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Abstract: River flow velocity is determined by the energy available for flow motion and the energy 

fraction lost by flow resistance. We compared the performance of different equations for the Darcy-

Weisbach resistance coefficient (f) and empirical equations to predict flow velocity. The set of equa-

tions was tested using data from the Quinuas headwater mountain river in the Andean region. The 

data was collected in three Cascades, two Step-pools, and one Plane-bed covering a wide range of ve-

locity magnitudes. The results reveal that nondimensional hydraulic geometry equations (NDHG) 

with a Nash-Sutcliffe efficiency index (EF) varying from 0.6–0.85 provide the most accurate velocity 

prediction. Furthermore, the study proposes a methodology applicable to all morphologies for de-

fining the NDHG parameters using easily measured field data. The results show an improvement 

in predictability with EF values in the range of 0.81–0.86. Moreover, the methodology was tested 

against data from the literature, which was not divided into morphologies providing EF values of 

around 0.9. The authors encourage the application of the presented methodology to other reaches 

to obtain additional data about the NDHG parameters. Our findings suggest that those parameters 

could be related to reach characteristics (e.g., certain characteristic grain size), and in that case, the 

methodology could be useful in ungauged streams. 

Keywords: bed roughness; Cascade; mountain river; Plane-bed; Step-pool; streams and rivers 

 

1. Introduction 

Prediction of the mean velocity in a river is important from a scientific and practical 

point of view. Nondimensional hydraulic geometry equations (NDHG) are capable of di-

rectly estimating the mean velocity but have parameters that vary according to the river 

morphology [1]. Indirect mean velocity estimation using the Manning, Chézy, or Darcy-

Weisbach equations is also common. Predictive empirical equations (PEEs) are focused 

mainly on the prediction of the Darcy–Weisbach (f) dimensionless resistance parameter, 

which has a physical meaning. However, PEEs face several challenges in mountain rivers. 

First, each PEE is derived under different flow conditions and river morphologies, using 

different measuring techniques [2]. Second, mountain river characteristics such as steep 

slopes (bed slope (S0) greater than 0.2%) [3], an average depth comparable to bed material 

size [4], and a coarse, poorly sorted clast [5] result in resistance patterns that differ from 

plane rivers. Third, mountain river morphologies such as Step-pools [6–9], Cascades [10,11], 

and Plane-beds [8] add complexity to resistance analysis as each morphology possesses 

different resistance characteristics. Authors have estimated PEE uncertainties of 30% [5] 

and 66% [8] in mountain rivers. Hence, an analysis of PEE for mountain streams under 
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different flow, geographical, and dissipative conditions is needed to improve velocity es-

timation approaches. 

Nondimensional hydraulic geometry equations (NDHG) relate dimensionless veloc-

ity to dimensionless unitary flow (U*-q* or U**-q**), providing a direct estimation of ve-

locity. Ferguson [4] obtained this expression when bed shear stress and the generalized 

power law were related by the term (8/f)0.5 to produce a U*-q* expression. Rickenmann and 

Recking [12] modified U* and q* by adding the energy slope, resulting in U**-q**. These 

variables were found by Nitsche et al. [11] in applying a dimensional analysis. NDHG 

equations have been successfully calibrated in different experiments. Comiti et al. [1] used 

177 velocities and flow resistance data from Cascades and Step-pools. Comiti et al. [13] de-

veloped a flume study investigating the resistance at the nappe and skimming flow in 

Step-pools. Zimmermann [14] conducted 31 experiments in a flume for Cascades. Nitsche 

et al. [11] used data from the Swiss Alps in Plane-bed/riffle, Step-pool, and Cascade morphol-

ogies; they found a pre-factor for the relation U**-q** that depends on the boulder concen-

tration. The NDHGs cited in the literature possess different parameters; some NDHGs 

differ in equation structure, which limits their applicability. 

Studies around the world have yielded several types of PEEs. Jarrett [15] used dis-

charge data at 21 reaches with uniform flow and minimal vegetation in the Rocky Moun-

tains of Colorado to study different reach conditions. After several regressions, the result-

ing equation expressed n proportional to SF (Energy Slope) and RH (Hydraulic Radius). 

Bathurst [16] found a semilogarithmic relation ((8/f)0.5 = f(log(d/D84); d: mean water depth 

and D84: 84th percentile of the grain-size distribution) for the resistance parameter using 

measured data in upland British rivers, data from previous studies, and flume data. Bath-

urst [5] used data from the literature with uniform flow and a certain range of flows, 

slopes, and bed material from the United Kingdom, the US, and the Czech Republic. These 

data were used to calibrate two exponential equations for resistance depending on the 

reach slope. Maxwell and Papanicolaou [17] performed a flume experiment with a natural 

river gravel bed, producing a semilogarithmic equation for resistance prediction in Step-

pools. Lee and Ferguson [18] studied resistance in Step-pools using field and flume data. 

Field data were collected at sites meeting certain slope range, grain size, accessibility, and 

morphology requirements. A semilogarithmic equation was obtained, but the best option 

for roughness length was D50 of the step material. Aberle and Smart [2] conducted a flume 

experiment investigating the resistance in Step-pools. They found that the standard devia-

tion of bed elevation (s standard deviation of residuals between the linear trend of bed 

elevation and the bed elevation) is a better representation of roughness height in an expo-

nential equation. Ferguson [4] based his analysis on data from riffles, runs, Step-pools, and 

pool-riffles in the UK, the US, New Zealand, and Italy to calibrate a variable power equa-

tion for shallow and deep flows. Romero et al. [19] derived a logarithmic relation for re-

sistance depending on the riverbed slope using data from five rivers in Bolivia. According 

to Whol [20], there is not a best empirical equation to predict the roughness parameter in 

mountain rivers because the characteristics of mountain rivers make it difficult to estimate 

resistance. 

This study tested the performance of eleven empirical resistance equations with the 

objective of mimicking the measured velocity for the most common morphologies at the 

headwater of an Andean Mountain river. The applied approach guaranteed interpretation 

of the suitability of each equation for three morphologies: Cascade, Step-pool, and Plane-

bed. The test showed that NDHG equations are the best option for all morphologies. The 

novelty of this study lies in the development of a methodology that enables the derivation 

of NDHG equation parameters through regression analysis. The proposed approach im-

proves the estimation of velocity, resistance parameters, and traveling time in mountain 

rivers. 
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2. Materials and Methods 

2.1. River Reach 

For this study, experimental data were collected from a 1500 m longitudinal section 

in the headwaters of the Quinuas river (Figure 1), located in the province of Azuay, Ecua-

dor. The river section is situated between 0 + 000 at 3664.4 masl and 1 + 431.13 at 3605.77 

masl, with a mean slope of 4%. This reach was selected given the relatively large variation 

in river morphology consisting of three Cascades, two Step-pools, and one Plane-bed. Table 

1 presents pictures and schemes of each morphology to illustrate its bed characteristics. 

The geometric characteristics of each morphology are presented in Table 2. The reach 

length was measured along the thalweg; the bed slope (S0) for each morphology was ob-

tained through linear regression of thalweg points. 

 

Figure 1. Plan view of the studied 1500 km river reach showing the sequence of the sub-reaches and the location of the 

meteorological station. 
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Table 1. Longitudinal profiles and pictures of Cascade, Step-pool, and Plane-bed. 

Profile Picture 

Plain bed 

 
 

Cascade  

 

 

Step-pool  
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Table 2. Average geometry characteristics of the studied reaches. 

Reach Length (m) S0 (%) sΔz (m) 1 s (m) 2 k3 (m) 3 dstep (m) 4 lstep (m) 4 

Measured 

Manning 

Range 

Cascade 1 11.95 8.82% 0.041 0.022 0.287   0.120–0.264 

Step-pool 1 12.22 6.10% 0.288 0.177 0.435 0.491 6.61 0.108–0.414 

Cascade 2 14.58 9.30% 0.282 0.179 1.299   0.139–0.510 

Step-pool 2 11.82 8.08% 0.197 0.107 0.336 0.442 3.49 0.178–0.472 

Plane-bed 1 6.26 3.16% 0.039 0.017 0.197   0.036–0.242 

Cascade 3 18.08 8.50% 0.427 0.214 0.474   0.142–0.456 
1 s∆z is the standard deviation of the difference between consecutive thalweg points. Adapted from [18]. 2 s is the standard 

deviation of residuals between the linear trend of bed elevation and the corresponding bed elevation points [18]. 3 k3 is the 

average of the maximum difference of each consecutive triplet of points in the thalweg. Adapted from [18]. 4 dstep and lstep 

represent the height and spacing of the steps in the Step-pool morphologies, respectively. See illustration in Table 1 [7]. 

The river cross-section (XS) in the reaches without abundant vegetation was meas-

ured with a differential GPS Trimble® R6 instrument (Sunnyvale, CA 94085, U.S); in 

reaches with abundant trees, a total station Sokkia® 550 RX (Olathe, KS 66061, U.S) was 

used. The average geometry of each reach was calculated from three XSs, as shown in 

Table 2, except for Cascade 3, where the reach was divided into five XSs. The wetted width 

(w) at each cross-section was estimated with a measuring tape, excluding the width of the 

boulders stretching above the water level. The average depth (d) at each XS was computed 

using the continuity equation assuming a rectangular XS (Equation (1)). These values were 

averaged per reach to yield a weighted average water depth [2]. 

� = �� = ��� (1)

where Q is the discharge (m3/s), U is the mean flow velocity (m/s), A is the XS area below 

the water surface (m2), w is the wetted width at the water surface (m), and d is the mean 

water depth (m). 

The roughness parameter was estimated using field measurements of discharge, ve-

locity, and energy slope. The discharge was measured using the dilution-gauging method 

because in small streams, especially in low-flow conditions, measuring flow using the 

standard wading rod method is difficult and inaccurate. The dilution-gauging method is 

based on measuring the dilution of a known volume of conservative salt tracer [21]. NaCl 

was used for its low cost and wide use in small river studies [7,9,22,23]. Velocity was eval-

uated through the reach length and the subtraction of time-of-travel from conductance 

curves read upstream and downstream of the reach. Two HOBO U24-001 (U24-001 

Bourne, MA 02532, U.S) freshwater conductivity data loggers with a resolution time of 1.0 

s were placed upstream and downstream of the reach. The traveling time of each conduct-

ance curve was calculated using the harmonic method [11]. Energy slope (SF) was esti-

mated as the water surface slope (SW) [8,24]. Pebbles were counted to estimate bed mate-

rial distribution [25]. The number of sampled elements was 400 for each reach. Data were 

taken at flow magnitudes from 0.03 m3/s to almost 1 m3/s. During that flow range, there 

was in-bank flow. However, only for the highest flow reaches such as Plane-bed and Step-

pool received bank full flow. The Cascades did not reach bank full flow because of its high 

slope. Table 2 depicts the range of Manning’s coefficient measured at each studied reach. 

Hence, the data range presents a complete overview of different velocity magnitudes, 

which are closely related to the resistance characteristics. The roughness parameter used 

in this study is the Darcy-Weisbach resistance coefficient (f); most literature from the last 

three decades has used this parameter given its physical interpretation and dimensionless 

units [4]. f is estimated with Equation (2). 

(8/�)�.� = �/�������
�.�

 (2)
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where g is the gravitational acceleration (m/s2), RH represents the hydraulic radius (m), SF 

is the energy slope, and U is the velocity (m/s). 

2.2. Empirical Resistance Equations 

The equations tested for velocity prediction are listed in Table 3. Most of the equa-

tions estimate the resistance parameter as (8/f)1/2. The velocity was computed using Equa-

tion (2). Estimations of NDHG equations derive flow velocity through the following steps: 

(1) Estimation of dimensionless unitary flow; (2) estimation of dimensionless velocity with 

the NDHG equation; (3) velocity estimation with the dimensionless unitary velocity defi-

nition. 

Table 3. Resistance equations tested in this study. 

Reference Code Type of Resistance Equation 

[16] BA1985 Total resistance 

(8/�)�.� = 5.62 ���(�/���) + 4 

D84 corresponds to the 84th percentile of the grain-size distribution. 

d is the mean water depth 

[5] BA2002 Grain-skin 

(8/�)�.� = 3.84 (�/���)�.���; �� ≤ 0.8% 
(8/�)�.� =  3.1 (�/���)�.��; �� ≥ 0.8% 

S0 is bed slope 

[17] MaPa2002 Total resistance in Step-pool (8/�)�.� =  −3.73 ��� �����������/��������� − 0.8 

[18] LFe2002 Total resistance in Step-pool 

(1/�)�.� = 2.03 ��� (12.2��/��)(1 − 0.1��/��) 
�� =  ��, ���, ���, ���, ���, ���, ���, �, �∆�, ��, �����, ����� 

Dxx corresponds to the xxth percentile of the grain-size distribution. 

s, s∆z, k3, lstep, and dstep has been define in Tables 1 and 2 

[2] AbSm2003 Total resistance in Step-pool (8/�)�.� = 0.91�/� 

[4] 

(a) FeVPE2007  

(b) 

FeNHGE2007 

Grain-skin 

(a) Variable Power Equation 

(8/�)�.� = [����(�/���)]/���
� + ��

�(�/���)�/��
�.�

 

��: 6 − 7; ��: 2.36 

(b) Nondimensional Hydraulic Geometry 

Deep flow: 

�∗ = ��
�.��∗�.���

�.� 

Shallow Flow: 

�∗ = ��
�.��∗�.���

�.� 

U* and q*: 

�∗ = �/(����)�.� 

�∗ = �/�����
��

�.�
; Dxx = D84 

[1] Co2007 
Total resistance in Step-pool 

and Cascade 
� = 10.47�∗��.���� 

[13] Co2009 Total resistance in Step-pool 

�∗ = 1.18�∗�.�� Nappe flow 

�∗ = 1.1�∗�.�� Skimming flow 

�∗ = 1.24�∗�.��All data 

U* and q*: 

�∗ = �/(����)�.� 

�∗ = �/�����
��

�.�
; Dxx = D84 

[19] Ro2010 Grain-skin � = 1.210��(��) + 6.254 

[14] 
(1) Zi12010  

(2) Zi22010 

Total resistance in self-

formed Cascade reaches 

(1) �∗ = 1.45�∗�.����
�.�� 

(2) �∗ = 3.5��∗�.����
�.�������

��.��/�� 

U* and q*: 

�∗ = �/(����)�.� 

�∗ = �/�����
��

�.�
; Dxx = D84 

w is water surface width 

[12] RiRe2011 Total resistance 

�∗∗ = 1.443�∗∗�.�[1 + (�∗∗/43.78)�.����]��.���� 

�∗∗ = �/��������
�.�

 

�∗∗ = �/�������
��

�.�
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2.3. Statistical Performance Metrics 

Generally, statistical metrics provide information about a single aspect or projection 

of the model error. Thus, it is advisable to use a combination of metrics to assess the over-

all model performance [26]. In this study, six metrics were selected: the root mean square 

error (RMSE), a qualitative methodology in which larger model errors have more weight 

than smaller ones [26,27]; the logarithm of RMSE to determine the model prediction ca-

pacity for low values [4]; the prediction errors (PE) counting the number of predicted val-

ues that are greater than twice or less than half as large as the observed values [4]; the 

average standard error of estimation (SX), which gives the mean percentage of the model 

error relative to the observations [19]; the Nash–Sutcliffe efficiency index (EF), a metric 

widely used to determine the model goodness-of-fit with flexibility and reliability [28–30]; 

the mean average error (MAE) considered by Willmott and Matsuura [27] is a better indi-

cator of the average error than RMSE. Ritter and Muñoz-Carpena [31] provided a table 

with a range of EF values, a useful tool for interpreting the score of the model goodness-

of-fit. 

RMSE and MAE are transformed into a relative version for some analyses. Hence, 

these two metrics are divided by the average of the observed values and multiplied by 

100 to obtain a percentage. 

2.4. Determination of NDHG Parameters 

In this research, a methodology to determine the NDHG equation parameters is pro-

posed. The Rickenmann and Recking [12] dimensionless velocity (Equation (4)) and uni-

tary flow (Equation (5)) obtained by Nitsche et al. [11] in the dimensional analysis are used 

in this process. The form presented in Equation (3) was selected for the methodology de-

velopment. 

�∗∗ = �� �∗∗�� ��
�� (3)

�∗∗ = �/�� �� ���
��

�.�
 (4)

�∗∗ = �/�� �� ����
�.�

 (5)

where q (m2/s) is the unitary flow (q = Q/w) and D84 (m) corresponds to the 84th percentile 

of the grain-size distribution. 

Equation (3) was linearized through the application of logarithms: 

���(�∗∗) = ���(��) + ��������� + �����(�∗∗) (6)

Equation (6) resembles the equation of a line: 

� = � � + � (7)

where the parameters m and a are related to Equation (6) and expressed as Equations (8) 

and (9): 

� = �� (8)

� = ���(��) + ��������� (9)

where m and a are values from the linear regression of U** and q**. However, there are 

two equations with three unknowns in the system to be solved. An additional equation, 

Equation (10), was obtained from Ferguson [4], who used the generalized power law and 

the bed shear stress. 

�/�∗ = �(�/���)� (10)

where �∗ is the shear velocity (m/s) and DXX is a characteristic grain size (m) taken here 

as D84; c and b are constant parameters. 
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In Equation (10), �∗ and d are replaced with their definitions. After a mathematical 

process, Equation (11) is obtained, which is the same obtained by Ferguson [4]. This equa-

tion contains parameter mo, defined in Equation (12). 

�∗∗ = �������
(����)/��∗∗�� (11)

�� = (2� + 1)/(2� + 3) (12)

Combining Equations (8), (9), and (11), we derived the parameters in Equation (3). 

Equations (13)–(15), are expressed as 

� = �� = �� (13)

Thus, the slope m of the regression is equal to mo. 

�� = (1 − �)/2 (14)

�� = 10�/��
�� (15)

2.5. Variance Decomposition Methodology (VDM) 

VDM decomposes the variance of the total error, as shown in Equation (17). The var-

iance of the total error increases as the model output increases. To obtain a constant vari-

ance independent of the model output magnitude, a Box–Cox transformation was ap-

plied. 

Both observed and predicted values of velocity are transformed using Equation (16). 

λ is calibrated through the minimization of the variance of the error of the transformed 

predicted and measured velocities. The resulting lowest variance is taken as the total re-

sidual error variance in Equation (17). The observation error variance for velocity is based 

on an error of 5% obtained by Lee and Ferguson [18]. 

�(�) = ��� − 1�/� (16)

��
�

�
= ��

�
����

− ��
�

��
 (17)

where Y is the model output variable, S is the standard deviation, Se2Y-Yo is the total resid-

ual error variance, Se2Y is the model error variance, and Se2Yo is the observation error vari-

ance. 

2.6. Test with Data from Literature 

An additional performance test was developed using data available from the litera-

ture. Jarret [15] provides data from 21 reaches in the Rocky Mountains of Colorado. How-

ever, data from two reaches could not be used because D84 data was not available. Bathurst 

[16] presents data from 16 British rivers. Both data sets were joined comprising 121 meas-

urements with flows ranging from 0.137 to 129 m3/s, for this data set the morphology of 

each reach was not specified.  

The proposed methodology used 50% of the data randomly chosen to estimate a1, a2, 

and a3 (Figure 2) and predict U** with the remaining 50% of the data. Moreover, Zi12010 

[14], the best fitting equation for Cascade and Step-pool, was used to predict the same data. 

In this equation, instead of using S0, SF was used since this parameter was provided in the 

dataset.  



Water 2021, 13, 2207 9 of 17 
 

 

 

Figure 2. Linear regression of Equation (3) for 50% of the data provided in Jarret [15] and Bathurst 

[16] randomly chosen. 

3. Results 

3.1. Best Fitting Equation 

The performance of the empirical equations listed in Table 3 was compared with the 

measured velocities in the Cascades, Step-pools, and Plane-bed. Table 4 presents the NDHG 

equations with the best fitting properties for the Cascade, Step-pool, and Plane-bed river 

reaches. For Cascades and Step-pools, the Zi12010 equation [14] is the best; for the Plane-bed, 

the Co2009 equation [13] performs best, except for the SX metric for which the 

FeNHGE2007 [4] fits best. 

Table 4. Statistical fitting metrics for Cascade, Step-pool, and Plane-bed morphologies. 

Morphology Name RMSE RMSElog PE SX MAE EF 

Cascade 

Zi12010 0.061 0.066 0 16.761 0.046 0.834 

FeNHGE2007 0.102 0.099 0 26.936 0.078 0.536 

Co2007 0.104 0.127 1 25.546 0.078 0.514 

Step-pool 

Zi12010 0.085 0.096 0 26.582 0.062 0.731 

FeNHGE2007 0.137 0.132 1 39.106 0.102 0.294 

RiRe2011 0.141 0.137 1 40.786 0.107 0.253 

Plane-bed 

Co2009 0.153 0.102 0 28.914 0.108 0.631 

FeNHGE2007 0.162 0.116 0 23.485 0.122 0.585 

RiRe2011 0.164 0.117 0 23.719 0.123 0.577 

The metrics indicate that performance depends on the morphology. For Cascades, the 

Zi12010 prediction performs well according to Ritter and Muñoz-Carpena [31]. The rela-

tive RMSE and MAE are similar, 16% and 12%, respectively. For Step-pools, Zi12010 per-

forms acceptably. The difference between relative RMSE (23%) and MAE (17%) is the 

same as for Cascades, approximately 5%, indicating that there are no significant differences 

between residual magnitudes for these morphologies. For the Plane-bed, Co2009 demon-

strated unsatisfactory performance, with a higher difference between relative RMSE (30%) 

and MAE (21%) than for Cascades and Step-pools, indicating higher residual values than 
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for the other morphologies. The best equations for all morphologies do not have cases 

with predicted and observed values (PE) that differ by a factor greater than two or less 

than 0.5. The model error relative to the observed value (SX) illustrates that for a Plane-bed 

the best equation is FeNHGE2007. The Co2009 equation omits SF, and FeNHGE2007 in-

cludes SF. The morphology with the lowest model error relative to the observed value is 

Cascade (17%); Step-pool and Plane-bed have similar values (approximately 25%). 

3.2. Estimation of NDHG Parameters 

Implementation of the proposed methodology to calculate the NDHG exponents first 

requires a check that log(q**)-log(U**) follows a linear trend. Figure 3 indicates a linear 

tendency for all of the morphologies, with a coefficient of determination (R2) greater than 

0.85 for all fittings, although the slope m and the independent factor a vary considerably 

between the studied morphologies. 

The estimated coefficients of NDHG for each morphology are presented in Table 5. 

Parameter a1 varies from 1.73–2.31; the value range of parameter a2 depends on the mor-

phology and is 0.75 for the Plane-bed, considerably higher for Cascades and Step-pools (0.48–

0.57). The opposite is true for a3; the Plane-bed value (0.12) is less than the values for Cas-

cades and Step-pools (0.21–0.26). 

Table 5. NDHG exponents based on the proposed methodology. 

Morphology m a S0 a1 a2 a3 a2/a3 

Cascade 1 0.478 0.089 0.088 2.31 0.48 0.26 1.83 

Cascade 2 0.590 0.034 0.093 1.76 0.59 0.21 2.88 

Cascade 3 0.569 0.056 0.085 1.94 0.57 0.22 2.64 

Plane-bed 1 0.751 0.185 0.032 2.36 0.75 0.12 6.02 

Step-pool 1 0.565 0.064 0.061 2.13 0.57 0.22 2.60 

Step-pool 2 0.531 −0.019 0.081 1.73 0.53 0.23 2.26 
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Figure 3. Linear regression of Equation (3): (a) Cascade 1; (b) Cascade 2; (c) Cascade 3; (d) Step-pool 1; (e) Step-pool 2; (f) Plane-

bed. 

Table 6 shows the performance metrics of the NDHG equations according to the pro-

posed methodology (NDHGCA, NDHGSP, and NDHGPB). Comparison of Table 4 and 
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Table 6 reveals that the proposed approach produces improved quality metrics. The de-

rived equations demonstrate good performance according to the EF metrics. The differ-

ence between relative RMSE and MAE has been reduced to 4.6% on average for all mor-

phologies; the residual magnitudes are uniform. The model error relative to the observed 

values decreases significantly for Step-pool and Plane-bed morphologies; the improvement 

in the Cascade morphology is less evident. PE illustrates that the proposed NDHG equa-

tions did not produce any point with predicted and observed values that differ by a factor 

of less than 0.5 or greater than two. 

Table 6. Comparison of proposed NDHG equations with previously best-performing empirical 

equations. 

Morphology Name RMSE RMSElog PE SX MAE EF 

Cascade NDHGCA 0.055 0.052 0 11.865 0.037 0.863 

Step-pool NDHGSP 0.070 0.076 0 18.208 0.052 0.817 

Plane-bed NDHGPB 0.098 0.076 0 19.101 0.076 0.848 

3.3. Variance Decomposition Methodology (VDM) 

The calibration required for the Box–Cox transformation provides the following data: 

Cascade, λ = 0; Step-pool, λ = 1; Plane-bed, λ = 0. When λ = 0, the Box–Cox transformation is 

a logarithmic transformation BC(Y) = log(Y). The use of calibrated parameters allows the 

decomposition of the variance, as shown in Table 7. Table 7 reveals that most of the error 

variance is contained in the model output. There are slight differences in the variance of 

observation errors, but analysis can be conducted based on the ratio of the relative to total 

residual error variance. Hence, the Cascade morphology exhibited the largest observation 

error variance, followed by Plane-bed and Step-pool. The calibration data was used to cal-

culate the band presented in Figure 4; for all three morphologies, approximately 70% of 

the data is inside the band. 

Table 7. Variance decomposition methodology for the studied morphologies. 

  Cascade Step-Pool Plane-Bed 

Term Value % Value % Value % 

Se2Yo 8.986 × 10−5 3.336 6.786 × 10−5 1.367 1.532 × 10−4 2.532 

Se2Y 0.00260 96.664 0.00490 98.633 0.00590 97.468 

Se2Y-Yo 0.00269 100.00 0.00496 100.00 0.00605 100.00 
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Figure 4. Plot of observed and predicted velocity values: (a) Cascade; (b) Step-pool; (c) Plane-bed. 

3.4. Test with Data from Literature 

Figure 2 depicts the linear regression of U** and q** of randomly chosen 50% of liter-

ature data. The regression provides the information needed to estimate a1, a2, and a3. The 

obtained equation was called NHDGlit. Table 8 compares the performance of NHDGlit 

and Zi12010. In this Table, three metrics have been used: RMSEa and MAEa are dimen-

sionless versions of RMSE and MAE, defined as a percentage of the observations mean, 

and EF is the Nash–Sutcliffe efficiency index. RMSEa and MAEa depict a marked predic-

tive superiority of NHDGlit against Zi12010. According to EF, NHDGlit has a very good 

performance rating, however, Zi12010 EF shows an unsatisfactory performance rating 

[31].  

Table 8. Comparison of the proposed NDHG equation (NDHGlit) with the previously best-per-

forming empirical equation. 

Method RMSEa (%) MAEa (%) EF 

Zi12010 53 43 0.296 

NHDGlit 19 13 0.910 

4. Discussion 

4.1. Characteristics of NDHG Equations 

Bathurst [5] suggested that a resistance equation needs two parameters, one repre-

senting at-a-site resistance variation, and the other representing between-site resistance 

differences. At-a-site variations are usually related to the relative submergence d/D84 

(Maxwell and Papanicolaou, 2001). According to Bathurst [16], D84 provides a 3-D image 
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of the bed material disposition. However, Aberle and Smart [2] state that D84 is not a good 

roughness height for Step-pools. Indeed, q* is considered a better at-a-site parameter, as 

any measurement error affects the observed and predicted values [4]. In this study, the 

same function is attributed to q**, as the equation structure is the same. The difference 

between q* and q** is that q** comprises SF in its denominator. The between-sites parame-

ter, SF [14], represents the change in morphology [5]. Moreover, it is expected that the 

exponents in non-dimensional hydraulic equations change with morphology [1]. 

In NDHG equations, the dimensionless unitary flow is less sensitive to measurement 

errors [4], and its combination with S0 explains most of the resistance variation [1,8]. These 

equations do not assume any distribution of velocity or resistance parameter [14]. The 

velocity distribution in mountain rivers has an S-shape [16]; in low-land rivers, the veloc-

ity distribution is semi-logarithmic. When Equation (1) is used to calculate velocity, there 

is an assumption of uniform flow; this is not the case for mountain rivers, which are char-

acterized by changes in water depth and surface slope at each XS [16]. However, there is 

no better alternative for relating a resistance parameter with velocity. Dimensionless 

equations are preferred for the following reasons: (1) the exponents are also dimension-

less; (2) in these equations, the common physics for all of the reaches are taken from em-

pirical data [32,33]. 

4.2. NDHG Parameters 

Previous studies proposed constant exponents for NDHG equations [4,13,14]. How-

ever, Nitsche et al. [11] identified variability in a1. Nitsche et al. [11] used data from six 

reaches with different morphologies and eight other Swiss mountain streams. In addition, 

a1 depends on the concentration of boulders Γ; the term containing slope was not included 

in their equation and a2 was fixed as 0.6. Nevertheless, we found a1, a2, and a3 to have 

different values for each studied site. According to the proposed methodology, these pa-

rameters depend on the regression parameters of log(q**)-log(U**) and the energy slope. 

Hence, this methodology requires collecting field data at different flow magnitudes, 

which is not possible in all cases. The authors consider that regression parameters m and 

a may be related to bed material or profile characteristics. Lacking sufficient data, we 

could not conduct this analysis. However, it would be possible to find an expression for 

m and a with additional data.  

NDHG parameters depict certain patterns as a function of the reach morphology. The 

order of magnitude of a2 (~0.5) and a3 (~0.2) for Cascades and Step-pools are the same as in 

the literature; this is not the case for the Plane-bed. The relation between a2 and a3 is key 

to the importance of at-a-site variations compared to between-site variations in resistance. 

In Cascades and Step-pools, the at-a-site variation parameter has an exponent (a2) that is 2.4 

times larger on average than the between-site variation parameter (a3). In a Plane-bed, this 

difference increases to 6.02 (a2/a3), illustrating that the effect of between-site variations in 

resistance is not relevant in a Plane-bed, which is logical, as there are no periodic bedforms 

in a Plane-bed. Ferguson [4] found an a2/a3 ratio of 3:1 in pool-riffles, riffles, runs, and Step-

pool reaches. This ratio is close to the value obtained for Cascade 2 in Table 5. Zimmermann 

[14] conducted flume experiments in self-formed Cascade streams with a resulting a2/a3 

ratio of 1.71, similar to the result for Cascade 1 in Table 5. Thus, the relations estimated 

with the proposed methodology are similar to those found in the literature for field and 

flume experiments. 

The values for a1 obtained with the proposed method are clearly higher than those 

presented in the literature. The a1 value in our research varies from 1.83–2.87. Ferguson 

[4] provided a value in the range of 1–1.74. Zimmermann [14] obtained a value of 1.45. 

The difference in the values may be due to the data used to derive the equation. In this 

study, when a1, a2, and a3 were obtained, each site was analyzed independently. However, 

in the other studies, data from different reaches were used to calibrate the equations. The 

separation of the reaches is due to the different at-a-site and between-site variations of 
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resistance, which led us to believe that the parameters are dependent on the regression 

parameters and relate to the reach characteristics. 

The values of m and a follow an evident pattern. Plane-bed values are higher than 

Cascade and Step-pool values. According to the results, this may be explained by smaller m 

and a values at higher resistance complexity. 

4.3. Variance Decomposition Methodology (VDM) 

Table 7 represents the variance decomposition of the NDHG equations for the ana-

lyzed morphologies. The trend shows that the variance of the observation error is higher 

in Cascades and Plane-beds than in Step-pools. Cascade and Plane-bed conductivity sensors 

cannot be installed in places without turbulence; these morphologies have bed material of 

significant size, which contributes to turbulence. In contrast, Step-pool data is collected 

from pools with a nearly stationary flow and smaller bed material. Moreover, Cascades 

and Plane-beds have the same calibration parameter for Box–Cox transformation (λ = 0); 

Step-pools have a calibration parameter of λ = 1. 

Table 7 clearly indicates that model error variance (Se2Y) is the main component in 

the variance decomposition methodology. This term comprises different model output 

variances resulting from the model structure, the input, and the parameters. The model 

structure component is expected to be small because the NDHG equations represent the 

best equations for all examined morphologies. There was not a better equation structure 

for the performance of these equations. The inputs for this model are flow, gravity, wetted 

width, energy slope, and D84. The energy slope is approximated with the water level; the 

water level had an error of 1.5% of the standard deviation uncertainty. Wetted width had 

less than 0.14% of the standard deviation uncertainty. These values were computed 

through repeated measurements from different morphologies. Flow has an error of 5% 

according to Lee and Ferguson [18], who used tracers for flow and velocity measurement. 

The bed material 84th quartile (D84) was obtained after sampling 400 particles at each 

reach to obtain the bed material distribution. Some studies sampled only 100 particles in 

studying pool-riffles and boulder-cobble beds [5,16,34]. The number of samples increased 

to 300 particles when additional morphologies were examined [8]. It is evident that in-

creasing the number of samples decreases the estimation error in the bed material distri-

bution, given that the input parameters have a small influence on the model error vari-

ance. Hence, most of the model error variance corresponds to the parameters a1, a2, and a3. 

Table 4 presents the performance of different versions of NDHG equations with diverse 

parameter values. Figure 4 shows the band encompassing the mean error +/- standard 

deviation, which for a normal distribution includes 68.26% of the data. Given that 70% of 

the points fall inside the band for all morphologies, the normal distribution assumption is 

justified and the confidence interval of the model equals 70%. 

The use of standard deviation of bed elevations (s) has been tested as characteristic 

roughness length in multiple studies, however, s provides good results only in some of 

them. Aberle and Smart [2] have successfully used s (s from 4.6 to14.6 mm) as a roughness 

parameter in a power equation in Step-pools to predict (8/f)0.5 based on flume data. Lee and 

Ferguson [18] (s ranged from 0.068–0.257) use field and flume data from Step-pools to find 

an equation to predict (1/f)0.5. A log law equation provided good results when the effective 

roughness was step D84. Nitsche [11] (s lies in the range of 0.07 to 0.47) found an NDHG 

equation whose dimensional macro roughness parameters to calculate velocity and di-

mensionless unitary flow was D84. In this study (s range 0.022 to 0.214) different equations 

were tested, some of them with different representations of effective roughness, but 

NDHG equations provided the best fitting, and a new methodology to determine its pa-

rameters has improved fitting performance. All the NDHG equations used in this research 

utilize D84 to estimate velocity and dimensionless unitary flow, so this term seems to work 

well for these types of equations. 
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5. Conclusions 

In this research, the flow resistance in three morphologies of a headwater mountain 

river was studied, in three Cascades, two Step-pools, and one Plane-bed. Each reach was di-

vided into three to five XS where staff gauges were installed. Field measurements of water 

level and wetted width were collected at each XS. For each reach, flow and mean velocity 

were computed for different water level conditions. Different empirical equations for ve-

locity prediction were tested using goodness-of-fit metrics. The equation with the best 

performance was calibrated to find expressions for its exponents. Moreover, variance de-

composition methodology was used to estimate the uncertainty of the proposed method. 

As a final step, data from the literature was used to test the proposed methodology. 

The findings clearly indicate that the best equations for the studied morphologies are 

NDHG equations; no other type of equation exhibited similar performance. A methodol-

ogy to find the NDHG exponents was proposed using logarithmic regression, the bed 

shear stress, and the generalized power law. The resulting equations for the exponents in 

the NDHG equations have variations according to the type of reach and depend on re-

gression parameters, namely the slope and the independent terms (m, a). The derived Step-

pool and Cascade ratios (a2/a3) are in accordance with data from the literature; for the Plane-

bed, this ratio is larger due to the small influence of the between-site resistance variation 

component in this morphology. Besides, the proposed methodology was successfully 

used to predict data from the literature. The applicability of the proposed approach for 

estimating the exponents of NDHG equations can certainly be improved with additional 

data (experimental measures and other morphologies). As the m and a parameters may 

follow a certain pattern, this methodology is useful for ungauged streams. 
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