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Abstract: The Theis equation is an important mathematical model used for analyzing drawdown data
obtained from pumping tests to estimate aquifer parameters. Since the Theis model is a nonlinear
equation, a complex graphical procedure is employed for fitting this equation to pump test data.
This graphical method was originally proposed by Theis in the late 1930s, and since then, all the
groundwater textbooks have included this fitting method. Over the past 90 years, every groundwater
hydrologist has been trained to use this tedious procedure for estimating the values of aquifer
transmissivity (T) and storage coefficient (S). Unfortunately, this mechanical procedure does not
provide any intuition for understanding the inherent limitations in this manual fitting procedure.
Furthermore, it does not provide an estimate for the parameter error. In this study, we employ the
public domain coding platform Python to develop a script, namely, PyTheis, which can be used to
simultaneously evaluate T and S values, and the error associated with these two parameters. We solve
nine test problems to demonstrate the robustness of the Python script. The test problems include
several published case studies that use real field data. Our tests show that the proposed Python script
can efficiently solve a variety of pump test problems. The code can also be easily adapted to solve
other hydrological problems that require nonlinear curve fitting routines.

Keywords: pump test; Theis equation; parameter estimation; nonlinear least-squares; Python

1. Introduction

Groundwater pumping tests are routinely used to characterize two important aquifer
properties—transmissivity (T) and storage coefficient (S). In the published literature, several
mathematical models have been developed to predict the hydraulic properties of aquifers
based on the appropriate system properties and boundary conditions [1–6]. The nonlinear
equation proposed by Theis [5] was the first model that was used for predicting transient
drawdown patterns in a confined aquifer. Later, the Theis model has been used to develop
a variety of graphical procedures for estimating T and S values from drawdown data [1].
Researchers have also extended the Theis model for describing different types of aquifer
systems; for example, Hantush [2] developed a semilogarithmic plot for analyzing leaky
confined aquifers. Kruseman and de Ridder [3] presented detailed graphical methods
for analyzing pump test data for various types of aquifers. These graphical methods
can be subjective and their results can have considerable variations [7–10]. For example,
Naderi and Gupta [8] investigated the variations in discharge rates occurring during pump
tests and demonstrated their impacts on T and S values. McElwee [10] was one of the
early studies that employed a least-squares method to analyze pump test data and they
demonstrated that the automated technique provided better results than the traditional
graphical fitting method.

The drawdown curve predicted by the Theis model uses a nonlinear function, known
as the well function, that is typically evaluated using a type curve [11]. The Theis model is
an analytical solution to the transient radial flow equation used for describing groundwater
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flow in a one-dimensional confined aquifer [5]. Interestingly, the mathematical solution
presented by Theis is a well-known solution to the classic radial heat flow problem, which
was originally pointed out by Theis’ colleague C.I. Lubin, and Theis generously acknowl-
edged this fact in the main text of his seminal paper [5]. Theis later developed a graphic
method to use this relationship in an inverse mode to estimate the values of T and S from
pump test data. Although Theis did not publish this graphical method, when Jacob [12]
provided an example for this graphical procedure in his journal article, he explicitly ac-
knowledged his personal communications with Theis (see p.96 in Jacob [12]). Later, when
Wenzel [13] published the details of this graphical procedure, he also acknowledged his
communication with Theis in a footnote [see p.88 and 96 in Wenzel [13] report]. Since then
all the groundwater textbooks have included this graphical procedure. Therefore, every
groundwater hydrogeologist who has been trained in the past 90 years would have had a
chance to learn this graphical procedure.

The Theis fitting method is a tedious technique even for experts. Benbarka and
Davis [7] conducted a study to evaluate the efficiency of using the Theis approach. The
graphical type-curve matching method was completed by 30 technical experts, and the
values were compared against the results obtained from an automatic parameter estima-
tion procedure. The results identified the inherent limitation of the graphical estimation
procedure due to the variations in the lines drawn based on visual interpretation.

In recent years, several computational tools have been developed to analyze the pump
test data. Labadie and Helweg [14] presented a computer algorithm named FASTEP. In
this FORTRAN code, a least-squares curve fitting method was used as an alternative to the
graphical approach. Reed [15] developed another FORTRAN code for fitting type curves
for several types of flow conditions. Maslia and Randolph [16] developed a FORTRAN
code, namely, TENSOR2D to analyze the transmissivity tensor for an anisotropic aquifer
by using a weighted least-squares optimization procedure. Barlow and Moench [17]
developed the WTAQ code, which was also written in FORTRAN, and it employed several
analytical solutions for modeling radial flow in both unconfined and confined aquifers. The
WTAQ code uses two different parameter estimation methods: a type-curve fitting method
that uses a trial-and-error approach, and an automatic parameter-estimation method that
minimizes the error. Halford and Kuniansky [18] developed a Microsoft Excel spreadsheet
tool for evaluating aquifer parameters. Numerous commercial software tools such as
AQTESOLV [19] and AquiferTest Pro [20] have also been developed for analyzing pump
test data.

Most automatic curve fitting tools employ a nonlinear fitting algorithm to minimize
the sum of squared error between observations and model predictions [7,8,10,21–23] In a
recent study, Bateni et al. [24] compared the performance of various nonlinear programming
methods including the genetic algorithms (GA) and ant colony (AC) methods to estimate
aquifer parameters using five different time-drawdown datasets. The authors concluded
that both GA and AC are reliable methods for evaluating aquifer parameters, and they
performed better than the graphical methods.

Previous studies have also attempted to quantify the error to assess the reliability of the
best-fit parameter values evaluated from pump tests [7,8]. However, these methods can be
cumbersome; therefore, none of the standard Theis analysis methods discussed in textbooks
provide any error analysis. In this paper, we provide a simple open-source Python script
that can fit the Theis model to pump test data to evaluate T and S values, and it can also
provide the estimate of error associated with these parameters. The trust-region reflective
method [25], available in the scipy.optimize.least_squares function, is used to solve the
nonlinear least-squares problem after setting appropriate bounds for the model parameters.
The performance of the code was tested by solving several benchmark problems.
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2. Methods
2.1. Well Function of Theis Curve Type for Pump Test

The Theis equation for modeling flow towards a fully penetrating well pumping at a
constant rate in a homogeneous, isotropic confined aquifer of infinite extent can be written as:

∆h = h0 − h =
Q

4πT
W(u) (1)

where Q is the constant pumping rate [L3/T], h is the hydraulic head [L], h0 is the initial
hydraulic head [L], h0 − h is the drawdown [L], T is the aquifer transmissivity [L2/T], and
W(u) is the well function. The well function can be approximated by an infinite series
as follows:

W(u) = −0.5772 − ln(u) + u − u2

2·2!
+

u3

3·3!
− u4

4·4!
+ · · · (2)

the well function has been conveniently tabulated [13] for various values of u defined by
the following equation:

u =
r2S
4Tt

(3)

where S is the aquifer storage coefficient (dimensionless), t is the time since pumping began
[T], r is the radial distance from the pumping well [L], and u is a dimensionless constant.

2.2. The Parameter Fitting Method Used in PyTheis

As discussed in the introduction section, the graphic method originally suggested
by Theis and later documented by Jacob [12] and others, is often used in textbooks to fit
the drawdown data with Equation (1) to estimate the T and S values. The PyTheis script
developed in this study employs a nonlinear solver available in the Python curve-fitting
library to obtain the best estimates for T and S. The computational steps used by the fitting
procedure are summarized in Figure 1.
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The scipy.optimize.curve_fit function available in the Python library offers three possi-
ble nonlinear solvers: the Levenberg–Marquardt (LM), Trust-Region Reflective (TR), and
Dog Box (DB) methods. The LM method is a default algorithm for solving nonlinear least-
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squares problems using this Python function. LM is an unconstrained nonlinear search
procedure typically used for solving small-to-medium-sized problems. This method may
fail or converge to a local minimum when inappropriate initial estimates are adopted [26].
TR or DB methods, which are constrained nonlinear search algorithms, are better alterna-
tives when using a limited number of data points to fit nonlinear functions. More recently,
Memari and Clement [27] applied all three approaches to fit soil moisture data to various
soil water retention models and concluded that the TR is the most robust approach for
fitting highly nonlinear functions.

2.3. Initial Guess Values and Parameter Bounds for T and S Values

To use the TR method, one needs to provide parameter bounds and initial guess
values. In PyTheis, the initial guess value for T was always set to 1 m2/d. This is a
reasonable initial guess since pump tests are usually completed in permeable formations
that can produce water. Therefore, assuming that, on average, the aquifer will contain
an approximately 1 to 10 m thick layer of fine/silty sand layer with a conductivity of
approximately 1 to 0.1 m/day is a good approximation. The lower bound of the T value
was assumed to be about 0.01 m2/day, and the upper bound was assumed to be 1.0 × 105.
This is a broad range that should cover a wide range of soils. Halford and Kuniansky [18]
study summarized hydraulic conductivity values that are typically observed under field
conditions. The bounds we have recommended here include all possible T values for
permeable sand/silt formations reported in this study.

The minimum value of S was set to 1.0 × 10−6, which is a typical lower limit of the
confined aquifer compressibility value [11]. The maximum value was set to 0.1, which is
a typical upper limit for the unconfined specific yield value. The best initial guess value
of S was assumed to be 1.0 × 10−5, which is the typical value of S observed for confined
aquifers [11]. These initial guess values and the lower and upper bounds worked well for
solving all the example problems considered in this study. However, if needed, users can
always modify these default values.

2.4. Estimation of the Error Associated with Transmissivity and Storage Values

Error is an inherent part of every engineering/scientific measurement. One of the
major limitations of the Theis graphical method is that the method cannot quantify the error
in the estimated values of T and S. Without an error estimate, it is difficult to understand the
accuracy of the parameter values, and hence, in most cases, analysts often report the values
of T and S using an inappropriate number of significant figures. The Python curve fitting
routines employed in this study provides a covariance matrix for the best-fit parameter
values. The error associated with the parameter values can be estimated as the square
root of the diagonal terms of this covariance matrix. Using this error estimate, the best-fit
parameter values can be reported with an appropriate number of significant figures by
employing a standard rounding procedure summarized below.

A simple method to determine the number of appropriate significant figures is to
express the best-fit parameter values and the associated error values in the scientific
notation using a consistent unit. Since the error is an estimate of what we do not know,
as a rule of thumb, one should round error estimates to one (max of two, in rare cases)
significant figure [28]. Then, one can use the first nonzero digit of the error value to truncate
the significant digit of the estimated parameter value [28,29]. For example, if the computer
reported a T value of 82.7224131 m2/day and the uncertainty is 3.124124, first express
these data in the scientific notation as: T = (8.27224131 ± 0.3124124) × 101 m2/day. After
appropriate rounding, the value should then be expressed as: T = (8.3 ± 0.3) × 101 or
83 ± 3 m2/day. The knowledge of the error (or uncertainty) would allow one to round the
estimated parameter values using an appropriate number of significant figures. Although
this is a well-known standard procedure, when the error estimate is not available analysts
often report the estimated values of model parameters with an unrealistic number of
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significant figures (e.g., see Bateni [24]). We will discuss the implications of this rounding
procedure using the results of some benchmark problems in our results section.

3. Test Problems Considered in This Study

To demonstrate the use of PyTheis, we first solve a standard problem given in
Lohman [30] to demonstrate the importance of the error estimates and the use of proper
rounding to report the parameter values with an appropriate number of significant figures.
The dataset given by Lohman [30] describes the drawdown patterns in a theoretical con-
fined aquifer. The monitoring wells are placed at distances of 200, 400, and 800 ft from a
well pumping at the constant rate of 96,000 ft3/day. We use these monitoring data to test
the performance of the PyTheis code.

We later solve eight other test problems to demonstrate the use of the PyTheis code for
solving a variety of previously studied problems with a wide range of model parameters.
These eight test problems allowed us to verify whether the default initial guess values
and the parameter bounds set within PyTheis can be used to solve practical problems.
Finally, we developed three synthetic datasets by artificially introducing different levels of
random error into the well-known Walton [31] problem. These perturbed datasets are used
to further test the robustness of the fitting procedure when there are considerable random
variations in the field data.

4. Results and Discussion

The fitted results estimated using PyTheis for the Lohman [30] test problem are shown
in Figure 2. The figures show the fittings for the observed drawdown data collected at
three different observation wells located at r = 200, 400, and 800 ft away from the pumping
well. The drawdown curves estimated by PyTheis closely fitted the data points (see
Figure 2). The best-fit T and S values are close to the values reported in Lohman [30].
For example, the PyTheis estimated model parameters based on data from r = 200 ft
are: Tr=200 = 13,379.2554 ft2/day and Sr=200 = 2.01716330 × 10−4, and the corresponding
error values are: 27.3641357 ft2/day and 1.42597139 × 10−6, respectively. As expected,
the computer code reported the best-fit values and error estimates with a large number
of significant figures. After appropriate rounding (see the example in Section 2.4), the
estimated value of T should be reported as (133.8 ± 0.3) × 102 or 13,380 ± 30 ft2/day. This
value compares well with the graphical solution reported in Lohman’s book, which is
T = 14,000 ft2/day (note Lohman estimated this average value using the data points from
all three wells). In this effort, we evaluated three estimates using the drawdown data
reported for the three monitoring wells. The parameter values estimated based on the three
datasets are summarized in Table 1. It is worth noting that Lohman’s analysis excluded
some extreme data points; for example, when the r2/t values are 108 or more the points
fell outside the range of the standard 2 × 4 graph paper and hence were excluded in the
analysis. In this study, the PyTheis code was able to utilize all the data points for estimating
the model parameters. The results show the model parameter values estimated using all
three datasets were close to the average values reported by Lohman. Interestingly, the
error analysis shows that the PyTheis estimates are more precise than the value reported
by Lohman.

To further test the performance of the PyTheis code under different types of flow
conditions, we solved the following eight different problems reported in the literature:
Walton [31], Fetter and Rayne [32], Driscol [33], McWhorter and Sunda [34], Viessman
and Lewis [35], Todd and Mays [36], and two sets of data from Naderi [23]. Our results
indicated that the PyTheis code, with the default initial values and parameter bounds, was
able to solve all eight problems. The results for the first problem, the Walton problem,
are given in Figure 3a. This problem was based on a pump test completed at a confined
aquifer in Gridley, Illinois. This dataset was also used by Saleem [21] for comparing the
performance of a least-squares fitting method. The result for the second problem is given
in Figure 3b; this problem was taken from Fetter [11] textbook, and the solution was
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documented in the textbook’s solution manual [32]. The result for the third test problem is
shown in Figure 3c; this problem is based on a synthetic test problem given in Driscol [33].
The result for the fourth problem, shown in Figure 3d, is a test problem discussed in
McWhorter and Sunda [34]. This dataset is based on a pump test conducted at a field site
in Fort Collins, Colorado. The fifth problem, shown in Figure 3e, is an example problem
taken from Viessman and Lewis [35]. The sixth problem is taken from Todd and Mays [36]
textbook, and the results are shown in Figure 3f; this is a well-known problem that has
been widely used in the published literature [22,23] to validate different fitting methods
used for estimating aquifer parameter values.
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Table 1. PyTheis estimated transmissivity (T) and storage values (S) for the Lohman (1972) problem.

Distance from Well (ft) Lohman
(1972)

PyTheis estimated values of T (ft2/day)

Code Output Rounded Values

200

14,000

13,379.2554 ± 27.3641357 13,380 ± 30

400 13,405.8670 ± 43.1205549 13,410 ± 40

800 13,339.4913 ± 49.1948724 13,340 ± 50

Distance from Well (ft) Lohman
(1972)

PyTheis estimated value of S (dimensionless)

Code Output Rounded Values

200

2 × 10−4

2.01716330 × 10−4 ± 1.42597139 × 10−6 (2.02 ± 0.01) × 10−4

400 2.0120642 × 10−4 ± 1.60789185 × 10−6 (2.01 ± 0.02) × 10−4

800 2.02306304 × 10−4 ± 1.24751164 × 10−6 (2.01 ± 0.01) × 10−4

Finally, we selected two different datasets reported in Naderi [23] for our seventh and
eighth test problems, and the results are summarized in Figure 3g,h, respectively. Figure 3g
results are for a synthetic dataset given in Naderi [23], whereas Figure 3h results are based
on a pump test dataset collected at a field site in Shiraz, Iran, and hence, we refer to this
dataset as “field data from Naderi (2019)”.

Detailed datas for all eight problems, which include pumping rate, distance from the
well, the PyTheis estimated parameter and error values, and the parameter values reported
in the literature, are given in Table 2. Since the nonlinear estimation method employed by
PyTheis uses a solver that calculates the local optimum, we used these multiple datasets
to verify whether the default initial values and parameter bounds are appropriate for
estimating realistic aquifer parameter values. The results show that PyTheis converged to
values that are close to the literature values reported for these eight test problems.
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Figure 3. Log–log scale time-drawdown curves fitted using the PyTheis code for the literature problems: (a) Walton (1962),
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and Maya (2005), (g) Synthetic data from Naderi (2019), and (h) field data from Naderi (2019). The data points were taken
from the tables/figures reported in these publications.

Table 2. Details of the eight test problems used in this study. The table also provides the T and S values estimated by
PyTheis along with literature data.

Reference
Input Output

Input Variable Values Parameter Literature Data PyTheis

Walton (1962) Q (m3/day)
R (m)

1199.52
251.25

T (m2/day)
S

125.4
2.0 × 10−5

123 ± 1
(2.10 ± 0.04) × 10−5

Fetter and
Rayne (2001)

Q (m3/day)
R (m)

1090.2
76.2

T (m2/day)
S

498
5.17 × 10−5

498 ± 1
(5.18 ± 0.04) × 10−5

Driscoll (1986) Q (m3/day)
R (m)

2730
122

T (m2/day)
S

1250
1.9 × 10−4

1249 ± 5
(2.01 ± 0.02) × 10−4

McWhorter and
Sunada (1977)

Q (m3/day)
R (m)

2695.68
20

T (m2/day)
S

1175
5.3 × 10−2

1250 ± 10
(5.8 ± 0.1) × 10−2

Viessman and
Lewis (2003)

Q (m3/day)
R (m)

5450.99
91.44

T (m2/day)
S

601.45
3 × 10−4

562 ± 5
(3.62 ± 0.08) × 10−4

Todd and
Mays (2005)

Q (m3/day)
R (m)

2500
60

T (m2/day)
S

1110
2.06 × 10−4

1139 ± 5
(1.93 ± 0.03) × 10−4

Naderi (2019)
(Synthetic)

Q (m3/day)
R (m)

14,400
50

T (m2/day)
S

2517
0.05

2520 ± 60
(5.0 ± 0.2) × 10−2

Naderi (2019)
(Field)

Q (m3/day)
R (m)

3888
51

T (m2/day)
S

305
1.8×10−4

306 ± 2
(1.81 ± 0.04) × 10−4
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5. Sensitivity of Parameter Values to Variations in Field Data

To further test the robustness of the code for solving field problems involving noisy
data, we created three synthetic datasets by introducing different levels of random error
to the Walton [31] dataset. We used the RANDBETWEEN function in Excel to generate
random numbers between the specified range; (−10, 10), (−20, 20), (−40, 40). The field
data was perturbed by multiplying these random numbers by the drawdown values and
dividing them by 100. The original data along with the three perturbed datasets are given
in Appendix B. The PyTheis code was used to fit all four datasets, and the results are
shown in Figure 4. As shown in Figure 4a,b, the datasets with a low level of perturbation
are located close to the curve estimated by PyTheis over the entire observation period,
whereas the datasets with a high level of perturbation (see Figure 4c,d) are scattered farther
away from the fitted curve. The best-fit T and S values and the associated errors for all
four datasets are summarized in Table 3. The results presented in Table 3 show that the
uncertainty in the estimated parameter values increases with an increase in the amount
of random error introduced in the dataset. The estimated mean T value for the base case
is 123 m2/day and the uncertainty is 1 m2/day. When 10% noise was included in the
dataset, the estimated mean value of T is 122 m2/day, and the uncertainty is 4 m2/day. The
estimated mean value of S for the base case is 2.1 × 10−5, and the uncertainty is 4 × 10−7;
and for the 10% perturbed case, the mean S value is 2.1 × 10−5, and the uncertainty is
1 × 10−6. It is interesting to note that even for the highly noisy dataset, the predicted mean
parameter values are fairly close to the expected values.
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Table 3. PyTheis estimated T and S values for the perturbed Walton (1962) datasets.

Case
PyTheis estimated values of T (m2/day)

Code Output Rounded Values

Base Walton (1962) 123.151860 ± 1.20663423 123 ± 1

±10% perturbation 121.984308 ± 4.21487923 122 ± 4

±20% perturbation 106.109730 ± 5.70221135 106 ± 6

±40% perturbation 136.534842 ± 10.4565877 140 ± 10

Case
PyTheis estimated values of S (dimensionless)

Code Output Rounded Values

Base Walton (1962) 2.09488656 × 10−5 ± 4.02955356 × 10−7 (2.10 ± 0.04) × 10−5

±10% perturbation 2.11467086 ×10−5 ± 1.42507828 × 10−6 (2.1 ± 0.1) × 10−5

±20% perturbation 2.73691488 × 10−5 ± 2.48293150 × 10−6 (2.7 ± 0.2) × 10−5

±40% perturbation 1.83710673 × 10−5 ± 2.98924137 × 10−6 (1.8 ± 0.3) × 10−5

6. Conclusions

We present the details of a Python tool, namely, PyTheis, for evaluating the aquifer
properties T and S, and the error associated with these two important hydrogeological
parameters. PyTheis is an excellent alternative to the commonly used graphical estimation
method (known as the Theis type-curve method), which involves laborious curve matching
steps that can result in subjective estimates. The method proposed in this study can be
used within the public domain Python platform, and it is a rational, modern alternative to
the traditional, 90-year-old Theis graphical procedure. PyTheis is a flexible computer code
that uses open-source tools. The initial guess values and parameter bounds suggested in
this study worked well for fitting a wide variety of pump test data. PyTheis is a practical
tool for analyzing pump tests, and it is also an excellent teaching tool. Furthermore, this
code can be easily adapted to solve other hydrological parameter estimation problems that
require nonlinear curve fitting routines.

It is important to note that the current version of PyTheis uses the basic confined
flow analytical solution. Therefore, the users must carefully screen the field data to avoid
forcing the ideal Theis curve to fit the data points that are inconsistent with the theory. For
example, in many cases, early time data points collected during a pump test are strongly
influenced by well storage effects. Similarly, river/rock boundary conditions and leaky
confining layers will impact the later time data points. Forced fitting the Theis model to
these early or later data points will yield incorrect aquifer parameter values. Therefore,
the users should use caution and carefully screen the field data before using the code to
fit the classic Theis model. Correcting the code for well-storage, boundary-condition, and
leaky-aquifer effects is beyond the scope of this study. Future studies should consider
including advanced analytical or numerical models that can account for these effects.
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Appendix A

PyTheis Code
Input instructions: prepare an excel file entering all non-zero times (do not include the zero) in
column A and drawdown in column B. Save the file as a “csv” file (theisdata.csv) in the local
directory where PyTheis is saved.
import numpy as np
import math as m
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
def wufunc(r,S,T,t):

u = (r**2)*S/(4*T*t)
Wu=-0.5772-np.log(u)+u
ntrm = 30
for i in range (2, ntrm+1):

sign = (-1)**(i-1)
factval = float(m.factorial(i))
Wu = Wu + sign*(u**i)/(i*factval)

#End loop i
return (Wu)

def myfunc(tt, T, S):
pi = 3.14
Q = 1199.22 #m3/d
r = 251.155 #m
nrow = len(tt)
n = nrow
drawdown=np.zeros((n),float)
for i in range (0,n):

Wu_val=wufunc(r,S,T,tt[i])
drawdown[i] = Q*Wu_val/(4*pi*T)

#End loop i
return (drawdown)

def main():
indata = np.loadtxt("theisdata.csv", delimiter=",")
Times = np.copy(indata[:,0]) # Time from first column
sobs = np.copy(indata[:,1]) # Drawdown from second column
init_vals = [1, 0.00001] # for [T & S values]
best_vals, covar = curve_fit(myfunc, Times, sobs, p0=init_vals, bounds=([0.01, 0.000001

], [100000, 0.1]), method = ‘trf’)
stdevs = np.sqrt(np.diag(covar))
plt.xscale(‘log’)
plt.yscale(‘log’)
print (‘Best valus (T, S)’)
print (best_vals)
print (‘Covariance’)
print (covar)
print (‘standard deviation’)
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print (stdevs)
T = best_vals [0]
S = best_vals [1]
smodel=myfunc(Times,T,S)
plt.plot(Times,smodel)
plt.plot(Times, sobs, ‘bo’)
plt.xlabel("Time (day)")
plt.ylabel("Drawdown (m)")
plt.show()

main()

Appendix B

Table A1. Time (day) vs. drawdown (m) data for the perturbed Walton (1962) problem.

Time (Day) Drawdown
(Base Case)

Drawdown
(±10%)

Drawdown
(±20%)

Drawdown
(±40%)

0.002083 0.09144 0.087782 0.102413 0.061265

0.003472 0.21336 0.21336 0.206959 0.170688

0.005556 0.39624 0.41209 0.356616 0.38039

0.008333 0.64008 0.588874 0.544068 0.64008

0.013889 0.97536 0.994867 0.965606 0.877824

0.016667 1.09728 1.119226 1.02047 1.217981

0.020833 1.24968 1.162202 1.062228 1.149706

0.026389 1.43256 1.317955 1.446886 1.618793

0.032639 1.55448 1.58557 1.52339 1.678838

0.034722 1.61544 1.776984 1.502359 1.599286

0.041667 1.73736 1.772107 1.563624 1.789481

0.048611 1.85928 1.766316 1.543202 2.175358

0.055556 1.92024 2.035454 2.093062 1.709014

0.0625 2.04216 2.083003 1.633728 2.348484

0.069444 2.1336 1.984248 2.02692 2.048256

0.090278 2.286 2.4003 2.01168 1.85166

0.111111 2.52984 2.479243 2.656332 2.200961

0.138889 2.5908 2.72034 2.694432 2.538984

0.180556 2.80416 2.663952 2.97241 3.000451

0.222222 2.95656 2.897429 3.400044 2.838298

0.263889 3.10896 3.357677 3.295498 3.202229

0.347222 3.32232 3.22265 3.388766 2.724302
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