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Abstract: Dissolved Natural Organic Matter (DNOM) is a heterogeneous mixture of partly degraded,
oxidised and resynthesised organic compounds of terrestrial or aquatic origin. In the boreal biome, it
plays a central role in element cycling and practically all biogeochemical processes governing the
physico-chemistry of surface waters. Because it plays a central role in multiple aquatic processes,
especially microbial respiration, an improved understanding of the biodegradability of the DNOM
in surface water is needed. Here the current study, we used a relatively cheap and non-laborious
analytical method to determine the biodegradability of DNOM, based on the rate and the time
lapse at which it is decomposed. This was achieved by monitoring the rate of oxygen consumption
during incubation with addition of nutrients. A synoptic method study, using a set of lake water
samples from southeast Norway, showed that the maximum respiration rate (RR) and the normalised
RR (respiration rate per unit of carbon) of the DNOM in the lakes varied significantly. This RR is
conceived as a proxy for the biodegradability of the DNOM. The sUVa of the DNOM and the C:N
ratio were the main predictors of the RR. This implies that the biodegradability of DNOM in these
predominantly oligotrophic and dystrophic lake waters was mainly governed by their molecular
size and aromaticity, in addition to its C:N ratio in the same manner as found for soil organic
matter. The normalised RR (independently of the overall concentration of DOC) was predicted
by the molecular weight and by the origin of the organic matter. The duration of the first phase
of rapid biodegradation of the DNOM (BdgT) was found to be higher in lakes with a mixture of
autochthonous and allochthonous DNOM, in addition to the amount of biodegradable DNOM.

Keywords: biodegradability; DNOM; sUVa; nutrient status; boreal lakes; browning

1. Introduction

The amount of Dissolved Natural Organic Matter (DNOM) in boreal surface waters
typically exceeds in mass the content of inorganic constituents, and carbon associated with
DNOM by far exceeds the biotic pools of C [1]. This DNOM, being a very heterogeneous
mix of partly degraded organic compounds, has a profound effect on the cycling of carbon
(C) and associated elements such as nitrogen (N) and phosphorus (P), in addition to the
physicochemical characteristics of surface waters. During recent decades, the concentra-
tions of DNOM in surface water have increased, especially in boreal lakes [2]. In these
aqueous systems most of the DNOM is allochthonous, i.e., derived from the catchment [3].
The main driver for the ongoing rise in DNOM is the increase in terrestrial biomass (green-
ing), rendering more organic matter in the soils available to be partly decomposed and
leached out, causing surface water browning [4,5]. This is due to the rise in mean tem-
peratures and to the increase in forest biomass [6], which, e.g., reached 29% in southeast
Norway between 1971 and 2000 [7]. A concomitant factor is the increasing runoff and
runoff intensity. This causes shifts in soil–water flow paths, with more water flowing
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through the organic-rich forest floor horizons before entering the stream, bypassing the
absorptive capacity of the deeper mineral soil. A third major factor applies to regions
heavily exposed to acid deposition in the 1970–1980s. Since then, sulphur (S) deposition
has decreased by up to 90% in the previously most affected areas in southern Norway.
The subsequent decrease in ionic strength, in addition to Al3+ and H+ concentrations,
has increased DNOM solubility and reduced its flocculation, increasing its flux to surface
waters [8,9]. However, the decrease in S deposition has subsided, and the effect of this
driver no longer contributes significantly to the present increase in DNOM.

The increased concentrations of DNOM in lakes have, in turn, significant impacts on
the lake ecosystem. The increasing content of chromophoric DNOM (CDOM) reduces light
penetration and thereby the depth of photosynthetic active radiation [10]. Concurrently, the
increased contribution of allochthonous carbon boosts microbial metabolism and therefore
enhances heterotrophic respiration. This is potentially boosting the net emission of the
greenhouse gases (GHGs) CO2 and CH4 [11], promoting the role of boreal lakes as hot-spots
for GHG emissions [3].

The bioavailability of DNOM to bacterial respiration is known to mainly depend on
its molecular weight and aromaticity, with the low molecular weight (LMW) and more
saturated moieties of the DNOM being most biodegradable [12]. Allochthonous DNOM has
a generally higher molecular weight (HMW) and is more aromatic than DNOM produced
in situ (autochthonous) [13]. Nevertheless, due to the large flux of DNOM from boreal
catchments, the allochthonous DNOM constitutes a significant fraction of the bioavailable
organic C in their surface waters. In addition, the DNOM contents of key nutrients, such as
N and P, are important for both autotroph and heterotroph production of boreal lakes [11].
In addition, photodegradation, or photobleaching, transforms the aromatic HMW DNOM
moieties into more saturated and more LMW DNOM compounds that are thus more
bioavailable [14]. Insights into the factors governing the microbial respiration of DNOM
(i.e., its biodegradability) are important for assessing the transformation of organic C to
CO2.

The objective of this study was to assess the temporal dynamics of DNOM biodegrad-
ability in a wide range of boreal lakes with different quantities and qualities of DNOM. This
measure of biodegradability differs from end-point measurements of the biodegradable
amount of organic carbon (BDOM), estimated either by the decline in oxygen concentra-
tion or the increase in CO2 emissions, or by analysing the content of DOC [15]. During
incubation, the decline in oxygen (O2) concentration is monitored over time with gas
sensors, providing a measure of the maximum speed at which bacteria consume O2 (i.e.,
respiration rate (RR), DOC normalised RR (RRn), and duration of rapid biodegradation
(BdgT)) that relates to the physicochemical properties of the DNOM and other water quality
properties. Optical sensors for dissolved oxygen have previously been used to measure
the biodegradability of organic pollutants under incubation [16]. The estimation of the
respiration rate of organic matter with optical sensors has been previously undertaken
in our group [17–20]. The large scale of the current study allows a standardisation of
the method, including the development of a script for the extraction of biodegradability
parameters and the comparison of the respiration rates in a large variety of samples.

2. Materials and Methods
2.1. Water Sampling

Surface water samples from 73 lakes in southeast Norway (Figure 1) were collected in
autumn 2019 for detailed biogeochemical studies by the Centre for Biogeochemistry (CBA)
at the University of Oslo, Norway. They were selected as a subset of the lakes sampled
during the national lake survey, itself repeating the sampling of previous campaigns
conducted in 1986 and 1995 [21,22]. These lakes span a wide range of water quality
properties, notably DNOM, covering different catchment sizes and elevations. Most
Norwegian lakes are oligotrophic or dystrophic, although a few of the lakes in the selection
have mesotrophic or eutrophic characteristics (Figure S1).
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Figure 1. Map of South Norway with the 73 sampled lakes and their DOC concentration (in mg/L)
as a proxy for DNOM.

2.2. Explanatory Water Quality Factors

The biodegradability of DNOM (RR, RRn and BdgT) from the 73 sampled lakes was
related to more than 80 variables, describing the DNOM quality, in addition to the physical,
chemical, and biological characteristics of the lake samples. The complete dataset and
details about the experimental settings for the measurement of these variables are available
on an online repository dedicated to the survey [23] and a summary is available in the
Supplementary Material (Table S1). From these 80 parameters, 27 were selected as ex-
planatory parameters based on their conceptual relevance. Empirical and conceptual links
between the derived biodegradability descriptors and the following explanatory parame-
ters were thus assessed: DOC normalised UV and VIS absorbance (sUVa = Aλ254 nm/DOC,
sVISa = Aλ400 nm/DOC), UV/VIS absorbance ratio (SARuv), and spectral slope ratio
(SR = Aλ275–295/Aλ350–400), along with DOC concentration, pH, alkalinity, lake tem-
perature (T), conductivity (EC), O2, CO2, N2O and CH4 concentration, consumption and
production, major cations (Calcium (Ca), Magnesium (Mg), Sodium (Na), Potassium (K))
and anions (Sulphate (SO4), Chloride (Cl)), Iron (Fe), Aluminium (Al), dissolved reactive
Nitrogen and -Phosphorus (DN, DP), carbon to nutrient ratios (C:N, C:P), and bacterial
abundance. The gas concentration, consumption, and production were obtained from a
concomitant experiment, independent of the biodegradability measurements [11,24]. It
should be noted that the nutrient concentrations applied for the statistical analysis is the
original concentration in the sample water, not the concentration after the addition of
nutrients for the incubation experiment.

As commonly found for environmental concentration variables, most of the ion and
nutrient concentration data were not normally distributed, but rather skewed towards
higher concentrations. Therefore, the concentration data were log transformed prior to
analysis, except for pH, which is already in logarithmic form. Optical proxies of DNOM
characteristics and cell counts where normally distributed and thus not log transformed.
The dataset was standardised prior to regression analysis in order to ease the comparison
of the effect size [25].
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2.3. Determination of Biodegradability

A detailed description of the experiment protocol is available online [26] and pro-
vided in the Supplementary Material (Chapter B). The main principles and concepts are
summarised in the following.

2.3.1. Sample Preparation for Biodegradability Analysis

At the sampling sites, a bucket of raw water was collected with a sampling rod close to
the outlet of the lake, approximately 4 m from the shore. A quantity of 50 mL of raw water
was filtered through a sterile 0.22 µm cartridge (Sterivex-GP Pressure unit filter, rinsed by
pipetting 120 mL raw water through cartridge before sampling) to remove bacteria and
eucaryotes. The samples were transported and stored at 10 ◦C in polyethylene bottles.
Biodegradability measurements were conducted within 7 days after sampling. All batches
of inoculum were prepared from a 50 L sample of water containing natural microbial
communities (mainly bacteria) collected on September 8th, 2019, from one of the 73 sites,
the dystrophic lake Langtjern ecological monitoring station (NIVA, 2021). After sampling,
the water was filtered through 2.0 µm Isopore Membrane Filters to remove zooplankton.
The water was then stored until use at in a closed tank at 10 ◦C with water circulation.

Three to five days prior to each incubation, the inoculum was prepared with 100 mL
of the filtered water withdrawn from the tank and 1 mL of a solution of nutrients (5 mM
ammonium nitrate and 5 mM dipotassium phosphate) to ensure unlimited growth of the
bacterial community.

2.3.2. Incubation

The inoculum was added to each sample prior to the incubation, along with ample
amounts of nutrients (same solution of 2:1 N:P as for the inoculum). N and P were added
to ensure that the only limitation for the respiration rate at maximum O2 consumption
was the biodegradability of the DNOM substrate, and thus that the biodegradability was
primarily governed by the DNOM quantity and quality. A quantity of 0.25 mL of the
inoculum solution and 0.25 mL of nutrient solution were added to 25.0 mL of the water
sample, which means that 1% of the sample volume was added of both solutions. Therefore,
the final concentration of nutrients in the biodegradation samples was 4- to 20-fold higher
than that of the lake water with respect to N, and around 1000-fold for P. Aliquots of 5 mL
samples were transferred into gas-tight PreSens SensorVials and placed on a PreSens plate
(PreSens Precision Sensing, Regensburg, Germany) that holds 24 vials. Five samples with 4
replicates each were run in parallel, along with 3 blanks (5 mL of Type-1 water) and a house
standard (solution of 20 mg C/L, prepared from Reverse Osmosis and freeze-dried isolate
from Hellerudmyra, the source of The Nordic Humus Standard [27]). We did not include
samples without added nutrients, because pilot studies showed very little biodegradation
during the incubation period in that case. The 5 mM concentration for the stock solution of
phosphate and ammonium nitrate was based on pilot studies, showing an increasing effect
on biodegradation up to 5 mM, which levelled off above this concentration.

Three phases are commonly observed during incubation experiments [28]. During
the initial phase, or “lag phase”, the inoculated bacterial community adapts to its new
environment and substrate. During this phase oxygen consumption is low. Some activity
is nevertheless taking place because the bacteria are synthesising new enzymes adapted
to the new substrate, though no significant biodegradation occurs [28]. Following this
phase, the bacterial respiration of the DNOM increases. The maximum rate of oxygen
consumption obtained during a linear phase is used as a measure of RR of the DNOM
and thus a proxy for its biodegradability. Eventually, a decrease in respiration occurs due
to limitation in BDOM, lack of O2, or an accumulation of toxic wastes from the bacterial
community. This phase subsides on a stationary plateau where the decrease in O2 is low.
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2.3.3. Inoculum Composition

A standardised inoculum from one site was used in this study. This could represent a
bias relative to site-specific properties and CDOM qualities. It was nevertheless assumed
that the large biodiversity of bacteria in freshwater enables the population to adapt dur-
ing the lag phase to the range of water qualities and DNOM substrates assessed in this
study [29]. To test the assumption of microbial similarity, the bacterial community composi-
tion in Langtjern (the origin of the inoculum) was compared with that of the other 72 lakes.
For this purpose, the Sterivex filter cartridges, used to remove bacteria and eucaryotes from
the samples (Section 2.3.1), were liquid nitrogen frozen immediately after use on-site. Total
DNA was extracted from each filter using a DNesay PowerWater Sterivex Kit (Qiagen,
Hilden, Germany). Bacterial SSU rRNA gene amplicons were sequenced using an Illumina
MiSeq with a 2 × 300 bp chemistry MiSeq (Illumina, San Diego, USA) at IMR sequenc-
ing facility (Dalhousie University, Halifax, Canada) following procedures from Comeau
et al. [30]. As forward and reverse primers, 515FB (5’-GTGYCAGCMGCCGCGGTAA-3’)
and 806RB (5’-GGACTACNVGGGTWTCTAAT-3’) were used, respectively. Raw sequences
were trimmed of primers with CUTADAPT [31] and analysed with the R package dada2,
version 1.18.0 [32] for de-replicating, de-noising, and sequence-pair assembly. Finally,
taxonomy was assigned using the SILVA138 database.

A total of 1181 genera were found, confirming the large diversity of bacteria. To
simplify the analysis, the genera, families, and orders were grouped by class taxonomic
rank so that the sample sites could be clustered depending on the number of occurrence
of bacteria from a given class. The ideal number of clusters was determined using the
silhouette method [33]. This resulted in 3 site clusters, represented in Figure 2. An
analysis of variance of the dependent variables based on these three clusters is presented
in Section 3.1. All the computations were performed using the “factoextra” [34] and
“dendextend” [35] packages in R.
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2.3.4. Instrumentation

PreSens Oxygen sensors measure the oxygen concentration in samples by its quench-
ing of fluorescence decay (PreSens Precision Sensing, Regensburg, Germany). The sensors
contain a dye that is excited once every minute. The dye subsequently emits a fluorescence
signal detected by the instrument. Oxygen molecules present in the solution collide with
the excited dye, quenching the fluorescence, and thereby decreasing its intensity. Hence,
the higher the oxygen concentration, the more collisions and the shorter the fluorescence
lifetime. The lifetime of the fluorescence is recorded and converted to oxygen concentration
using the Stern–Volmer equation. The oxygen sensors are situated in the bottom of the
Sensor Vials, which are set on a plate with 24 wells. The plates are mounted on the Sensor
Reader in an incubator (Digital incubator Incu-line 23 L, VWR International, Oslo, Nor-
way), maintaining a constant temperature at 25 ◦C during the 30 h incubation period. The
incubation time was chosen empirically as the time at which most samples have reached
the last phase plateau.

2.3.5. Data Processing

The oxygen concentration in each vial was monitored every minute by the PreSens
software (SDR_v4.0.0). Typically, the curve of oxygen concentration with time had a
negatively sigmoid shape (Figure 3). A R script was developed to extract descriptive
parameters for the biodegradability of DNOM from each curve by the following steps.

Data were removed from the initial hours of incubation, due to an unstable tempera-
ture and the lag phase (Section 2.3.2), and measurement after 30 h.

1. The oxygen concentration values ([O2]t,initial) were normalised ([O2]t,corrected) by the
ratio of oxygen concentration in the corresponding blanks ([O2]t,blank) divided by the
mean of all the blanks, according to the following equation:

[O2]t, corrected =
[O2]t,initial
[O2]t,blank

mean([O2]blank)

2. The decline in oxygen concentration in each vial was fitted as a constrained spline
(median R2 = 0.97) and the derivative of the equation was calculated (“scam” and
“base” package on R). Typically, the derivative curve displays a peak, corresponding to
the maximum rate of oxygen consumption. Two parameters were extracted from this
peak, as shown in Figure 4: the maximum respiration rate (RR) and the biodegradation
period (BdgT). The first half of the peak was used to determine the BdgT to avoid
effects of limited O2 or accumulation of toxic wastes from the bacterial community
(Section 2.3.2).

3. RR and BdgT (Table 1) were determined for each of the 73 lakes as the median of 4
replicate samples. The area under the curve of the derivative was strongly correlated
with RR (r = 0.93). It thus provided no new information and was therefore not
included in the assessment.
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Table 1. Parameters describing the biodegradability of DNOM.

Parameter Definition Interpretation

Maximum Respiration rate (RR) Maximum biodegradation speed
(µmolO2 L−1 h−1)

The maximum speed at which the
microorganisms consume the DNOM, thus a

proxy of the biodegradability of DNOM

Normalised respiration rate (RRn) Respiration rate divided by the DOC
(µmolO2 h−1 mgC−1)

The normalised respiration rate is a quality
factor describing the relative speed of

biodegradability, independent of the amount of
DNOM.

Biodegradation period (BdgT) Width of the half-peak (h)

The biodegradation period reflects the
heterogeneity of DNOM quality, and balance of

RR on the one hand and the amount of
biodegradable matter on the other.
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2.4. Assessment of Factors Governing Biodegradability

Statistical analysis was conducted in R 4.0.3 [30], using the 27 conceptually relevant
parameters selected from the CBA-100 lakes survey as predictors (Section 2.2) for the
respiration rate (RR), normalised RR (RRn), and the biodegradability period (BdgrT) as
response variables. The response variables and the relevant parameters, and the summary
statistics of the 73 lakes, are presented in the Supplementary Material (Part A Table S1).
Eight missing values in the dataset (summarised in the last column of the Table S1) were
imputed by multiple imputation (50 imputations) using the “mice” package in R [36]. The
multiple imputations process is described in the Supplementary Material, Part B Figure S5.

Correlation analysis on parameters that were not normally distributed was also con-
ducted on log-transformed data (Section 2.2). A screening of the covariates was then
performed to remove covariates with high correlations [37], using the correlation matrix
(“micombine.cor”) function in the mice package.

Multivariate analysis was performed using a lasso (least absolute shrinkage and
selection operator) regression model [38] on the 50 imputed datasets. The lasso model
selects relevant parameters by shrinking the estimates of unimportant variables to 0. The
estimates are selected by minimising the expression RSS+λΣ

∣∣β j
∣∣, where RSS is the residual

sum of squares in the model, and λ is the penalty term used to shrink the estimate β [39].
Several λ might be obtained depending on how the dataset is separated between a training
and a test subset. Cross-validation was applied to each model to select the best lambda
(penalty) parameter each time, and the estimates of the covariates were computed and
pooled. Pooling of lasso estimates consists of averaging the estimates for each dataset if
the estimates were retained for more than half of the 50 lasso regression results. These
analyses were undertaken using the cv.glmnet function in the “glmnetUtils” package in the
R software environment [40]. The selected parameters were used to compute a multiple
linear regression model (“Gauss-lasso regression”). The merits of the resulting models
were compared by their mean absolute error (MAE).

3. Results
3.1. Respiration Rate and Time-Lapse of Biodegradability

Most RR values ranged between 0.46 and 7.55 µmol O2 h−1, though eight samples
had higher values up to 47.3 µmol O2 h−1 (Figure 4). Similarly, most BdgT values ranged
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from 1.14 h to 4.84 h, with outliers as high as 17.6 h. As is evident from Figure 5, the RR
and BdgT data were not normally distributed, but skewed towards higher values. The data
were thus log transformed for the following analysis.

Water 2021, 13, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 5. Correlation plot of log transformed response variables log(RR), log(RRn), and log(BdgT), and the 12 selected 
explanatory variables. Blue and red coloured squares indicate positive and negative significant correlation coefficients (p 
< 0.05), respectively. 

3.2. Covariation of Variables 
A total of 27 potential explanatory parameters were selected from the CBA lake sur-

vey (see Section 2.2.). However, regression models are sensitive to collinearity between 
covariates. Therefore, a correlation matrix with Pearson correlation coefficients was cal-
culated for the 27 potential explanatory variables. The full matrix is presented in the Sup-
plementary Material (Part D Figure S2). Only covariates with a correlation coefficient 
lower than 0.5 were kept, in order to avoid interaction effects in the models. The resulting 
12 selected explanatory parameters are presented in Table 2 and a correlation matrix with 
the log transformed response variables is presented in Figure 5. 

Table 2. Selected 12 explanatory parameter and their aliased covariates. 

Selected Explanatory 
Parameter 

Aliased (Covariates with r > 0.5, p < 0.05 are indicated by an asterisk (*)) 
Positive Correlations Negative Correlations 

log(DOC) log(C:P) *, SR, log(DN), log(B)  
sUVa log(CH4) *, sVISa  

SARuv None  
pH log(Alkalinity) *, log(Ca) * Log(Al) *, log(C:N) 

log(EC) 
log(Alkalinity) *, log(Ca) *, log(Mg) *, log(Na) *, 
log(SO4) *, log(Cl) *, log(B) *, log(DN) *, log(K), 

log(CO2) 
 

Figure 5. Correlation plot of log transformed response variables log(RR), log(RRn), and log(BdgT), and the 12 selected
explanatory variables. Blue and red coloured squares indicate positive and negative significant correlation coefficients
(p < 0.05), respectively.

The respiration rate (RR) and biodegradation period (BdgT) were calculated from
the derivate of the O2 slope data. RR is not correlated to BdgT (confidence interval for R
being (−0.25; 0.21)), indicating that RR and BdgT reflect different aspects of the microbial
degradation process. An ANOVA showed that there was no significant difference between
the three site clusters of bacterial composition (Section 2.3.3) and mean RR (p = 0.7) and
BdgT (p = 0.9). The use of a non-indigenous inoculum does thus not appear to have affected
the biodegradation parameters.

3.2. Covariation of Variables

A total of 27 potential explanatory parameters were selected from the CBA lake survey
(see Section 2.2). However, regression models are sensitive to collinearity between covari-
ates. Therefore, a correlation matrix with Pearson correlation coefficients was calculated for
the 27 potential explanatory variables. The full matrix is presented in the Supplementary
Material (Part D Figure S2). Only covariates with a correlation coefficient lower than 0.5
were kept, in order to avoid interaction effects in the models. The resulting 12 selected
explanatory parameters are presented in Table 2 and a correlation matrix with the log
transformed response variables is presented in Figure 5.
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Table 2. Selected 12 explanatory parameter and their aliased covariates.

Selected Explanatory Parameter
Aliased (Covariates with r > 0.5, p < 0.05 Are Indicated by an Asterisk (*))

Positive Correlations Negative Correlations

log(DOC) log(C:P) *, SR, log(DN), log(B)

sUVa log(CH4) *, sVISa

SARuv None

pH log(Alkalinity) *, log(Ca) * Log(Al) *, log(C:N)

log(EC)
log(Alkalinity) *, log(Ca) *, log(Mg) *, log(Na) *,
log(SO4) *, log(Cl) *, log(B) *, log(DN) *, log(K),

log(CO2)

log(Fe) None

log(DP) log(C:P) *

log(C:N) Log(C:P) Log(SO4) *, log(DN) *

Log(O2) log(T) *

Log(CO2) Log(EC), Log(B), log(CH4)

Log(N2O) sVISa

Cells None

Log(RR) is significantly correlated (p-value < 0.05) with sUVa (r = −0.22), log(DP)
(−0.28), log(CO2) (−0.17), and cells counts (0.23) (Figure 5). It is also strongly, though
not significantly, correlated with log(C:N). The correlation coefficient between log(RRn)
and log(RR) is high (r = 0.81), although the p-value is higher than 0.05. Therefore, this
correlation is not significant. Log(RR) has negative significant correlations with log(DP)
(r = −0.24) and log(CO2) (r = −0.4). Log(BdgT) is not correlated with log(RR) or log(RRn),
but is significantly correlated with pH (r = 0.41) and log(C:N) (r = −0.19). It has also weak
significant correlations with sUVa and SARuv (r = −0.08 and r = −0.1).

3.3. Selection of Drivers of Biodegradability

Lasso multiple linear regressions were applied to the dataset of 12 selected explanatory
parameters (Table 2) for each of the three log transformed response variables. The lasso
regression is a statistical tool allowing covariates with little explanatory power to be
discarded, thus only keeping significant covariates. The fitted vs. observed values of the
multiple linear regression models are plotted in Figure 6. Their performances are presented
by residual plots in the Supplementary Material (Part E Figures S7–S9). The mean absolute
error of each of the models was low, but the normal Q-Q plots display residuals skewed to
the right, and not following the normal distribution. The estimates for each lasso regression
model are plotted in Figure 7.

The lasso regression model with log(RR) as response variable selected six covariates
of the 12 (Table 2). Because the dataset was standardised, the estimates reflect the effect
size of each variable, not the absolute effect. Log(C:N) was the parameter with the highest
explanatory value on log(RR) with β = 0.34. On the contrary, the estimate for log(DP) was
β = −0.13. Nutrient concentrations were based on the concentration in the original sample,
before addition of nutrients for the incubation experiment. Log(RR) was thus found to
increase with an increasing original C:N ratio, and decrease with increasing original DP
concentration. sUVa also had a high explanatory value with β = −0.16. (RRn). Cells count,
log(Fe), and SARuv were also selected by the model, with estimates of β = 0.07, β = −0.06,
and β = −0.04, respectively.



Water 2021, 13, 2210 11 of 19
Water 2021, 13, x FOR PEER REVIEW 12 of 20 
 

 

  
Figure 6. Predicted vs. observed values for lasso regression and multiple linear regression. 

The lasso regression model with log(RR) as response variable selected six covariates 
of the 12 (Table 2). Because the dataset was standardised, the estimates reflect the effect 
size of each variable, not the absolute effect. Log(C:N) was the parameter with the highest 
explanatory value on log(RR) with β = 0.34. On the contrary, the estimate for log(DP) was 
β = −0.13. Nutrient concentrations were based on the concentration in the original sample, 
before addition of nutrients for the incubation experiment. Log(RR) was thus found to 
increase with an increasing original C:N ratio, and decrease with increasing original DP 
concentration. sUVa also had a high explanatory value with β = −0.16. (RRn). Cells count, 
log(Fe), and SARuv were also selected by the model, with estimates of β = 0.07, β = −0.06, 
and β = −0.04, respectively.  

For the modelling of log(RRn), seven covariates were selected by the lasso regression, 
all with a negative effect. Log(EC) had the largest effect with β = −017, followed by sUVa 
with −0.15. Moreover, log(DP), log(DOC), and log(Fe) had negative estimates, in addition 
to log(CO2) and log(SARuv) (β = −0.13, −0.12, −0.06, and −0.05 and −0.04 respectively). This 
suggests that the normalised respiration rate (the respiration rate divided by the organic 

Figure 6. Predicted vs. observed values for lasso regression and multiple linear regression.

For the modelling of log(RRn), seven covariates were selected by the lasso regression,
all with a negative effect. Log(EC) had the largest effect with β = −017, followed by sUVa
with −0.15. Moreover, log(DP), log(DOC), and log(Fe) had negative estimates, in addition
to log(CO2) and log(SARuv) (β = −0.13, −0.12, −0.06, and −0.05 and −0.04 respectively).
This suggests that the normalised respiration rate (the respiration rate divided by the or-
ganic carbon concentration) decreases with increasing DOC and phosphate concentrations,
and with increasing conductivity (a proxy for ionic strength).

Of the 12 selected covariates, nine were selected for log(BdgT). The estimates with the
highest coefficients were the pH with β = 0.38, followed by log(DOC) with β = 0.29, and
log(O2) with β = 0.10. Cells count and SARuv had a negative effect on log(BdgT), with
β = 0.17 and β = 0.09, respectively. Log(DP), log(N2O), log(C:N), and log(Fe) were also
selected but had minor effects (β being 0.02, 0.01, −0.01, and −0.05, respectively). The
effect of the nutrient concentration on log(BdgT) was opposite to the one observed for
log(RR).
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3.4. Significance of the Selected Drivers of Biodegradabilityz

Multiple linear regression models for each of the three variables describing the
biodegradability of DNOM were constructed based on only the explanatory variables
selected by lasso regression (Section 3.3). Each model was performed on the 50 imputed
datasets and the resulting estimates, residuals, and predicted values were pooled. The
fitted vs. observed values are represented in Figure 7. The residual plots of the model are
presented in the Supplementary Material (Part F Figures S10–S12).

The mean absolute errors of the models are similar to those obtained with the lasso
regression. Despite the log transformation, residuals are skewed to the right and there
is still heteroscedasticity of the data. Moreover, certain data points had high leverage in
the model, but no lake had both high leverage and high studentised residual (>3), so all
the points were retained in the model. Estimates for the covariates are represented for
each model in Figure 8. Only the significant estimates with a p-value less than 0.05 are
represented (Supplementary Material Part F Table S3). Compared to the lasso regression,
few covariates remained significant.
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Log(RR) is exclusively dependent on sUVa, log(C:N), and log(DP), with log(C:N)
remaining as the predictor with the highest impact (β = 0.35), followed by sUVa and
log(DP), both with β = −0.26.

Log(RRn) is negatively impacted by sUVa and log(DP) in a similar manner as log(RR),
with β = −0.22 and −0.34, respectively. In addition, log(Fe) and SARuv had equally impor-
tant effects (β = −0.23). Four explanatory variables were kept for log(BdgT): log(DOC),
pH, SARuv, and Cells count (i.e., bacterial abundance) with respective estimates of 0.57,
0.41 and −0.23, and −0.31.

4. Discussion
4.1. Priming Effect Boosting the Respiration Rate

The specific UV absorbance (sUVa) had an explanatory value for the observed varia-
tion of log(RR) and log(RRn), both in the correlation analysis and in the lasso and multiple
linear regressions. A high sUVa value is an indicator of HMW and of a high degree of
aromaticity of the DNOM [36]. Several authors have shown that DNOM with a low sUVa is
preferably degraded compared to DNOM with a high sUVa. For example, Zhou et al. [41]
highlighted a negative correlation between the BDOM and the sUVa value, and Abbott
et al. [42] showed that the sUVa increases during the first 10 days of an incubation exper-
iment, meaning that the HMW aromatic compounds were less degraded than the LMW
saturated moieties. Our incubation experiment, focusing on the first hours of bacterial
decomposition of the DNOM, confirms that bacterial communities consume preferentially
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the LMW and more saturated moieties of the DNOM pool. Even if the residence time of the
water in the studied lakes can extend up to 8 years [43] (as represented by Mjøsa, Norway’s
largest lake), the bacterial community will prioritise fresh, light moieties of DNOM over
the remaining HMW compounds. The log normalised respiration rate (log(RRn)) was
also negatively associated with sUVa in the lasso and multiple linear regression models,
although this relationship may be inherent because both variables are derived by dividing
by DOC. Log(Fe) was also found to have a slight negative explanatory value on log(RR)
and log(RRn). Practically all Fe in these generally oxic surface waters is complexed to
the DNOM. Typically, the HMW moieties of the DNOM have higher Fe content [44,45].
The role of log(Fe) as an explanatory factor for log(RR) and log(RRn) may thus reflect a
covariation to the larger size of the DNOM, and thereby lower biodegradability, as reflected
by sUVa (r = 0.3, Figure 6).

Although the log(C:N) ratio was not significantly correlated with log(RR) (Figure 6),
it excelled as an explanatory predictor, both in the lasso and in the multiple linear re-
gression models of log(RR) (Figures 7 and 8). The C:N ratio was calculated as the molar
ratio of DOC/DN, both DOC and DN being measured in filtered water (0.45 um). In
the assessed lake water samples, it displayed a pronounced variation, ranging from 9.33
to 450, with a mean of 49.0. This greatly exceeds the Redfield ratio observed in marine
phytoplankton cells (the molar Redfield ratio for C:N being 6.6), which would be assumed
to represent the C:N ratio of algae-derived, autochthonous DOM. Large deviations from
this stoichiometry are commonly observed in inland waters [46,47] and oceans [48]. The
relatively high C:N ratio indicates recalcitrant, terrestrially derived organic matter, poten-
tially already partially degraded by a microbial community, contrary to autochthonous
and algae-derived DNOM [49,50]. N-poor DNOM implies that proteins and amino acids
are depleted, yielding low-quality DNOM for bacterial consumption. This is due to the
large import of allochthonous DNOM [51] to surface waters in the boreal biome, and the
long residence time in the lake [52]. In addition, the degradation of the most recalcitrant
moieties of DNOM may primarily be restricted by the N limitation [37]. Therefore, the
addition of nutrients in our incubation experiment might have led to a “priming effect”,
making the relatively LMW and more saturated DNOM moieties with a high C:N ratio
available for microbial degradation. Such a priming effect occurs naturally in boreal lakes,
for instance, during seasonal turnovers, when the water from the hypolimnion is mixed
with the nutrient-depleted water of the epilimnion [53].

The respiration rate was also partly explained by log(DP), which was negatively
correlated with log(RR) (r = −0.28, Figure 6) and had a negative impact in the lasso and
multiple linear regression models (Figures 7 and 8). Abbott et al. [54] found that DP in
their permafrost leachate samples was a good positive indicator of the percentage of BDOC.
Similarly, Allesson et al. [18] reported a higher turnover of BDOM in lakes in which P
was in surplus. In our incubation experiment, all treatments received N and P to avoid
the effects of nutrient limitation, in order to specifically test the role of DNOM quality on
respiration. Nonetheless, the negative effect of log(DP) appears counterintuitive but may
be because, in more nutrient-rich systems, the available DNOM was previously degraded.
This supports the hypothesis of the priming effect in nutrient-poor samples.

4.2. Slower Biodegradation in Autotrophic Lakes

Log(BdgT) was positively associated with log(DOC) in the lasso and linear regressions
(Figures 7 and 8). This is an inherent baseline condition for the biodegradation: the more
DNOM and thereby BDOM to degrade, the longer the biodegradation period. However,
log(BdgT) was negatively correlated with log(C:N) (Figure 6), which suggests a longer
biodegradation time for labile DNOM. A possible explanation for this apparent contradic-
tion is that the bacterial community faces a more heterogeneous pool of BDOM in lakes
with a higher share of labile DNOM.

This is supported by the association between the biodegradation period (BdgT) and
autotrophic conditions. First, log(O2) appeared as the main explanatory positively corre-
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lated variable in the lasso regression for log(BdgT) (Figure 8). High oxygen concentrations
are common in the epilimnion of autotrophic lakes where the primary production releases
dissolved oxygen in the layer of photosynthesis active radiation (PAR) [55]. As the samples
in this study were collected from the surface, elevated O2 concentration likely indicates
high primary production in the raw water. The positive effect of log(DP) and the nega-
tive effect of log(C:N) in the lasso regression (Figure 8) also support this hypothesis. In
addition, pH was a positive explanatory factor for BdgT in the lasso and multiple linear
regression (Figures 7 and 8). It was itself positively related to log(Alkalinity) and log(Ca)
(Table 2). Typically, these lakes are eutrophic with an inherent significant production of
autochthonous BDOM [56,57].

As shown above, lighter BDOM is degraded preferentially even though the nutri-
ent limitation is removed. Therefore, in lakes comprising both autochthonous and al-
lochthonous DNOM, the biodegradation phase lasts longer because both the light BDOM
and the less recalcitrant share of allochthonous DNOM are degraded by the bacterial
community.

4.3. Enhanced Bacterial Respiration in Dystrophic Lakes

The speed and duration of respiration by the bacterial community was measured,
assuming that for one molar unit of oxygen gas consumed, the bacterial community
consumed one molar unit of carbon. However, this is based on the theorical value for
glucose degradation. In reality, the degradation of compounds of lower molecular weight,
containing more oxygen, could yield an RQ well above 1 [17,58]. In this case, the respiration
of DNOM with a large share of autochthonous, light DNOM would be underestimated
by controlling only the oxygen consumption. The higher respiration rate in samples from
dystrophic lakes may reflect a RQ closer to 1, contrarily to the respiration rate in samples
from mesotrophic lakes, where more autochthonous DNOM is available.

In addition, the microbial fixation of DNOM was not measured. The actual concur-
rence of these two processes can also explain the behaviour of the bacterial community
in meso/eutrophic lakes and in dystrophic lakes, with a longer biodegradability lapse
in the former and a higher respiration rate in the latter. Indeed, community respiration
reflects both the cell-specific and the overall heterotrophic community activity. Situations
with “excess C” may yield high cell-specific respiration (typically high RR), whereas higher
levels of nutrients may lead to reduced cell-specific respiration, although with increased
bacterial biomass and thus increased overall respiration (high BdgT) [59].

Abbott et al. [42] observed that, in samples with higher inorganic nitrogen concentra-
tion, a larger proportion of the DNOM was mineralised after the nutrient addition. They
suggested that nutrient addition enhances preferentially the complete degradation of labile
organic matter to CO2, rather than causing a priming effect by making recalcitrant organic
matter available. In that case, high RR is a means for the microorganisms to spend excess
C [59–62], thereby lowering the C:N ratio. This is supported by the fact that log(RR) and
log(RRn) were negatively associated with proxies indicating higher nutrient lake status.
First, log(RR) and log(RRn) were both negatively correlated with log(CO2) (Figure 6). Low
CO2 concentrations are usually associated with autotrophic lakes, due to the autotrophic
fixation of the CO2 [63]. Secondly, log(RRn) was negatively associated with log(EC) in the
lasso regression (Figure 8). Log(EC) is a proxy of the trophic state because it is correlated
with the ionic strength. Indeed, most eutrophic lakes are found in agricultural regions that
are located below the marine limit with elevated levels of HCO3, Ca, Na and Cl, in addition
to DP. Moreover, few dystrophic lakes have high levels of inorganic ions [64].

This is consistent with the findings of Allesson et al. [18], who also suggested that
at a community level, bacterial production increases relative to the bacterial respiration
in nutrient-rich lakes. We thus suggest that in meso- and eutrophic lakes, the bacterial
community uses a large proportion of the DNOM to grow and respire, although only a
small part is used to provide energy for this growth. Meso- and eutrophic lakes contain
a high share of autochthonous, labile DNOM, which can be directly used for anabolism.
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This causes the bacterial community to use the available oxygen at a slower pace, and for a
longer time. On the contrary, in dystrophic lakes, the bacterial community uses a larger
proportion of the DNOM pool for respiration and a smaller part for assimilation, leading
to high respiration rates and faster oxygen depletion.

5. Conclusions

We tested the applicability of an analytical method to determine the biodegradability
of DNOM, based on the rate of oxygen consumption by bacteria during incubation under
optimal conditions. The respiration rate (RR) and the DOC normalized RR (RRn), in
addition to the duration of rapid biodegradation (BdgT) of the DNOM, showed significant
spatial variation among boreal lakes in southeast Norway.

The variation in the RR was mainly driven by the characteristics of the DNOM. HMW
and aromatic DNOM was respired more slowly than LMW and hydrogen saturated DNOM.
Indeed, the sUVa was a main predictor of both the RR and RRn. The RR was also governed
by the trophic state of the lake. However, dystrophic lakes, with a high proportion of
recalcitrant DNOM and a low nutrient concentration, had the highest RR. It is likely that
the amount of BDOM left in these dystrophic lake water samples is low due to the long
residence time of lake water. It is thus hypothesised that the high RR is due to a priming
effect, caused by the addition of nutrients for the incubation experiment. Because the
studied lakes are generally lower-mesotrophic and dystrophic, the addition of nitrogen and
phosphate allowed an increased respiration rate. This implies that the rate of heterotrophic
respiration in these nutrient-poor lakes is mainly governed by the availability of reactive
nutrients and, in particular, nitrogen, with the C:N ratio being a main predictor of the
respiration rate.

Nutrient-rich lakes with high pH and oxygen concentration displayed a longer BdgT.
These lakes are also prone to contain more autochthonous DNOM, which is generally
more readily biodegradable. This suggests that the longer biodegradation period reflects a
greater variety in the DNOM quality, due to a mix of autochthonous and allochthonous
organic matter, which forces the bacteria community to adjust and thus extend its growth
phase. Although the RR is faster for lakes with a higher proportion of labile organic
matter, the biodegradation period may last longer due to the larger heterogeneity of the
biodegradable matter, in addition to a greater quantity of BDOM to degrade.

Our findings suggest that the balance between rapid RR and long BdgT may be partly
governed by the balance between bacterial respiration and assimilation. A DNOM pool
with a lower proportion of labile nutrient compounds (i.e., high C:N), such as in dystrophic
lakes, would enhance the bacterial respiration, hence resulting in a faster RR. On the
contrary, a DNOM pool with a high proportion of bioavailable autochthonous compounds,
such as those found in eutrophic lakes, would be better suited for bacterial assimilation,
hence leading to a longer biodegradation duration.
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.3390/w13162210/s1: Figure S1: Repartition of the 73 lakes depending on their trophic state, based
on Carlson’s Trophic State Index; Figure S2: Organization of a sensor plate. Figure; S3: Snapshot of
the SDS interface; Figure S4: Example of the oxygen concentration in a natural lake water sample;
Figure S5: Multiple imputation process; Figure S6: Correlation plot the 27 covariates; Figure S7:
Residual plots for lasso regression with log(RR) as response variable; Figure S8: Residual plots for
lasso regression with log(RRn) as response variable; Figure S9: Residual plots for lasso regression
with log(BdgT) as response variable; Figure S10: Residual plots for linear model with log(RR) as
response variable; Figure S11: Residual plots for linear model with log(RRn) as response variable;
Figure S12: Residual plots for linear model with log(BdgT) as response variable; Table S1: Summary
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