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Abstract: Optimal management of water systems tends to be very complex, especially when water
quality aspects are included. This paper addresses the management of multi-quality water networks
over a fixed time horizon. The problem is formulated as an optimization program that minimizes cost
by determining the optimal flow distribution that satisfies the water quantity and quality requirement
in the demand nodes. The resulted model is nonlinear and non-convex due to bilinear terms in the
mass balance equations of blending multi-quality flow. This results in several local optima, making
the process of solving large-scale problems to global optimality very challenging. One classical
approach to deal with this challenge is to use a multi-start procedure in which off-the-shelf local
optimization solvers are initialized with several random initial points. Then the final optimal solution
is considered as the lowest objective value over the different runs. This will lead to a cumbersome
and slow solution process for large-scale problems. In light of the above, this study supports using
ultra-fast simple optimization heuristics, which despite their moderate accuracy, can still reach the
optimum solution when run many times using a multi-start procedure. As such, the final solution
from simple optimization heuristics can compete with off-the-shelf nonlinear solvers in terms of
accuracy and efficiency. The paper presents a simple optimization heuristic, which is specially
tailored for the problem and compares its performance with a state-of-the-art nonlinear solver on
large-scale systems.

Keywords: multi-quality water networks; multi-source water networks; regional water systems
optimization; water networks optimization

1. Introduction

In recent years, water scarcity is being acknowledged across the world as an immediate
threat to current and future sustainability. The threat is even more relevant in arid and
semi-arid regions such as Middle East-North Africa (MENA) region. The MENA region is
considered one of the most water-scarce regions in the world [1]. Thus, efficient planning
and management for the water resources systems are crucial. Optimization models for
water systems planning and management are considered an effective tool to aid in the
decision-making process for managing water resources and their related infrastructure [2].
These models can be classified by the function they solve and the constraints they include.
Simpler models only include quantity (Q) variables and only solve the quantitative aspect
of the system. Some models are quantity-driven (with hydraulic considerations), called
Q-H models. These models solve the problem with quantity variables while taking into
account hydraulic consideration. When used in operational problems the Q-H models
usually solve real-time systems with low temporal resolution such as hours or part of the
hour [3]. Other models include the quality aspect of the water system, and these are called
Q-C models. These models have two sets of decision variables (flow and concentration),
but they do not include hydraulics explicitly. That is, they rely on the inherent assumption
that the network is hydraulically feasible [4,5]. Additionally, some models deal with all
three aspects; these are called Q-H-C models. Cohen et al. [6-8] developed an optimization

Water 2021, 13, 2209. https:/ /doi.org/10.3390/w13162209

https://www.mdpi.com/journal /water


https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-4924-2636
https://doi.org/10.3390/w13162209
https://doi.org/10.3390/w13162209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13162209
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13162209?type=check_update&version=2

Water 2021, 13, 2209

20f18

model that consists of three separate models: a Quality-Quantity (Q-C) model, a Quantity-
Hydraulic (Q-H) model, and a Quantity-Quality-Hydraulic (Q-C-H) model, which is a
combination of the other two models.

Typically, early models for regional water supply systems management deal with
quantities of water delivered from sources to demand zones. However, since over-pumping
and exploitation of the sources have intensified natural processes of salinization and con-
tamination, it became more important to include water quality aspects in the models [9-12].
Moreover, to meet the growing demands and to cope with water scarcity due to climate
change, there is an increasing reliance on non-conventional water sources (e.g., reclaimed
water, seawater desalination, brackish water) in integrated water supply systems [13,14].
As such, many water systems rely on a diversified portfolio of conventional and non-
conventional water resources, which may have different qualities. This will necessitate
the inclusion of water quality aspects since multi-quality water sources will be subject to
blending in the conveyance network [15-17]. In these systems with multi-quality water
sources, consumers will impose constraints on both water quantity and quality [18]. It is
important to note that to account for sustainability goals, regional water supply systems
models require a relatively long time horizon that assures adequate water sources in terms
of both quality and quantity. In light of the above, there is a need for management models
for Multi-year, Multi-quality Water Supply Systems (MMWSS).

Modeling the MMWSS problem will result in nonlinear and non-convex optimization
models. This is because the quality (concentration) in the network edges, which is unknown,
depends on the flow, which is also unknown, and on the quality of the water sources.
Specifically, nonlinearity and non-convexity are due to the use of bilinear terms in the
solute mass balance equations. For example, when salinity aspects are introduced, the
mathematical model turns nonlinear due to the bilinear equation of salt mass balance in
each mixing junction of the conveyance network. That is, to calculate the mass of salt in a
junction, the concentration variables have to be multiplied by the flow variables causing the
bilinear system of equations [16,17]. These characteristics of nonlinearity and non-convexity
introduce several local optima, making the process of solving large-scale problems to global
optimality very challenging [19]. Therefore, developing efficient solution algorithms for
large-scale MMWSS is very desirable.

In previous studies, such as [20-23], the quality variables were simulated outside the
optimization program so that a simpler optimization problem is obtained. For example,
in [23] an external module that consists of an Artificial Neural Network (ANN) is used
to estimate the water quality in the system, while in [22] water quality requirements are
represented by flow constraints. Cai et al., in [20], developed a multi-quality model for
a river basin where salinity presents a major environmental problem. The model has a
time horizon for a single year with monthly time steps. To deal with the complexity of
the model, a decomposition approach was adapted. The model is broken up into four
sub-problems; the first one is the flow balance with fixed salinity. The second is the first,
plus salt mass balance. The third is the second, plus the relationships defining the effect of
soil salinity on crop yield. The fourth problem is actually like the primary problem with no
infeasibilities. Clearly, these approaches that do not simultaneously consider quality and
quantity variables result in suboptimal solutions.

Other studies consider the joint optimization of quality and quantity of multi-quality
water networks, but many of them were solved using local nonlinear solvers [4,6,16,17,24-26].
For example, [6] solved a model of a multi-quality water supply system that minimizes the
cost of operation composed of several components: pumping from sources, transportation,
treatment, and yield reduction cost depending on water quality. The model is nonlinear
and non-convex and it was solved using a local solver based on the projected gradient
method [27]. Ostfeld and Shamir, in [24], solved a model for the optimal operation policy
of a multi-quality water supply system, which consists of the following elements: sources,
reservoirs, pipes, pumping stations, treatment plants, and consumption nodes. The ob-
jective function was to minimize the total operational cost. The solution was obtained
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using a local solver of GAMS/MINOS [28]. In a later study, Ostfeld and Shamir [25]
developed an integrated model for joint design and management of multi-quality water
supply systems. Due to non-smoothness, the r-algorithm [29] was adapted to solve the
optimization problem. Zaide [4] solved the MMWSS problem by nonlinear optimization
solver using the Generalized Reduced Gradient (GRG) algorithm [30]. The author notes
that using this direct approach is limited to small or mid-scale problems. As such, to deal
with the large size of the problem, [4] performed a relaxation in the model to reduce its
size. It is obvious that this kind of relaxation will often lead to a suboptimal solution for
the problem. As opposed to [4], [16] suggested a different reduction scheme that does
not change the original model. In [16] all the salinity variables are eliminated using alge-
braic manipulations such that a smaller optimization problem was obtained. The reduced
problem is then solved using a local nonlinear optimization solver which is based on the
Interior-Point algorithm [31]. While this reduction scheme is good in reducing the model
size (i.e., number of decision variables), it was found to introduce more nonlinearity in the
model. Thus, the nonlinear solver might converge to a locally optimal solution.

The studies in [5,32] followed a different approach in which computationally expensive
search methods such as Genetic Algorithms are used to solve the nonlinear non-convex
mathematical model. In [5] a quality-quantity flow model to optimize water distribution in
a regional water supply system with multi-quality sources is developed. The model is a
nonlinear optimization model with monthly operation units and a six-month management
horizon. The nonlinear mathematical model is solved by a hybrid Genetic Algorithm
(GA), in which a GRG algorithm is embedded in the GA to optimize the objective function
for each fitness evaluation. Cai et al., [32] adopted a similar hybrid GA approach for
solving large-scale nonlinear water management models. The proposed approach solves a
linear program for each fitness evaluation. These hybrid approaches are computationally
expensive, especially because an inner optimization problem must be solved for each
fitness function evaluation of the search algorithm.

Solution efficiency and accuracy are crucial properties when solving MMWSS models.
Alocal nonlinear solver may converge to different solutions depending on different initial
points; this makes it untrusted for real-life decision-making. One classical approach to deal
with this challenge is to use a multi-start procedure in which off-the-shelf local optimization
solvers are initialized with several random initial points. Then the final optimal solution is
considered as the lowest objective value over the different runs. However, this will lead to a
cumbersome and slow solution process for large-scale problems, which prevents real-time
interaction with the model results. Solution efficiency is a desired property for model users
since it facilitates real-time discussion of the model’s results between multiple stakeholders.

In light of the above, this study supports using ultra-fast, simple optimization heuris-
tics, which despite their moderate accuracy, can still reach the optimum solution when run
many times using a multi-start procedure. Namely, since a multi-start procedure should
be used for local solution approaches, it might be advantageous to use many fast trials of
simple solvers as opposed to using sophisticated slow solvers that have a higher likelihood
to reach good solutions. Running a large number of trials of simple local solvers can
compensate for its moderate accuracy in reaching good solutions. As such, the final solu-
tion from simple optimization heuristics can compete with off-the-shelf nonlinear solvers
in terms of accuracy and efficiency. The paper presents a simple optimization heuristic,
which is specially tailored for the MMWSS problem, and compares its performance with a
state-of-the-art nonlinear solver (IPOPT) on large-scale systems. IPOPT is an open-source
nonlinear optimization solver, which uses the interior-point algorithm [31]. Our local
optimization heuristic builds on tools of convex optimization to find local optima of the
MMWSS problem. The solution approach leverages the ability to efficiently solve linear
programs. It iterates between solving a linear program that approximates the original
problem and solving a single variable nonlinear optimization problem that reduces the
infeasibility of the linear approximation. This local heuristic depends on the initial point
that is used to build the first linear approximation. It is therefore typical to initialize the
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algorithm with several randomly chosen initial points and take the final point as the one
with the lowest objective value over the different runs.

The idea of using sequential convex sub-problems is not new. The famous Sequen-
tial Linear Programming (SLP) algorithm [33,34] and Sequential Quadratic Programming
(SQP) algorithm [35], utilize this concept. However, these approaches require trust regions
to ensure convergence and to limit the iterations to a region where the approximation
is valid [36]. Unlike these procedures, our suggested heuristic does not require a trust
region. In the suggested approach, the MMWSS problem characteristics are utilized to
iterate between the linear approximations and a new (easy-to-solve) nonlinear problem
that directs the solution process toward the feasible region of the original nonlinear opti-
mization problem.

2. The Nonlinear MMWSS Formulation

The water network is comprised of a set of nodes that represent sources, mixing
junctions and demand zones, and a set of links that represent the flow of water from
one node to the other. Water flow and quality (concentration) in each link are modeled
using mass balance equations in each node. For concentration in the links, we consider a
nonreactive solute assuming complete mixing at the nodes. The objective is to select the
optimal flow distribution in the network that minimizes the overall cost of the management
horizon subject to bounding constraints on flow and concentration.

A water network with j € ] mixing junctions and / € L links can be represented using
nodes-links incidence matrix, A € R//XILI. The matrix has a row for each node and a
column for each link such that the only nonzero elements in each row are +1 and —1 for
incoming and outgoing links respectively. We also define the sources set S with elements

{51,...,5‘5‘} and the demands set D with elements {dl,...,d|D|}. For example, the

system in Figure 1, with two sources, two demand nodes, and three mixing junctions, has
an incidence matrix A € R3*7 as given in Table 1 and the sets | = {j1,2,j3}, S = {s1,52},
D= {dl,dz} and L = {ll, .. .,17}.

Figure 1. Illustrative network.

Table 1. Nodes-links incidence matrix, A, for the illustrative example.

hy I I Iy I lg I7
i +1 0 -1 0 1 0 0
j2 0 +1 +1 -1 0 -1 0

j3 0 0 0 +1 +1 0 -1
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2.1. Objective Function

The objective function is to minimize the total operation cost. The cost is the sum of
two different costs: conveyance cost and cost of water production in sources.

T
cost = Y (CC" + PC') (1)
t=1

where cost is the total sum of operational costs; CC! is the conveyance cost of year t; PC! is
the production cost of year . T is the number of years in the management horizon.

In this model, the per-unit cost of production is predetermined. Hence, the production
cost is calculated as in Equation (2).

pCt = ¥ PC!
seS (2)
PCt = PUPC!- Qt

where PC! is the production cost of source s at time t; Q' is water production in source s at
time t; PUPC! is the per-unit production cost for source s at time ¢.

Generally, the conveyance cost in the pipes is derived from the head-loss, which is
calculated by the nonlinear Hazen-Williams formula. Nevertheless, in regional water
systems such as those considered herein, it is possible to use the Hazen-Williams formula
to obtain an average constant per-unit conveyance cost. For example, this can be done
by assuming a typical hydraulic gradient for the short-term operation in the distribution
system of 1%o as given in Equation (3).

cc'= y cc,
peP
t t t
CC) = PUCC,, - Q. 3)
PUCCE — X,-KWHC
P

wt-y

X!, =0.001- L,

where C C;, is conveyance cost in pipe p; PUC C;, is the per-unit conveyance cost in pipe p;
Q; is flow in pipe p; X;, is head-loss in pipe p; w' is the number of pumping hours; 7 is
the efficiency; KWHC! is the energy cost; L, is the length of pipe p; P is a set of pipes with

elements {pl,. . .,p‘P|}.

2.2. Constraints
2.2.1. Water Conservation Law

Given the representation of the network as a directed graph with nodes-links incidence
matrix, A, the water balance for each time step, ¢, is imposed by the following linear
equation system that ensures water conservation at the network nodes:

A-Q'=0 Vit =1..T 4)

where Qf € RILI¥1 is a vector of flow decision variables in the network links. Since the
demanded flow is known, the flow ingoing the demand nodes is also fixed. That is, given
the values of the flow to demand zones Q', Vd € D, the following linear equality constraints
should be imposed:

Ip-Q' = Qh Vt=1.T (5)

where Ip € RIPI¥ILl is a given incidence matrix that extracts the demands’ links from the
vector Qf, namely, each row in I is corresponding to a demand node where each element
in the row takes the value one if the link is associated with the demand node and zero
otherwise. Qf, € RIPI*1 is a given vector that collects the known demands Qf, Vd € D. For
the illustrative example in Figure 1, the definition of the matrix Ip is given in Table 2.
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Table 2. Demands-links incidence matrix, Ip, for the illustrative example.
I I I3 Iy Is lg I
dq 0 0 0 0 0 +1 0
dy 0 0 0 0 0 0 +1

2.2.2. The Solute Mass Conservation Law

For each time period, ¢, the following bilinear (i.e., nonlinear, non-convex) system of
equations ensures solute mass conservation at network nodes:

A-M =0 Vt=1.T ©)
Mt =QtoCt Vt=1.T

where C! € RILI*1 is a vector of concentration decision variables in the network links;
Mt e RILX1 is a vector of solute mass in the network links; o is the Hadamard (i.e.,
element-wise) product between two vectors. This bilinear system of equations is the only
source of nonlinearity and non-convexity in the MMWSS problem. Since the concentration
of the sources is known, the concentration that outgoes source nodes is fixed. That is, given
the values of the concentrations in the sources C! Vs € S, the following linear equality
constraints should be imposed:

Ig-Ct=ct wvt=1.T (7)

where I5 € RISI*ILl is a given incidence matrix which extracts the sources’ links from vector
Ct, namely, each row in I is corresponding to a source node where each element in the
row takes the value one if the link is associated with the source node and zero otherwise.
Ck e RISI¥1 is a given vector that collects the known concentrations Ct Vs € S. For the
illustrative example in Figure 1, the definition of the matrix I is given in Table 3.

Table 3. Sources-links incidence matrix, Ig, for the illustrative example.

h I I3 Iy Is lg I7
S1 1 0 0 0 0 0 0
Sp 0 1 0 0 0 0 0

2.2.3. Dilution Condition

The model assumes total mixing at all junction nodes, so the salinity in all links leaving

a node is the same. This dilution condition is given by the linear system of equations as
defined in Equation (8).

B-C'=0 Vt=1.T 8)

where the matrix B € R(LI=I/I=ISD*IL] js defined such that each row indicates equal
concentration for two outgoing links which share the same node; i.e., each row has only
two non-zero elements +1 and —1; when three links leave the same node there are two
rows, each with two non-zero elements +1 and —1. In the illustrative example (Figure 1),
the matrix B € R**7 is given in Table 4. The junction nodes j;, j,» have two outgoing links,
therefore each of them contributes one row in the matrix B.

Table 4. Dilution constraints matrix, B, for the illustrative example.
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2.2.4. Conveyance Capacity Constraints
The model deals with the balance of water and solute mass and does not consider
explicitly the hydraulic energy balance of the system. However, to prevent infeasibilities
of hydraulic conditions, the flows in the pipes are limited by capacity constraints in
Equation (9). The lower bound is set to Q;rmm, which is larger or equal to zero since the
flow direction in the pipes is fixed.
bmin < Q) < Q) VpeP Vt=1.T 9)

p,min p,max

where Q7 ., Q) max are the minimum and the maximum flow in pipe p, respectively.

2.2.5. Production Capacity Constraints

In each source, there is a maximum physical capacity in each period (e.g., pumping
station capacity) as well as multi-period (i.e., cumulative) water production capacity that
represents the overall production in the management horizon (e.g., to accounting for
sustainability aspects, which ensure that the source is not overexploited). These constraints
are given in Equations (10) and (11), respectively. Note that the lower bound, Q! ., should
be set to a non-negative value. ,

Q;,min < Qé < Qé,max Vse S Vt=1...T (10)
T
Y Qi< QUi Vses (11)
t=1

where Q! - Qf 1ax are the minimum and the maximum flow from source s, respectively;

s,mi
total

max 18 the total amount of water withdrawal from source s.

2.2.6. Concentration Constraints

Concentration requirements are imposed in demand nodes. As such the concentration
of water that reaches the demand node should be within a prescribed minimum and
maximum concentration as given in Equation (12). In case the demand node does not have
concentration bounds, practical bounds could be added using the known concentration of

. t R t t _ t _
the sources by setting C}; ;. = rsnelgl(Cs) and Cl; = ?easx(cs) Vd € D Vt =1..T.
Clhimin <Cj<Clhmsx VdEDVt=1.T (12)
where Cfi,mm, Cfi,max are the minimum and the maximum concentration in demand node d,

respectively. In the absence of concentration limits in pipes, one can define the following
bounds:

min(Cé) <C

r <max(Cf) VpeP Vt=1.T (13)
se

2.3. Optimization Problem

The overall optimization model is given in Equations (14)-(22), hereafter we will
donate this model as the Q-C model. This optimization problem is a nonlinear and non-
convex optimization program due to the use of bilinear terms in the third constraint. This
formulation is given in terms of decision variables in the network links Qf, Cf, M* € RILIX1,

T
min th -Qf (14)
=1

Subject to
A-Q'=0 Vt=1.T (15)
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.Mt = _

Mogec  wellr 16)
B-C'=0 Vt=1.T (17)
Is- C' = C§ vt =1..T (18)
Ip-Q'=Qp Vi=1.T (19)
min < Q' < Qhax vt=1.T (20)
Clin SC' < Chax  VE=1.T 1)
i Is- Q' < QUi 22)

t=1

where f! € R is a given row vector that collects the per-unit costs from Equations (2)

and (3); QL. , QL. € R™IL are column vectors that collect the flow bounds from

Equations (9) and (10); Crtnin, Ct.x € R1X Ll are column vectors that collect the concentra-
to

tion bounds from Equations (12) and (13); Qg
the values Q! Vs e §S.

s,max

tal ¢ RISI¥1 js a given vector that collects

3. Simple Optimization Heuristic

As discussed previously, the inclusion of both quantity and quality variables increases
the computational complexity of mathematical models because of the nonlinear and non-
convex relationships involved in the solute mass balance. This heightened complexity
is dominant in large-scale and long-term models. In view of this, it is a necessity to
develop efficient solution methods to solve Q-C models. In this section, we propose and
examine the performance of a Simple Optimization Heuristic (SOH) to solve quantity-
quality management models. The basic idea consists of replacing the bilinear terms with
first-order Taylor approximation to obtain a search direction. Then, this direction is used
to formulate a simple nonlinear problem in which the infeasibility of the solute mass
balance is minimized. The process is reiterated by successively solving linear and nonlinear
optimization problems until convergence is obtained.

We denote the convex (polyhedral) feasible region of the constrains in Equations (15),
(17)-(22) as F, hence, after substitution of M, the optimization problem could be written
in compact forms as:

T
min th Q! (23)
t=1
Subject to
(QVf,CW) eF (24)
A-(QoCh=0 Vt=1.T (25)

To perform the linearization, the formulation of the Q-C model in Equations (23)—(25)
remains the same except for the second constraint, which is the source of the nonlinearity
and non-convexity. Thus, the linear approximation of the Hadamard (i.e., element-wise)
product between two vectors is obtained based on the first order, bi-dimensional Taylor
approximation as shown in Equations (26).

Qt o Ct ~ Ct,k o Qt + Qt,k o Ct _ Qt,k o Ct,k (26)

where Q'f and C'* are the approximation points at iteration k.
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Using this convex approximation, the sequential linear approximation subproblem
for iteration k can be formulated as:

T
min th Q (27)
t=1
Subject to
(@, c*)er (28)
A-(ChoQl+ Q% ot —QkoCtfy =0  Wt=1.T (29)

This linearization, however, introduces a convex approximation of the feasible region,
which might be smaller than the original feasible region of the optimization problem
in Equations (23)—(25). This can lead to infeasibility in the linear subproblems. This
issue of infeasibility in the subproblems is also encountered in SQP and other iterative
techniques [37,38]. To deal with the feasibility of subproblems, we propose the following
relaxation that introduces one penalized artificial variable in Equations (30) and (32).
Clearly, the relaxed problem is always feasible (when the original problem has a nonempty
feasible region), and the artificial variable v corresponds to the maximum deviation in

Equation (29).
T
min ) f'- Q'+ B0 (30)
t=1
Subject to
(QW,CW) cF (31)
—0< A (ChoQt + Qo Ct —QtFoCtFy <v  WE=1..T (32)

where B is a predetermined penalty parameter, and v is an artificial variable that ensures
the feasibility of the constraint in Equation (32).

For large values of B, when the feasible region is nonempty, the solutions to the relaxed
problem are solutions to the linear approximation problem in Equations (27)-(29), and the
optimal value of v will be zero [39]. Nonetheless, the feasibility of the linear approximation
does not guarantee the feasibility of the original nonlinear problem in Equations (23)—(25).
To move to the feasible region of the original nonlinear problem, another subproblem
that reduces the nonlinear infeasibility between iterations is solved. Given the current
approximation points, ( Qt'k, C t'k), and given the current solution of the relaxed problem,
denoted as ( Qt’k chk

lin” ~lin

should be solved:

), the following single variable nonlinear optimization problem

min i ft-Qf(a) + B - max(RelInf(a) —¢,0)
=1

Subject to
0<a<1

(33)

where ¢ is predefined small acceptable tolerance; Q(«) is a point on the search direction
as defined in Equation (34); Rellnf(a) is the relative infeasibility and it is defined in

Equation (36).
Q'(a) = (1-a)- Q" +a- Qp, (34)
Clw) = (1—a) - C* +a.Clik (35)
| [A-(Q () o CH(w)) ]y
Rellnf(a) = ! (36)
I = T e @ e @yl
where || - || is the Euclidean norm and the notation [ - ], indicates a vector the collects all

vectors for each t = 1...T.
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The relative infeasibility is interpreted as the violation in the solute mass balance
relative to the solute mass that flows in the network. The relative measure of violation is
considered to account for the magnitude of the solute mass in the network nodes. Consider,
for example, a node with one ingoing pipe and one outgoing pipe where the flow in the
two pipes is 100 million cubic meters per year, the salinity in each pipe is 200 mg-CL per
Liter, then a violation of 1 kg in salt mass is negligible compared to the total salt mass,
which is 2 x 107 kg.

It is noteworthy that any solution of the nonlinear problem in Equation (33) will be
feasible for the set of constraints in . This is because for 0 < a < 1, the values of Qt(oc)
and C!(«) are convex combinations of feasible points as defined in Equations (34) and (35).
In light of the above, the SOH algorithm is stated in Algorithm 1.

Algorithm 1 Simple Optimization Heuristic

Given:

Repeat

Until

Randomly generated initial point (Q'?, C*?) large positive penalty parameter f3;
small positive tolerance ¢; k = 0

Lk otk

1. Solve Linear Approximation. Set the value of (Qy;,., C},

Equations (30)—(32).

2. Solve Nonlinear Problem. Set the value of (QU4*1, CtA+1) to the solution of the optimization problem in
Equation (33).

3. Update Iteration. k =k + 1

Stopping criterion is satisfied.

) to the solution of the optimization problem in

3.1. Initialize

The SOH above is a local optimization heuristic; as such, the final point found may
depend on the initial starting point. Therefore, the algorithm is initialized with several
random initial points, where the best run among all runs is taken as the solution to the
optimization problem.

3.2. Solve Linear Approximation

The obtained approximation is a linear problem, which could be solved with any off-
the-shelf optimization solver. In this study, we used CPLEX [40] as the linear programming
solver.

3.3. Solve Nonlinear Problem

The obtained problem in this step is nonlinear non-convex, but it is easy to solve
because it only involves a single variable, which is bounded between zero and one. It is
possible to solve this problem by grid search in the variable bounds or using dedicated
nonlinear single variable methods. For example, in this study, we used the MATLAB solver
fminbnd, which implements the golden section method [41].

3.4. Stopping Criterion

One reasonable stopping criterion is that the distance (Euclidean norm) between two
successive points during the iteration process is less than the tolerance. However, we found
that the SOH might oscillate between two points, which are not necessarily successive. To
prevent oscillation, the algorithm stops if the current solution is within relative distance e
from any previously obtained solution in the iteration process. This condition is defined in
Equation (37).

. . IH[Q*],— Q4]
1 Vit i
stop = if ,-r-“ff‘k< T, <€ (37)
0 Otherwise




Water 2021, 13, 2209

11 of 18

4. Results and Discussion

In this section, we analyze the SOH performance to show that it can compete with
state-of-the-art nonlinear solvers when it runs multiple times using a multi-start proce-
dure. The layout of the Modena network (Figure 2), which is available in [42], is used
to compare the performance of the SOH against the nonlinear solver. For solving the
nonlinear Q-C model, the IPOPT solver was used [31]. IPOPT is an open-source nonlinear
optimization solver, which uses the interior-point algorithm. The experiment is pro-
grammed in MATLAB using the YALMIP modeling language [43], the code is available in
GitHub Repository (https://github.com/SWSLAB/SOH/ (Accessed on 12 August 2021).
The SOH algorithm is used with = 10°, & = 0.001 for all runs. IPOPT is used with
default tuning parameters except for the maximum iteration limit, which is increased to
one million iterations. In the absence of other studies that compare the performance of
optimization algorithms on the Q-C model, we only compared the SOH to IPOPT. Future
research can build on the code and data in the GitHub Repository to test the performance
of other optimization heuristics compared to the proposed SOH.

Figure 2. Layout of Modena network.

We used the same network layout of the Modena network as in [42], but some of
the configurations were randomly generated to create synthetic problems for testing the
optimization solvers. For example, we have defined 30 sources and 50 demands nodes
in the network that were randomly chosen. The demands, bounds, and costs were also
randomly generated along the management horizon. The salinity levels in the source
nodes are chosen such that the salinity is high for sources with low production cost, this
characteristic will create a more challenging problem because of the tradeoff between
meeting the quality constraints and minimizing the production cost. It is noteworthy that
because the layout and pipe directions are predetermined in the Modena network, the
feasibility of randomly generated problems is not guaranteed. For example, if a node that
has only outgoing pipes is selected as a demand node, the problem will be infeasible, or if
the total capacity of the links ingoing a demand node is below the required demand, the
problem will be infeasible. In this study, we only consider randomly generated problems,
which have feasible solutions. The configurations of the solved problems are available in
https://github.com/SWSLAB/SOH/ (accessed on 12 August 2021).

To study the impact of model size on computation time and accuracy, a series of runs
are made in which the number of years is increased from one to eight. For a single year, the
nonlinear Q-C model (Equations (14)—(22)) of the Modena network includes 1191 decision
variables. The size of the optimization problem will linearly increase with the management
horizon. For T = 8, the nonlinear optimization model will have 1191 x 8 = 9528 decision
variables. Since both the SOH and IPOPT are local optimization solvers, we adapted a
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multi-start procedure in which the optimization problem is solved from 25 starting points,
which are randomly drawn from uniform probability distribution defined by the decision
variables bounds. At the end of the process, each solver will end up with a “bank” of 25
solutions for the problem. The selected solution from each solver is the one that is feasible
and minimizes the objective function.

Before we start the comparison, Figure 3 demonstrates the iteration process in the
SOH. Figure 3 shows the solution progress for the optimal run with T = 1. In this run, the
relative infeasibility is more than 1% up to iteration 10, and the objective function drops
drastically in these first 10 iterations from 525 M$ to 300 M$. The relative infeasibility is
within the tolerance ¢ = 0.1% starting from iteration 15, while the stopping criterion in
Equation (37) is satisfied at iteration 96. The objective function improves from 299.7 to
290.4 M$ between iterations 15 and 96.

550

T T T T T 110

— Objective Function
Relative Infeasibility | |

---------- Stopping Criterion

& X <
< 450 - et >
g ................. §
= =
> L
° 400 ,”>_)
k3 ©
F 350 2 E
o) 10

300

250 104

10 20 30 40 50 60 70 80 90 100

Iteration

Figure 3. Iteration process for the optimal runof T = 1.

To compare the efficiency of the SOH and IPOPT, Figure 4 shows the average solver
time for different problems with increasing size (number of decision variables ranges from
1191 to 5955), which are obtained by increasing the problem horizon from one year to
five years. The results show that the solution time of the nonlinear solver is increasing
exponentially with the problem size while the SOH solves the problems with a moderate
increase in the solution time. For example, for a Q-C model with a horizon of five years,
the solution time of the multi-start procedure using IPOPT is 25 x 693 = 17,325 s (~4.81 h)
while using the SOH is 25 x 34 = 850 s (~0.24 h).

700

Nonlinear Solver (IPOPT)

— OptimizationHeuristic
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1
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Figure 4. Average solution time for T = 1...5 without solver time limit.
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Further increasing the problem horizon will create larger problems in which the
nonlinear solver will require a longer solution time. It is typical when using nonlinear
solvers to limit the number of iterations or to limit the solver time. In Figure 5, the problem
is further increased to 9528 decision variables by increasing the problem horizon to eight
years. Nonetheless, to examine the practicality of the nonlinear solver, the IPOPT solver
time limit is set to 1800 s (0.5 h). While the exponential increase in IPOPT solver is not
maintained after T = 5 (due to limiting the solver time), the difference between the solution
time of the SOH and IPOPT is still evident, since the SOH shows an almost linear increase in
solution time with respect to the problem horizon. For a large problem with 9528 decision
variables, the multi-start procedure will require about 11 h using IPOPT, but only 0.7 h
using the SOH. Moreover, for the largest problem, only two out of the 25 runs in IPOPT
were declared successful (reached first-order optimality conditions), the rest of the runs
either failed to converge to local optima or reached the maximum time limit. Figure 5
also shows the successful runs of IPOPT out of 25 for increasing problem horizon (i.e.,
increasing problem size).

Average Solver Time sec)

al
o
o

1000

o
o
o

T

NonlinearSolver (IPOPT)

| [~ OptimizationHeuristic

Solver MaximumTime Setting

2 3 4 5

Declared SuccessfulRuns

1

T (years) T (years)

(@) (b)

Figure 5. (a) Average solution time for T = 1...8 with solver time limit of 1800 seconds; (b) Successful runs of IPOPT out of
25for T =1..8.

Figure 6 shows the box-and-whiskers plots for IPOPT and SOH solution time, re-
spectively. The boxes show the interquartile ranges with the red crossbar depicting the
median and the red circle depicting the mean. The whiskers show the minimum and
maximum values. The results show that while IPOPT solver can reach the solution fast
when the problem is small in most of the runs, the solution time becomes impractical for
large problems as most of the runs reach the practical limit of 0.5 h per run. For example,
when T = 8§, 20 out of 25 of the runs (i.e., 80%) reach the maximum time limit of the solver.
On the other hand, the worst solution time of the SOH is 155 s.
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Figure 6. Box-and-whiskers plots for IPOPT (a) and SOH (b) solution time.
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Figures 7 and 8 show the detailed solver time histograms of the smallest and largest

problem for IPOPT and SOH, respectively. In the smallest problem with T = 1, 20 out of 25

the runs in IPOPT required a short run time of 6.6 s, however for the large problem with
T =8, 20 out of the 25 runs reach the time limit. Figure 8 shows the solver time in the SOH
for the small problem is less than 3 s in all runs, while for the large problem the solver time
is almost uniformly distributed between 46-154.7 s.
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Figure 7. Histogram of IPOPT solver time for the small (a) and the large (b) problems.
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Figure 8. Histogram of SOH solution time for the small (a) and the large (b) problems.

In light of the above, it is clear that the SOH solves large problems much faster than
the nonlinear solver, but the question to tackle next is: is it as accurate?

To answer this question we define the error between the best objective values obtained
by the multi-start procedure using IPOPT and SOH as given in Equation (38).

ObjErr = QPPObIsot — OPIObjinort 4400, (38)

OptObjrpopt

Figure 9 shows the objective error, as defined in Equation (38), for increasing problem
horizon (i.e., increasing problem size). The SOH shows good accuracy for all the solved
problems. The worst-case error is as low as 0.45%. In fact, for T > 5 the error is negative,
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indicating that the optimal objective value reached by the SOH is better than the optimal
value obtained in IPOPT. For example, when T = 7 the SOH optimal value is 0.32% better
than the IPOPT solution. However, in general, the error is relatively low (regardless of its
sign) and the two solutions could be considered identical for practical purposes.

S o o
Now s
T T

ObjectiveError (%)
o

1 2 3 4 5 6 7 8
T (years)
Figure 9. Objective error for the SOH compared to the best solution from IPOPT.
To judge the quality of the solution it is not enough to examine the objective function,

one should also examine the constraints violation of the problem. Figure 10 shows the
relative infeasibility in the solute balance as defined in Equation (39).

I [A-(Q" 0 C™)]yll
| [Q o CH*y|

Rellnf = (39)

where Q'*, C* are the optimal decision values as obtained from the multi-start procedure
using the SOH. The results in Figure 10 show that the relative infeasibility is below the
acceptable tolerance of the SOH ( ¢ = 0.1%) for all the solved problems.

0.100

Resulted Infeasibility
— — —Infeasibility Tolerance

0.1000%

0.0999%

0.099

Relative SoluteBalance Infeasibility (%)
o

2 3 4 5 6 7 8
T years)

Figure 10. Relative infeasibility using the SOH.

Figure 11 shows the maximum solute balance infeasibility as defined in Equation (40).
The results in Figure 11 show that while maximum infeasibility is generally increasing
with problem size, the maximum infeasibility is as low as 8.13 kg per year, which is a very
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negligible imbalance for practical regional water supply systems that deliver millions of
cubic meters per year.
MaxInf = max([A- (Q" o C™)],,) (40)
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Figure 11. Maximum infeasibility using the SOH.5. Conclusions.

Solution efficiency is a key element for the practical implementation of Q-C models.
Often, Q-C optimization models results will be used within Decision Support Systems to
facilitate active discussion between stakeholders. A slow solution process will hinder real-
time stakeholders’” interaction with the model in which scenarios (i.e., changing constraints
or different parameters) are refined rapidly. In practice, it is hard to define the scenarios
in advance; usually, the scenarios are refined during an active discussion between the
stakeholders (partly by seeing how the model reacts). Near-real-time interaction with the
model is very important, and it could be done only if the model can be solved in a reasonable
time. Thus, a fast solution process can contribute to expediting stakeholders’ engagement
with Decision Support Systems. Our results indicate that using simple optimization
heuristics combined with a multi-start optimization procedure can be an alternative to
off-the-shelf nonlinear solvers when solving multisource quantity-quality models. The
results from the suggested approach compete with nonlinear solvers in terms of both
accuracy and efficiency. The results show that for large-scale problems (five-year horizon)
the nonlinear solver will require ~4.8 h, making it an impractical tool for near-real-time
interactions with the model, while the suggested heuristic can solve the same problem in
~15 minutes. If we further increase the horizon to eight years (i.e., 9528 decision variables),
the nonlinear solver will reach the maximum time limit of 1800 s in 80% of the runs, and
the runtime will be as high as ~11 h which is compared to ~0.7 h when using the SOH.
This efficiency of the SOH is obtained by harnessing ultra-fast optimization procedures
within an iterative process. Moreover, the results show that SOH can reach good accuracy
with maximum relative error in the objective function of 0.45% and relative infeasibility
within the prescribed tolerance. Still, the SOH is a local solver (as well as the nonlinear
solver, IPOPT), and thus, it cannot guarantee a globally optimal solution. In this study, we
compared the performance of the nonlinear solver and the SOH using the same settings of
the multi-start procedure (i.e., the same number of initial points). However, owing to the
fast solution process of the SOH, we can consider a larger number of initial points, which
will increase the chance to reach a globally optimal solution. Further research is needed
to examine the performance of the proposed approach in reaching the global optimum
compared to state-of-the-art global optimization solvers.

Funding: This research was funded by the Israeli Water Authority.
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