (s)
W Channel width (m)
x Along-channel spatial coordinate
Y Certical height from channel bottom

Appendix A. USGS Gauges of the Texas–Gulf Basin Selected for the Large-Scale
Test Case

Due to the limited data availability, assumptions and estimations are made for the
ungauged/remote streams and channels based on the nearby available measured hydro-
logical information. In this study, a total number of 30 USGS gauges across the Texas–Gulf
region are selected and served for different purposes. The information of the selected USGS
gauges are listed in Table A1 with the gauge name, USGS code, drainage area, and the
summary of the gauge data used in the simulation of each station. The selected USGS
stations are used for three different purposes:

• Inflow boundary conditions determination. The measured flow data at the selected
USGS stations are distributed uniformly across all the inflow boundaries at the stream-
head reaches locate at the upstream of the selected gauge. This provides the synthetic
inflow boundary at the streamheads of each channel.

• Downstream boundary condition determination. Measured water depth data at the
selected USGS gauges are used to determine the downstream boundary conditions
of each river network in the simulation. The selected USGS gauges are generally the
gauges that are most downstream with available data in the river network.

• Internal boundary condition determination. Stations selected for determining internal
boundary conditions are mostly located at reservoirs or along main stems with com-
plete measured data. Internal boundary conditions are used to subdivide the river
into multiple subnetworks. The measured water depth at the selected USGS gauge
is then used to generate downstream boundary conditions for the upstream subnet-
work, and the measured flowrate data are used as the inflow boundary condition for
the downstream subnetwork. Using main stream gauges as breakpoints to split the
river network is a common practice in hydrological routing in engineer applications
(e.g., National Water Model flow nudging feature).
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Table A1. Information of selected USGS gauges in Texas–Gulf watershed.

USGS Gauge Name Station Code River Name Drainage Area Hydrological

Information from the Gauge

Cowhouse Creek at Pidcoke 08101000 Brazos River 1178 inflow boundary condition station
Brazos Rv nr Hempstead 08115000 Brazos River 113,648 inflow boundary condition station
Brazos Rv at Seymour 08082500 Brazos River 40,243 inflow boundary condition station
Brazos Rv at SH 21 nr Bryan 08108700 Brazos River 101,136 internal boundary condition and inflow boundary condition station
Brazos Rv nr Graford 08088610 Brazos River 61,113 internal boundary condition and inflow boundary condition station
Brazos Rv nr Rosharon 08116650 Brazos River 117,427 downstream boundary condition station
Pedernales Rv nr Fredericksburg 08152900 Colorado River 955 inflow boundary condition station
Colorado Rv nr Stacy 08136700 Colorado River 62,659 internal boundary condition and inflow boundary condition station
Colorado Rv at Austin 08158000 Colorado River 101,032 internal boundary condition and inflow boundary condition station
Colorado Rv nr Bay City 08162500 Colorado River 109,401 downstream boundary condition station
Concho Rv at San Angelo 08136000 Colorado River 14,353 inflow boundary condition station
Redgate Ck nr Columbus 08160800 Colorado River 44.8 inflow boundary condition station
Guadalupe Rv at Gonzales 08173900 Guadalupe River 9039 inflow boundary condition
Guadalupe Rv nr Tivoli 08188800 Guadalupe River 26,231 downstream boundary condition station
Lavaca Rv nr Edna 08164000 Lavaca River 2116 inflow boundary condition and downstream boundary condition station
Neches Rv nr Rockland 08033500 Neches River 9417 inflow boundary condition
Neches Rv nr Town Bluff 08040600 Neches River 19,616 internal boundary condition and inflow boundary condition station
Neches Rv Saltwater Barrier at Beaumont 08041780 Neches River 25,353 downstream boundary condition station
Nueces Rv at Calallen 08211500 Neuces River 43,211 downstream boundary condition station
Sabine Rv nr Beckville 08022040 Sabine River 9295 inflow boundary condition station
Sabine Rv at Toledo Bd Res nr Burkeville 08025360 Sabine River 18,591 internal boundary condition and inflow boundary condition station
Sabine Rv nr Ruliff 08030500 Sabine River 24,162 downstream boundary condition station
E Fork San Jacinto Rv nr New Caney 08070200 San Jacinto River 1004 inflow boundary condition and downstream boundary condition station
San Antonio Rv at Goliad 08188500 San Antonio River 10,155 downstream boundary condition station
Medina Rv at Bandera 08178880 San Antonio River 849 inflow boundary condition station
Upper Keechi Ck nr Oakwood 08065200 Trinity River 388 inflow boundary condition station
Trinity Rv at Trinidad 08062700 Trinity River 22,113 inflow boundary condition station and internal boundary condition
Menard Ck nr Rye 08066300 Trinity River 393 inflow boundary condition station
Long King Ck at Livingston 08066200 Trinity River 365 inflow boundary condition station
Trinity Rv nr Goodrich 08066250 Trinity River 43,625 internal boundary condition and inflow boundary condition station
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