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Abstract: Cardiovascular diseases (CVDs) have been recognized as the most serious non-carcinogenic
detrimental health outcome arising from chronic exposure to arsenic. Drinking arsenic contaminated
groundwaters is a critical and common exposure pathway for arsenic, notably in India and other
countries in the circum-Himalayan region. Notwithstanding this, there has hitherto been a dearth
of data on the likely impacts of this exposure on CVD in India. In this study, CVD mortality risks
arising from drinking groundwater with high arsenic (>10 µg/L) in India and its constituent states,
territories, and districts were quantified using the population-attributable fraction (PAF) approach.
Using a novel pseudo-contouring approach, we estimate that between 58 and 64 million people
are exposed to arsenic exceeding 10 µg/L in groundwater-derived drinking water in India. On an
all-India basis, we estimate that 0.3–0.6% of CVD mortality is attributable to exposure to high arsenic
groundwaters, corresponding to annual avoidable premature CVD-related deaths attributable to
chronic exposure to groundwater arsenic in India of between around 6500 and 13,000. Based on
the reported reduction in life of 12 to 28 years per death due to heart disease, we calculate value of
statistical life (VSL) based annual costs to India of arsenic-attributable CVD mortality of between
USD 750 million and USD 3400 million.

Keywords: arsenic; groundwater; cardiovascular disease (CVD); population-attributable fraction
(PAF); geospatial statistical

1. Introduction

Geogenic or anthropogenic arsenic has long been recognized as an important human
carcinogen [1,2]. Globally, and notably, particularly in India, the utilization of high arsenic
hazard groundwaters as drinking and irrigation water has posed, and still does pose, a
serious threat to public health [3–5]. The major human exposure pathways to groundwater
arsenic are drinking arsenic-contaminated groundwaters and consuming inorganic arsenic-
bearing crops, notably including rice [6,7], due, albeit only in part, to irrigation with high
arsenic groundwater [8]. Chronic exposure to inorganic arsenic may give rise to internal
cancers (bladder, lung, kidney, and liver), skin cancers, skin lesions, and, importantly,
cardiovascular diseases (CVDs), which are considered as the most serious non-carcinogenic
detrimental health outcome [9–12].

In India, arsenic contamination of groundwaters takes place mainly in the alluvial
deposits of major rivers (e.g., Ganges and Brahmaputra) flowing from the Himalayas and
Tibetan plateau [13–15]. The dominant mechanism of arsenic enrichment and mobilization
in these groundwaters in alluvial aquifers is the microbially mediated reductive dissolution
of arsenic-bearing Fe(III) oxide (oxyhydroxide, hydroxide, and oxide) minerals [16,17].
Other processes, including complexation of arsenic by dissolved humic substances, com-
petitive desorption, oxidation of sulfide minerals, geothermal activities, and mining-related
activities, may also influence arsenic concentrations in groundwaters [18,19].
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Spatial geostatistical models of the distribution of groundwater arsenic have been
produced at both state (Gujarat [20], Uttar Pradesh [21]) and national scales [22,23] to help
better fully understand the distribution of groundwater arsenic hazard in India, particularly
given the lack of all-India systematic groundwater arsenic testing. Podgorski et al. [22]
generated a random forest model with over a hundred thousand arsenic concentration
observations and over two dozen environmental parameter predictors to identify high
groundwater arsenic (>10 µg/L) in well-known arsenic-contaminated areas in the alluvial
sediments along the Ganges and Brahmaputra plains and in Gujarat and Punjab states
and to capture less-known or previously unrecorded areas. Estimates of the population
numbers in India exposed to high arsenic through drinking groundwaters range from 18 to
30 million [22] to 90 million [23].

Notwithstanding recent spatial distribution models of groundwater arsenic for India,
a country-wise and country-specific public health risk model, notably for cardiovascular
diseases has not yet been created. The association of CVDs with chronic exposure to arsenic
in drinking water have been widely discussed [24–28]. Meta-analysis is a recommended
method to quantify the dose–response relationship between CVDs and arsenic exposure,
suitably weighting the results of a range of studies [24,29]. Meanwhile, the population-
attributable fraction (PAF) approach is a common method used to quantify potential disease
burden reduction in population by eliminating a certain risk factor [30,31].

The aim of this study was to estimate the magnitude of groundwater arsenic-attributable
cardiovascular disease (CVD) mortality in India. These aims were achieved by (i) gener-
ating machine learning models of the probability distribution of groundwater arsenic
concentrations exceeding four different thresholds (10, 20, 50, 80 µg/L); (ii) thereby
creating a pseudo-contour map of groundwater arsenic concentrations; (iii) estimating
the state/district-level population exposed to these four arsenic concentration ranges
(10–20, 20–50, 50–80, >80 µg/L) based on simple exposure models; (iv) determining the
state/district-level population-attributable fraction (PAF) of CVD mortality attributable to
exposure to groundwater arsenic; and hence (v) determining the state-level CVD mortality
attributable to groundwater arsenic. Lastly, (vi) the costs of arsenic-attributable CVD
mortality were estimated for the whole of country.

2. Materials and Methods
2.1. Hazard Models of Groundwater Arsenic

A pseudo-contour map of groundwater arsenic concentrations for the whole of India
was produced, based on the machine learning approach of Podgorski et al. [22] incorporat-
ing the novel pseudo-contour approach of Wu et al. [20]. The reader is referred to those
studies [20,22] and the references therein for a brief account of the advantages, disadvan-
tages, and limitations of machine learning models. In this study, four random forest models,
encompassing 1001 trees, were conducted to comprehensively characterize the distribution
of groundwater arsenic by setting four different thresholds (10, 20, 50, and 80 µg/L) and
using the package ‘Random Forest’ in R statistical software. The prediction results of
the four machine learning models were applied to map the probability of groundwater
arsenic concentrations exceeding 10, 20, 50, and 80 µg/L in India. The cross-validations
of the random forest models were executed by area (AUC) under the receiver operating
characteristic (ROC) curve (0.5 for random model, 1 for perfect model) [32–34] calculated
on the testing dataset, while, the importance of the predictors in random forest models was
assessed by considering the decrease in accuracy as well as in Gini node impurity.

Compared with the random forest model of groundwater arsenic exceeding 10 µg/L
for India conducted by Podgorski et al. [22], 716 more geolocated (longitude/latitude)
groundwater arsenic concentration measurements [35–47] (Figure 1a and Table S1) and
5 more potential environmental predictors (Table S2) were included in the dataset; then,
the averaged 24,297 arsenic data were classified into 0–10 (59%, n = 14,192), 10–20 (9%,
n = 2233), 20–50 (14%, n = 3456), 50–80 (6%, n = 1536), and >80 (12%, n = 2880) µg/L
concentration categories (Figure S1). Considering the five arsenic concentration categories,
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which are different from the arsenic classification of Podgorski et al. [22], the entire dataset
was randomly split into training (80%) and testing (20%) datasets by stratified sampling
to ensure that the same ratios of the arsenic concentration categories were present in the
entire, training, and testing datasets.
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Figure 1. District-wise map of spatial distribution of India groundwater arsenic and exposure
data utilized in this study. (a) District averaged arsenic concentrations and topographic elevation.
(b) Exposure model 1: district-wise percentage of households (HH) drinking groundwater via hand
pumps and tube wells/boreholes. (c) Exposure model 2: district-wise percentage of households
(HH) drinking groundwater via covered/uncovered wells, hand pumps, and tube wells/boreholes.
(d) Difference (expressed as percentage of households) between exposure models 1 and 2.

Then, these probability maps were converted into a pseudo-contour map of ground-
water arsenic concentrations by using a default probability cutoff value of 0.5. Such a
machine learning approach may give rise to maps in which the areas ascribed to higher
concentration categories may not entirely map within those ascribed to lower concentration
categories. In this study, this was minimized by appropriate stratified sampling on splitting
the overall dataset into training and testing datasets, but in the limited number of areas
for which this still arose, higher concentration areas were still recognized to exist for the
purposes of modelling arsenic-attributable health risks.

The district-wise proportion of areas with groundwater arsenic concentration ranges
of 10–20, 20–50, 50–80, and >80 µg/L were calculated based on the pseudo-contour map of
groundwater arsenic concentrations, and the error boundaries of the area proportion were
estimated by Monte Carlo simulations (1000 times) [48].
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2.2. Hazard and Population Exposure Maps

The district-wise proportion of areas with various groundwater arsenic concentration
ranges was combined with total/rural/urban population [49] and household proportion
of using groundwater as drinking water [50] to estimate district-wise total/rural/urban
population exposed to arsenic concentration ranges of 10–20, 20–50, 50–80, and >80 µg/L by
drinking groundwaters. The proportion of using groundwater as drinking water were cal-
culated by two model approaches: (exposure model 1) regarding water from hand pumps
and tube wells/boreholes as groundwater and (exposure model 2) considering water from
wells (covered + uncovered), hand pumps, and tube wells/boreholes as groundwater [51].
The spatial distribution of these values, together with that of the difference between two
values, is shown in Figure 1b–d.

Assuming that the fraction of district rural ( Ad,r,`
Ad

) and urban ( Ad,u,`
Ad

) areas with ground-
water arsenic level ` (` = 1 (0–10 µg/L), 2 (10–20 µg/L), 3 (20–50 µg/L), 4 (50–80 µg/L),
and 5 (> 80 µg/L)) are equal, the fraction of the district rural (Fd,r,gw,n,`) and urban

(Fd,u,gw,n,`) populations exposed to groundwater arsenic exposure levels were calculated
using Equations (1) and (2):

Fd,r,gw,n,` =
Ad,r,l

Ad
× Xd,r,gw,n (1)

Fd,u,gw,n,` =
Ad,u,l

Ad
× Xd,u,gw,n (2)

where Xd,r,gw,n and Xd,u,gw,n are the fraction of the households drinking groundwater in
rural and urban areas of a district, respectively, and n is the exposure model approach num-
ber to calculate proportion of using groundwater as drinking water, n = 1 (groundwater =
hand pump + tube well/borehole) or 2 (groundwater = well (covered + uncovered) + hand
pump + tube well/borehole).

The fraction of the total district population exposed to groundwater arsenic exposure
level ` (Fd,t,gw,n,`) was then calculated by:

Fd,t,gw,n,` =

(
Fd,r,gw,n,` × Pd,r

)
+

(
Fd,u,gw,n,` × Pd,u

)
Pd,t

(3)

where Pd,t, Pd,r, Pd,u are the total, rural, and urban population respectively of a district.
Thus, district-wise rural (Pd,r,gw,n,`), urban (Pd,u,gw,n,`), and total (Pd,t,gw,n,`) population

exposed to groundwater arsenic exposure level ` were estimated by Equations (4)–(6),
respectively:

Pd,r,gw,n,` = Fd,r,gw,n,` × Pd,r (4)

Pd,u,gw,n,` = Fd,u,gw,n,` × Pd,u (5)

Pd,t,gw,n,` = Fd,r,gw,n,` × Pd,r + Fd,u,gw,n,` × Pd,u (6)

2.3. Pooled Relative Risks of Cardiovascular Disease (CVD) Related to Arsenic Concentrations in
Drinking Water

Incorporating the dose–response relationships between CVD mortality risk and arsenic
in drinking water from a recent meta-analysis by Xu et al. [24], the pooled log-linear and
non-linear relative risks for each CVD endpoint were calculated for arsenic concentrations
of 15 µg/L (mid-point of the 10–20 µg/L category), 35 µg/L (mid-point; 20–50 µg/L),
65 µg/L (mid-point; 50–80 µg/L), and 131 µg/L (a weighted mid-point for the >80 µg/L
category), using a drinking water arsenic concentration of 5 µg/L (mid-point for the
0–10 µg/L category) as the reference exposure. The goodness-of-fit of the model was
evaluated using deviance tests, coefficient of determination (R2 and adjusted R2) and
Akaike’s information criterion (AIC) values. The heterogeneity was illustrated by P-
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heterogeneity (p < 0.05 for significant), I2-statistics (<25% for low heterogeneity, 25–50% for
moderate, and >50% for high) and Cochran’s Q-statistic [52].

2.4. Cardiovascular Disease (CVD) Health Risk Estimation

The contribution of drinking groundwater with high arsenic (>10 µg/L) to CVD
mortality was quantified using the population-attributable fraction (PAF) approach. The
state-wise and district-wise PAFs of high groundwater arsenic-attributable CVD mortality
were calculated by combining the population exposure distribution and dose–response
relationship using Equation (7) based on the formula given by Rockhill et al. [30] and
Mondal et al. [31]:

PAFn =
∑`=5
`=1 Fd,t,gw,n,` RR` −∑`=5

`=1 F′d,t,gw,n,` RR`

∑`=5
`=1 Fd,t,gw,n,` RR`

(7)

where RR` is the relative (to reference exposure level, ` =1, (0–10 µg/L)) risk of CVD
mortality at groundwater arsenic exposure level `; ` = 1 (0–10 µg/L), 2 (10–20 µg/L),
3 (20–50 µg/L), 4 (50–80 µg/L), and 5 (> 80 µg/L); Fd,t,gw,n,` and F′d,t,gw,n,` are the frac-
tion of the total district population exposed to groundwater arsenic exposure level ` for
actually current situation and ideal situation, respectively; and n is the number of the
exposure model for calculating fraction of the population drinking groundwater. The error
boundaries of the PAF values were estimated by 1000 Monte Carlo simulations.

The PAF of groundwater arsenic-attributable CVD mortality was combined with pub-
lished data [53] on CVD mortality in India on a state-wise basis to quantify the state-wise
annual CVD mortality due to consuming high groundwater arsenic. Finally, the total
annual hospitalization costs due to high groundwater arsenic-attributable CVD mortality
were estimated for the whole of country based on the estimated PAFs, cost of hospitaliza-
tion [54], prevalent cases [55], and deaths [55] for CVDs. Value of statistical life (VSL)-based
annual costs of arsenic-attributable CVD mortality were estimated for India based on our
estimated CVD mortality, reported Indian individual VSL [56], and estimates of years of
life lost due to heart diseases [57,58].

3. Results and Discussion
3.1. Random Forest Models for Hazard Maps

The assembled dataset of 24,297 averaged arsenic concentration with potential en-
vironmental predictors were utilized to create four random forest models of probability
of groundwater arsenic exceeding 10, 20, 50, and 80 µg/L for the whole of India. The
optimal numbers with the smallest out-of-bag (OOB) error of predictors at individual tree
branch in random forest models were 16, 18, 22, and 21, separately (Table S3). There was
no predictor with negative mean decreases in both accuracy and Gini node impurity, so all
predictors benefited the models and so were retained in the models. The cross-validation
of the models on their testing dataset showed that the area (AUC) under the ROC curves
were 0.84, 0.84, 0.83, and 0.83, indicating good model prediction performance (Figure S2).
The importance of the predictors in the four random forest models is shown in Figure S3,
showing that some climate (e.g., temperature, actual evapotranspiration, aridity, precipita-
tion) and soil (e.g., fluvisols) predictors tend to have relatively higher importance and rank
than others.

The probability maps (Figure 2a–d) of arsenic concentration exceeding 10, 20, 50, and
80 µg/L in groundwaters were transformed into a pseudo-contour map (Figure 2e) of
groundwater arsenic concentrations using a probability cutoff value of 0.5. The concen-
tration map captured a significantly high hazard of groundwater arsenic in the north and
northeast India, particularly in Assam and West Bengal, mainly consistent with previously
well-known documented high hazard areas [22]. The district-wise proportions of areas
with various groundwater arsenic concentration ranges were calculated (Figure 3, and
Table S4), showing over 50% of areas of several districts in the Ganges and Brahmaputra
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alluvial plains, in Punjab, and in less known areas of Haryana and NCT of Delhi with
groundwater arsenic greater than 10 µg/L, the provisional guideline value of arsenic in
drinking water recommended by the World Health Organization (WHO) [59].
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Figure 2. Modelled hazard maps of groundwater arsenic in India. Probability of groundwater
arsenic exceeding (a) 10 µg/L, (b) 20 µg/L, (c) 50 µg/L, and (d) 80 µg/L. (e) Pseudo-contour map of
groundwater arsenic concentrations defined here using a probability cutoff value of 0.5.

The district-wise statistics of modelled high groundwater arsenic areas were associated
with greater errors than those at the state and country levels; however, most of those
districts having high groundwater arsenic listed by India Central Ground Water Board
(CGWB) [60] were captured by our models. The produced random forest models are only
2D models, not 3D models, and common limitations of such 2D models are illustrated
by Podgorski et al. [22]), and Wu et al. [20,61]. Clearly, in areas where there are multiple
aquifers, substantial differences between the arsenic concentrations between aquifers may
exist, indicating the requirement for detailed local studies and tests. However, the models
here may broadly reflect the relative sampling densities in these different aquifers, so
they could arguably be used to estimate current exposures. However, as the balance
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of sampling/supply between different aquifers changes, then these 2D models would
necessarily become dated and unrepresentative.
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ranges of (a) 10 to 20 µg/L, (b) 20 to 50 µg/L, (c) 50 to 80 µg/L, and (d) >80 µg/L.

3.2. Population Exposure Maps

The district-wise total/rural/urban population exposed to arsenic concentration ranges
of 10–20, 20–50, 50–80, and >80 µg/L by drinking groundwater are shown in Figure 4 (ex-
posure model 1), Figure S4 (exposure model 2), and Table S4 (exposure model 1). In India,
totally, we estimated that between 58 (exposure model 1) and 64 (exposure model 2) million
inhabitants are exposed to arsenic exceeding 10 µg/L in drinking water. This estimation is
higher than the estimations of 31 million people by Ravenscroft et al. [62] and 18–30 million
people by Podgorski et al. [22], whilst it is lower than the estimation of 90 million people
exposed to high arsenic in groundwater by Mukherjee et al. [23]. We prefer our estimate
of 58 million to 64 million as it is based on a more granular and detailed assessment
of district-level exposures at a range of arsenic concentration levels than the previous
estimates—we also note that this estimated range is consistent with the arithmetic mean
of those of Podgorski et al. [22] and Mukherjee et al. [23]. Meanwhile, about between 39.1
(exposure model 1) and 43.4 (exposure model 2) million (i.e., 3.2–3.6% of the population
of India), 15.1–17.0 million (1.3–1.4%), 1.5–1.6 million (0.1%), and 2.3–2.4 million (0.2%)
people are exposed to high groundwater arsenic of 10–20 µg/L, 20–50 µg/L, 50–80 µg/L,
and >80 µg/L, respectively, with more rural populations (32.9–36.6 million for 10–20 µg/L;
12.3–13.8 million for 20–50 µg/L; 1.2 million for 50–80 µg/L; 1.6–1.7 million for >80 µg/L)
currently consuming high arsenic in groundwaters than urban populations (6.1–6.8 million
for 10–20 µg/L; 2.9–3.1 million for 20–50 µg/L; 0.3 million for 50–80 µg/L; 0.6 million for
>80 µg/L). A large number of districts in Assam, Bihar, and West Bengal states had a large
population (>1 million people) drinking groundwater with high arsenic concentration
(>10 µg/L). The population exposures were based on two contrasting end-member as-
sumptions as to the arsenic status of shallow wells: (exposure model 1) shallow dug wells
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are largely groundwater arsenic-free and (exposure model 2) shallow dug wells contain
groundwater arsenic, posing a threat to human health. Thus, the range of values presented
here reflect in part uncertainties in the relative validities of exposure Models 1 and 2. It
is recognized both that (i) the validity of the models may be a function of geology and
consumer behavior and (ii) the validity of the models may change with time, indeed may
have changed materially since 2011, the date of the basis of the district-wise rural/urban
population data used in this study [49,50].
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3.3. Pooled Relative Risks of Cardiovascular Disease (CVD) Related to Arsenic Concentrations in
Drinking Water

The utilized linear and non-linear positive associations between mortality risk of car-
diovascular diseases (CVDs) and arsenic concentrations in drinking water with significant
overall trends (p < 0.05) were justified based on the recent meta-analysis by Xu et al. [24]
(Table 1). The relative mortality risks of CVDs of arsenic concentration ranges of 10–20,
20–50, 50–80, and >80 µg/L compared with the reference level of 0–10 µg/L are listed
in Table 1. The association models have great heterogeneity due to considerable varia-
tions of the selected studies in terms of study area, study design, exposure assessment,
ascertainment of outcome, and adjustment of confounders.

Table 1. Dose–response relationships between cardiovascular disease mortality and arsenic concentration in drinking water.
Pooled relative risks (95% CIs) for cardiovascular disease (CVDs) mortality for the median concentration in each arsenic
concentration category relative to the median concentration in the reference category of 0–10 µg/L. Calculations after Xu
et al. [24]. Linear model: Coefficient for trend: 0.070; p-value for trend: 0.005; deviance: 22.58; AIC:−6.77; R2: 0.258; adjusted
R2: 0.225; I2: 77.9%; Cochran’s Q-statistic: 31.70; P-heterogeneity: <0.001. Non-linear model: p-value for trend: <0.001;
deviance: 22.81; AIC: 5.89; R2: 0.620; adjusted R2: 0.584; I2: 35.3%; Cochran’s Q-statistic: 21.65; P-heterogeneity: 0.086.

Arsenic Concentration Category (µg/L) Median Concentration (µg/L)
CVD Mortality Risk (95% CI)

Linear Model Non-Linear Model

[0, 10] 5 1.000 1.000
(10, 20] 15 1.079 (1.023–1.139) 1.028 (1.016–1.040)
(20, 50] 35 1.145 (1.041–1.259) 1.086 (1.057–1.116)
(50, 80] 65 1.195 (1.055–1.355) 1.154 (1.102–1.208)
(80, +∞] 131 1.255 (1.071–1.472) 1.252 (1.163–1.348)

Although the dose–response relationship utilized does not explicitly take into account
any of the factors known to be strongly associated with CVD (for example, gender, age,
obesity, smoking habits, and income), the PAF approach used in this study does mean that
these factors are largely implicitly accounted for in the baseline CVD mortality risks. De-
spite this, in due course, we still expect more refined dose–response models to be published,
and the estimates should therefore be accordingly updated to take these into account.

3.4. Cardiovascular Disease (CVD) Health Risk Estimation

CVD mortality risks arising from drinking groundwater with high arsenic (>10 µg/L)
in India was quantified using the population-attributable fraction (PAF) approach. For
the whole of country, the PAF of groundwater arsenic-attributable CVD mortality was
estimated to be between 0.26% (exposure model 1, non-linear dose–response relationship)
and 0.51% (exposure model 1, linear dose–response relationship) or between 0.29 (exposure
model 2, non-linear dose–response relationship) and 0.56% (exposure model 2, linear dose–
response relationship), of which, PAFs of 0.09–0.26% for exposure model 1 (or 0.10–0.28%
for exposure model 2), 0.11–0.18% (or 0.12–0.20%), 0.02%(or 0.02–0.03%), and 0.05%(or
0.05%) were contributed by arsenic concentration categories of 10–20, 20–50, 50–80, and
>80 µg/L, respectively. Thus about 0.3–0.6% of CVD mortality in India could be eliminated
if current exposure to groundwater with arsenic > 10 µg/L, the WHO provisional guideline
value for drinking water arsenic, were eliminated.

Based upon the PAF estimates by two exposure models and linear and non-linear
dose–response relationships, recent annual hospitalization cost of USD 14.4 billion [54],
prevalent cases of 54.5 million [55], and deaths of 2.8 million [55] for CVDs, annual total
hospitalization costs due to high groundwater arsenic-attributable CVD mortality were
estimated to be USD 1.95–3.74 million (exposure model 1) or USD 2.14–4.13 million (expo-
sure model 2) in India. Meanwhile, the value of statistical life (VSL)-based annual costs of
arsenic-attributable CVD mortality were estimated to be USD 749–3127 million (exposure
model 1) or USD 813–3408 million (exposure model 2) in India, according to our estimated
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mortality, reported individual VSL of USD 0.64 million [56], and year of life lost due to heart
diseases per death of 12 years [58] or 28 years [57]. The produced VSL is much higher than
our estimated hospitalization costs—this may be because many people, notably in poorer
rural areas, do not get hospital treatments or only get limited and incomplete treatments
for their CVD. Although CVD cases that are untreated by hospitals do not give rise to
hospitalization costs, they still impact the country’s economy, this being more accurately
reflected in VSL-based cost estimates. Lastly, on this point, we note that the estimated costs
here are only in relation to CVD mortality—costs related otherwise to morbidity, though
not quantified here, are likely also to be very substantial.

At the state level, the PAFs (Tables S5 and S6) of groundwater arsenic-attributable
CVD mortality were calculated to be highest in Assam (2.5% to 5.7%) and West Bengal
(1.6% to 2.7%). The PAFs of most entire states were estimated to be below 1%. Combined
with recently reported disease burden of CVDs for India [53], the annual state-wise CVD
mortalities due to consuming high groundwater arsenic were estimated and are listed
in Table S7 (exposure model 1) and Table S8 (exposure model 2). For the whole of In-
dia, in total, the modelled annual CVD mortality attributable to chronic consumption of
high groundwater arsenic was estimated to be about 6510–12,132 (exposure model 1) or
7067–13,224 (exposure model 2). The country-wise cost and state-wise mortality estimates
were completed based on reported data of from somewhat different years (PAF: 2011;
hospitalization cost, death, and cases: 2016, disease burden: 2019), which may cause some
estimation bias; however, the magnitude of this bias is considerably less than the combined
uncertainties arising from hazard distribution, exposure and dose–response models, and
documented all-cause CVD disease burden in India.

At a district level (Figures 5 and S5 and Table S4), the estimated PAF of groundwa-
ter arsenic-attributable CVD mortality was as high as between 6.0 (exposure model 1,
non-linear dose–response relationship) and 9.8% (exposure model 1, linear dose–response
relationship) or between 6.5 (exposure model 2, non-linear dose–response relationship) and
10.7% (exposure model 2, linear dose–response relationship) in Dhemaji district (Assam),
indicating that drinking high arsenic groundwater is likely to be one of most important
factors causing CVD mortality in some Indian districts. Relatively higher PAF (>3%, about
5 or 10 times the country-wise overall PAF) was identified in some further districts in
Arunanchal Pradesh, Assam, Bihar, Punjab, Nagaland, and West Bengal states. This is
consistent with the recorded distribution of well-known relatively higher groundwater
arsenic [22]. District-wise PAF estimates exhibit a wider range of modelled CVD mortality
attributable to drinking high arsenic groundwater than state-wise PAF estimations, how-
ever, in part because of the greater number of districts than state, but further it is reiterated
that the reliability of the model decreases as it becomes more granular. Overall modelled
mean hazard and ultimately CVD risk for the whole of India are associated with smaller
relative errors than for the same estimates at the state level, more so at the district level,
whilst very substantial errors might be expected if the model were used to predict arsenic
concentrations at one well/household level, an application of the model that we do not
recommend unless supplemented by well-specific testing.
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Figure 5. District-level maps of India showing (a,d) population-attributable fraction (PAF) of high groundwater arsenic-
attributable CVD mortality with error boundaries (lower (b,e) and upper (c,f) limits) based on exposure model 1 (see text).
PAF estimations were based on both linear (a–c) and non-linear (d–f) dose–response relationships between cardiovascular
disease mortality and arsenic concentration in drinking water.

4. Conclusions

By combining machine learning models of groundwater arsenic distribution with
basic exposure route models and CVD-specific dose–response models, we provide for
the first time an estimate of both the magnitude and distribution of groundwater arsenic-
attributable CVD mortality risks in India. The data were mapped at country, state, and
district scales, although the higher resolution (e.g., district-level) mapping and modelling
is likely to be associated with higher relative model errors.

As the basis of this, we generated for the first time a pseudo-contour map of model
groundwater arsenic concentrations for the whole of India, based upon the machine learning
approach of Podgorski et al. [22] and the pseudo-contour approach of Wu et al. [20]. Incorpo-
ration of CVD dose–response relationships after a recent meta-analysis by Xu et al. [24], us-
ing the PAF approach rather than an absolute risk vs. dose–response (cf. Mondal et al. [31])
has enabled major spatially variable drivers of CVD in India, to a large extent, to be
implicitly taken into account in the health-risk modelling.
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On a country-wise basis, groundwater arsenic is calculated to contribute to around
0.3–0.6% of all CVD mortality, but this figure is much higher (>3%) for many individual
districts in Arunanchal Pradesh, Assam, Bihar, Punjab, Nagaland, and West Bengal and
indicates that the continued focusing of government and NGO resources on mitigation
of groundwater-derived drinking water supplies in these areas is indicated to protect
public health.

On a country-wise basis, we estimate around 6500 to 13,000 premature avoidable CVD
deaths may be ascribed to chronic exposure from groundwater-derived drinking water
supplies with high arsenic concentrations. The cost of this on a VSL (value of a statistical
life) basis is conservatively estimated to be at least on the order of USD 750 million to
USD 3400 million per annum. These costs could be used to inform what magnitude of
investment might reasonably be warranted to mitigate high arsenic groundwater-derived
drinking water supplies in India.

Lastly, we note that the models presented are also limited both in terms of data
availability and the nature of the models themselves. In particular, (i) the hazard models
are dependent on the quality of the published data upon which they are based [20,22,61];
(ii) the geospatial hazard models produced here are 2D models, not 3D models, that
do not consider comprehensively the often substantial differences between the arsenic
concentrations in shallow aquifers often exploited via dug wells and deeper aquifers
often exploited by tube wells or boreholes [22,61]; (iii) in the absence of more detailed
readily available public domain data, the exposure models make plausible but untested
assumptions about the distribution of groundwater arsenic concentrations within districts
and in particular between areas dominated by rural and urban populations; (iv) the data
on district-wise drinking water supply resources and total/rural/urban populations were
produced in 2011 [49,50] and so the exposure and health risk estimates may be dated
as a result of changes in population distribution and water supply type since that time;
(v) model imprecision is likely to be greater at higher spatial resolutions—thus country-wise
estimates are likely to be more precise than, in turn, state-wise and district-wise estimates,
and extending the model to individual wells and households is not recommended—indeed,
for the latter, any material decision-making would be best advised to be based on due
consideration by appropriate professionals of individual/household level circumstances
and data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13162232/s1, Figure S1: Frequency distribution of averaged groundwater arsenic con-
centrations used in this study, Figure S2: Cross-validation results. ROC curves and AUC values
of random forest models of groundwater arsenic exceeding (a) 10, (b) 20, (c) 50, and (d) 80 µg/L,
Figure S3: Normalized importance of predictors in terms of mean decrease values in accuracy and
in Gini node impurity in the random forest models of groundwater arsenic exceeding (a) 10, (b) 20,
(c) 50, and (d) 80 µg/L. Both mean decrease in accuracy and mean decrease in Gini node impurity
were normalized by their largest values, respectively, Figure S4: Maps of modelled district-wise
population exposure to groundwater arsenic in specific concentration ranges and based on exposure
model 2 (see text). District-wise rural (a–d), urban (e–h), and total (i–l) population exposed to arsenic
concentration ranges of 10 to 20 µg/L, 20 to 50 µg/L, 50 to 80 µg/L, and >80 µg/L by drinking
groundwater, Figure S5: District-level maps showing (a,d) population-attributable fraction (PAF)
of high groundwater arsenic-attributable CVD mortality with error boundaries (lower (b,e) and
upper (c,f) limits), based on exposure model 2 (see text). PAF estimations were based on both linear
(a–c) and non-linear (d–f) dose–response relationships between cardiovascular disease mortality and
arsenic concentration in drinking water, Table S1: Groundwater arsenic concentration measurements
in random forest models. Existing arsenic measurements taken from over 50 sources, mainly from
India but also some neighboring South Asian countries. Summaries are given for before and after
spatial averaging (geometric mean of arsenic concentrations within a 1 km2 pixel), Table S2: Potential
predictors used in the machine learning models. Brief descriptions and data sources are listed, Table
S3: Comparison of out-of-bag (OOB) errors as a function of number of available predictors at each
branch in random forest models (note 31 is the total number of potential predictors). The number
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shown in grey shadow is the optimum number of predictors at each branch in the model, Table S4:
Modelled district-wise exposures and cardiovascular disease (CVD) health risk. District-wise rural,
urban, and total population exposed to arsenic concentration ranges of 10 to 20, 20 to 50, 50 to 80,
and >80 µg/L by drinking groundwater. Population-attributable fraction (PAF) of high groundwater
arsenic-attributable CVD mortality. The estimations were based on exposure model 1 regarding
water from hand pumps and tube wells/boreholes as groundwater, and both linear and non-linear
dose–response relationships between cardiovascular disease mortality and arsenic concentration in
drinking water, Table S5: Modelled state-wise cardiovascular disease (CVD) health risk. State-wise
rural, urban, and total population exposed to arsenic concentration ranges of 10 to 20, 20 to 50,
50 to 80, and >80 µg/L by drinking groundwater. Population-attributable fraction (PAF) of high
groundwater arsenic-attributable CVD mortality. The estimations were based on exposure model
1 regarding water from hand pumps and tube wells/boreholes as groundwater, and both linear
and non-linear dose–response relationships between cardiovascular disease mortality and arsenic
concentration in drinking water, Table S6: Modelled state-wise cardiovascular disease (CVD) health
risk. State-wise rural, urban, and total population exposed to arsenic concentration ranges of 10 to 20,
20 to 50, 50 to 80, and >80 µg/L by drinking groundwater. Population-attributable fraction (PAF)
of high groundwater arsenic-attributable CVD mortality. The estimations were based on exposure
model 2 considering water from wells (covered + uncovered), hand pumps, and tube wells/boreholes
as groundwater, and both linear and non-linear dose–response relationships between cardiovascular
disease mortality and arsenic concentration in drinking water, Table S7: India state-wise modelled
annual CVD mortality attributable to chronic consumption of high groundwater arsenic in India
based on exposure model 1, including total CVD mortality for all high arsenic concentrations and
CVD mortality for four different arsenic concentration categories (10–20, 20–50, 50–80, and >80 µg/L).
These mortality estimations were based on both linear and non-linear dose–response relationships
between cardiovascular disease mortality and arsenic concentration in drinking water. By definition
only there is no modelled arsenic-attributable CVD mortality in the reference arsenic concentration
category. Exposure model 1 assumes that modelled groundwater arsenic hazard data apply to and
exposure arises from only hand pumps, tube wells, and boreholes. Although modelled mortalities
for model 1 are somewhat lower than for model 2, these differences are of the same order as the
uncertainties in baseline all-cause CVD mortality data for the states, Table S8: India state-wise
modelled annual CVD mortality attributable to chronic consumption of high groundwater arsenic in
India based on exposure model 2, including total CVD mortality for all high arsenic concentrations
and CVD mortality for four different arsenic concentration categories (10–20, 20–50, 50–80, and
>80 µg/L). These mortality estimations were also based on both linear and non-linear dose–response
relationships between cardiovascular disease mortality and arsenic concentration in drinking water.
By definition only there is no modelled arsenic-attributable CVD mortality in the reference arsenic
concentration category. Exposure model 2 assumes that modelled groundwater arsenic hazard data
apply to and exposure arises from covered/uncovered hand pumps, tube wells, and boreholes.
Although modelled mortalities for model 1 are somewhat lower than for model 2, these differences
are of the same order as the uncertainties in baseline all-cause CVD mortality data for the states.
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