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Abstract: Botrylloides species are important members of the fouling community colonizing artificial
substrates in harbors and marinas. During monitoring in 2017–2020 of non-indigenous species in
Korea, one colonial ascidian species was distinctly different from other native colonial ascidians,
such as B. violaceus and Botryllus schlosseri, in South Korea. This species was identified as B. diegensis.
DNA barcodes with mitochondrial COI were used to identify one-toned and two-toned colonies
of B. diegensis. Intraspecific variations between Korean and other regions of B. diegensis from the
NCBI ranged from 0.0% to 1.3%. The Korean B. diegensis was clearly distinct from other species of
Botrylloides at 15.8–24.2%. In phylogenetic analysis results, Korean B. diegensis was established as a
single clade with other regions of B. diegensis and was clearly distinct from Korean B. violaceus. After
reviewing previous monitoring data, it was found that two-toned B. diegensis was already found in
six harbors by July 2017. It has now spread into 14 harbors along the coastal line of South Korea. This
means that B. diegensis might have been introduced to South Korea between 1999 and 2016.

Keywords: non-indigenous species; alien species; botryllids; DNA barcoding; COI

1. Introduction

Introductions of non-indigenous species (NIS) have occurred at an increasing rate
since the 20th century, showing increasing ranges and intensity of vectors [1]. However,
identifying new or recently introduced NIS can be challenging if only traditional methods
are used [2]. Many marine animal NIS in introduction hotspots (e.g., marinas and har-
bors) belong to taxonomic groups (especially colonial ascidians) that require substantial
taxonomic expertise [3]. In this sense, the usefulness of a molecular barcoding approach
has been well documented. Such an approach can be used to ascertain the presence of
new NIS [4] to reveal false morphology-based NIS identification [5] and to determine the
taxonomic status of previously unrecognized NIS [6]. An increasing number of studies
have recommended the use of molecular tools to complement traditional methods (e.g.,
morphological taxonomic approach) for achieving reliable taxonomic identification of ma-
rine NIS [2,7,8], including those considered to be cryptic species, which have been widely
reported for colonial ascidians [3,9–12].

Botrylloides and Botryllus (class Ascidiacea, order Stolidobranchia, family Styelidae)
are ascidians belonging to a group of colonial species, of which 53 species have been
described [13]. Among them, Botrylloides species are important members of the fouling
community colonizing artificial substrates on the Pacific coast of the United States (for
instance, in harbors and marinas) [14,15]. In Europe, one putatively native species, B. leachii
(Savigny, 1816), has also been recognized, often showing coloration somewhat similar to
the two-toned color pattern seen in B. diegensis [3]. One-toned B. diegensis has also been
found to be misidentified as B. violaceus in the NCBI database. Recently, rearrangement of
mitochondrial COI data of each species has been accomplished [3]. In Korea, the marine
NIS research program was initiated by the Ministry of Oceans and Fisheries in 2008. Many
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ascidians inhabit many harbors in South Korea. Among them, a number of non-indigenous
ascidians have been newly reported via this research program [16,17]. However, these new
reports were focused on solitary ascidians. The identification of colonial ascidians, such as
species identification in the field, remains a challenging task.

Thus, the objectives of this study were the following: (i) to identify botryllids ascidians
in South Korea based on DNA barcoding, (ii) to provide mitochondrial COI data for B.
diegensis from South Korea.

2. Materials and Methods
2.1. Sample Collection and Identification

Samples were collected from 11 May 2020 to 15 May 2020 in 14 harbors along the
coastal line of South Korea (Figure 1, Table 1). All samples were taken from acrylic plates
designed for monitoring non-indigenous and harmful organisms. The dimensions of the
acrylic plates were 30 × 30 cm2 with a thickness of 5 mm. Each plate was connected with
polypropylene rope and the distance between each plate was 20 cm. A monitoring set was
composed of 10 acrylic plates, and the first acrylic plate was situated 1 m below the surface
of the water. The plates were installed from July 2017 to October 2020. Colonies were
photographed with a digital camera (TG-5, Olympus, Tokyo, Japan) and labeled before the
sample collection. We collected the sample from a colony of botryllids (0.5 × 0.5 cm2) on a
settlement plate. The samples were preserved immediately with an ethyl alcohol solution
(>95%). They were then assigned voucher numbers (SYA200501–SYA200556), and stored
in the Marine Biological Resource Institute, Sahmyook University, Korea. The collected
samples used for DNA barcoding were identified based on their zooid morphological
features from Tokioka [18] and Rho [19] under microscopes.
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Table 1. Sampling localities and environmental information of 14 sampling sites for this study.

Locality Region GIS
Coordinates

Survey Date
(2020)

Water
Temp. (◦C)

Salinity
(psu) pH

1 Incheon
Yellow

Sea

37.460556 N, 126.625278 E 11 May 14.9 30.1 8.02
2 Dangjin 36.986944 N, 126.746111 E 11 May 15.0 30.6 8.19
3 Gunsan 35.935833 N, 126.516667 E 11 May 15.5 31.3 8.25
4 Mokpo 34.783861 N, 126.389222 E 12 May 15.7 29.7 8.08

5 Wando

Korea
Strait

34.317354 N, 126.753546 E 12 May 15.1 33.5 8.09
6 Yeosu 34.717166 N, 127.749114 E 12 May 17.2 32.9 8.18
7 Gwangyang 34.908611 N, 127.726111 E 12 May 18.2 31.5 8.09
8 Tongyeong 34.827222 N, 128.389222 E 13 May 16.3 34.0 8.03
9 Busan 35.099722 N, 129.755635 E 13 May 17.1 34.5 8.07

10 Ulsan

East
Sea

35.511111 N, 129.385833 E 13 May 18.0 33.8 8.07
11 Yangpo 35.877818 N, 129.519892 E 14 May 13.7 34.4 8.09
12 Jukbyeon 37.055556 N, 129.419444 E 14 May 14.9 34.1 8.10
13 Donghae 37.498889 N, 129.134356 E 14 May 14.5 34.3 8.16
14 Sokcho 38.210444 N, 128.596249 E 15 May 15.7 34.1 8.12

2.2. DNA Extraction and Amplification of DNA Barcoding Region

Total genomic DNA was extracted from a single zooid in a colony using a DNeasy
Blood and Tissue kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol.
Partial sequences of COI were amplified using two primer pairs as follows: LCO1490-
HCO2198 [20] and dinF-Nux1R [21]. All genomic DNA samples were stored at −72 ◦C
until use. Polymerase chain reaction was performed with a total reaction volume of 20.0 µL,
including AccuPower PCR PreMix and Master Mix (Bioneer, Seoul, Korea), 1.0 µL of each
primer (10 mM), and 0.3 µL of DNA template (>50 ng/µL), with the following thermal
cycling conditions: one cycle at 94 ◦C for 3 min, 35 cycles of 94 ◦C for 30 s, 50 ◦C for 45 s,
72 ◦C for 60 s, and a final extension step at 72 ◦C for 7 min. The PCR products were directly
sequenced with the forward and reverse primers used for amplification (Cosmogenetech,
Seoul, Korea). The assemblies and alignments of sequencing results were performed using
Geneious v. 11.1.5 (Biomatters, Auckland, New Zealand).

2.3. DNA Barcoding Data Analysis

All COI sequences obtained in this study were deposited in GenBank. The acces-
sion numbers are shown in Table 2. Genetic distances and phylogenetic relationships
of Korean B. diegensis with B. diegensis from other regions (12 localities of 6 countries;
Supplementary Table S1) and 11 other species of Botrylloides and Botryllus schlosseri were
investigated. All data, except for Korean botryllids, were obtained from the NCBI. The
best-fit model of nucleotide substitution for the COI dataset was selected using Model-
test v. 2.1.1 [22] with the Akaike Information Criterion (AIC) for maximum likelihood
(ML). The ML tree was constructed using PhyML 3.0 [23] under the TrN + I + G model
and 1000 replicate bootstrapping for the COI dataset. Bayesian inference (BI) was per-
formed using 1,000,000 generations of Markov Chain Monte Carlo chains. One in every
1000 generations was sampled. The initial 250 generations were discarded as burn-in. All
processes were executed with MrBayes 3.2.6 [24] under the TrN + I + G model. Botryllus
schlosseri was determined to belong to the Botrylloides group in the ML and BI analyses.
Pairwise distances were calculated using the Kimura 2-parameter model (K2P) [25] in
MEGA 7.0 [26].
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Table 2. GenBank accession number and sequencing information of Korean Botrylloides diegensis and Botryllus schlosseri
used in this study.

Species Collecting
Sites

GenBank
Accession No.

Sequence Length
(bp) Primers * Color of Colony **

Botrylloides diegensis

Incheon MW579604 672 1 Light brown, dark brown
Gunsan MW579609 672 1 Brown

MW579615 672 1 Light brown, dark brown
Yeosu MW579611 672 1 White, dark purple

MW579612 672 1 Dark purple
MW579613 672 1 Light brown, dark brown

Tongyeong MW579620 867 2 Light brown, dark brown
Ulsan MW579610 867 2 Light brown

MW579617 672 1 Dark purple
MW579618 672 1 Light brown

Yangpo MW579605 672 1 Yellow, dark purple
MW579606 672 1 Lemon, purple
MW579607 672 1 Lemon, dark purple
MW579619 672 1 Brown, dark brown

Donghae MW579615 672 1 Light brown, brown
Sokcho MW579616 867 2 Dark brown

Botryllus schlosseri

Incheon MW584324 856 2 Purple
Gunsan MW584320 856 2 Dark purple

MW584321 856 2 Light brown
MW584322 856 2 Brown
MW584323 856 2 Brown
MW584327 856 2 Purple

Yeosu MW584326 856 2 Dark purple
Ulsan MW584325 856 2 Dark purple with yellow line

Donghae MW584319 856 2 Dark purple
Sokcho MW584328 856 2 Dark purple

* Used primer pairs were marked as the following: (1) LCO1490-HCO2198, and (2) dinF-Nux1R. ** All color photographs are presented in
Supplementary Figure S1.

3. Results
3.1. DNA Barcoding Analysis for B. diegensis from South Korea and Other Colonial Ascidians

This study presents the first report of Botrylloides diegensis in South Korea. It was not
clearly identifiable from B. violaceus or Botryllus schlosseri in the field survey (Figures 2
and 3, Supplementary Figure S1). Thus, we needed to compare it with more species of
botryllids using DNA barcoding. We obtained 16 and 10 partial COI sequences of Korean
B. diegensis and B. schlosseri at 672 bp and 858 bp, respectively (Table 2). We calculated the
pairwise distances based on 396 bp sequences of COI genes of 11 species of Botrylloides and
Botryllus schlosseri (Table 3, Supplementary Table S1).

The intraspecific variation range of the Korean B. diegensis group was 0.0–1.3%, with
a mean of 0.4% (Supplementary Table S1). The intraspecific variation between Korean
and other regions of B. diegensis from NCBI was 0.0% to 1.3%. Variations for other regions
were 0.0–1.0% (Supplementary Table S1). Intraspecific variations in the Korean group
seemed to be higher than those in other regions. The mean variation of the Korean group
was 0.4%, which was slightly higher than that for other regions group at 0.2% (Table 3).
The interspecific variation between Korean B. diegensis and other species of Botrylloides
was 15.8–24.2% (Table 3). The intraspecific variation of other Botrylloides species, except
for B. diegensis, was 0.0–1.3%, similar to the intraspecific variation of B. diegensis in this
study (Supplementary Table S1). Additionally, the phylogenetic trees of ML and BI show
the same results (Figure 4). All species of Botrylloides were distinct from B. schlosseri, an
outgroup (Figure 4). Botrylloides diegensis formed a single clade with Korean B. diegensis
and B. diegensis from GenBank (Figure 4). This B. diegensis clade showed a clear, single
clade, although several localities data were included: 20 localities in 9 countries (Figure 4,
Supplementary Table S1). The posterior probability support values for several resolved
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nodes were >0.8, although some bootstrapping support values in the ML tree were not
well supported (<70) in the clade of Botrylloides (Figure 4).
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3.2. Distributions of B. diegensis and Other Similar Native Colonial Ascidians in South Korea

One-toned Botrylloides diegensis was quite similar to B. violaceus (Figures 2 and 3,
Supplementary Figure S1). Thus, the existence of B. diegensis was not clearly recognized
before this study. We carefully reexamined all settlement plate photographs and checked
the distribution of two-toned B. diegensis (Table 4). From July 2017, two-toned B. diegensis
appeared at six harbors (Table 4). It was newly observed in Incheon in January 2018
and appeared in Gwangyang and Dangjin in August 2018 and May 2020, respectively
(Table 4). Two-toned B. diegensis and other botryllid species (B. violaceus and B. schlosseri)
were observed in 12 of the 14 harbors, not including Busan and Yangpo (Figure 5). Among
them, four harbors (Gunsan, Wando, Yeosu, and Ulsan) showed the existence of three
botryllid species, including two-toned B. diegensis (Figure 5).
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Table 3. Pairwise distances (%) for 11 species of Botrylloides and Botryllus schlosseri obtained from South Korea and GenBank based on the Kimura 2-parameter model.

Title Species n * 1 2 3 4 5 6 7 8 9 10 11 12 13

1 B. diegensis (Korea) 16 0.4
2 B. diegensis (other regions) ** 22 0.3 0.2
3 B. anceps 1 15.9 16.0 NA
4 B. fuscus 1 21.0 21.2 21.2 NA
5 B. giganteus 1 18.8 18.9 22.2 21.9 NA
6 B. israeliense 1 18.2 18.2 21.8 22.4 18.8 NA
7 B. leachii 5 17.2 17.1 20.0 19.6 16.2 19.9 0.4
8 B. nigrum 2 16.4 16.5 15.1 17.8 20.6 20.9 19.1 0.8
9 B. perspicuus 1 15.8 16.0 18.4 18.9 23.1 20.3 20.3 16.5 NA
10 B. simodensis 1 17.3 17.3 18.0 19.2 21.2 22.8 22.2 17.1 9.1 NA
11 B. violaceus 16 24.2 24.4 22.1 24.8 22.7 25.8 22.5 21.6 23.4 23.4 1.3
12 Botrylloides sp. 1 20.0 20.2 21.3 23.1 19.8 6.7 20.9 20.9 22.1 23.2 23.5 NA
13 Botryllus schlosseri 18 20.0 20.0 18.2 20.9 21.2 23.2 22.3 18.3 19.2 19.5 24.4 22.9 6.5

* The number of sequences for each species used in this analysis. ** All sequences of B. diegensis were obtained from Viard et al. (2019) and Nydam et al. (2021).

Table 4. Results of settlement plate monitoring of two-toned B. diegensis in 14 harbors of South Korea from July 2017 to October 2020.

Locality
GIS 2017 2018 2020

N E Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Feb. May Jul. Oct.

1. Incheon 37.460556 126.625278 + + + + + + +
2. Dangjin 36.986944 126.516667 + + +
3. Gunsan 35.935833 126.516667 + + + + + + + + + + + + + + +
4. Mokpo 34.783861 126.389222 + + + + + + + + + + +
5. Wando 34.317354 126.753546 + + + + + + + + + + + + + +
6. Yeosu 34.717166 127.749114 + + + + + + + + + + + + + + + + +

7. Gwangyang 34.908611 127.726111 + + +
8. Tongyeong 34.827222 128.389222 + + + + + + + + + + + + + + + + + +

9. Busan 35.099722 129.755635 + + + + + + + + + + + + + + +
10. Ulsan 35.099722 129.755635 + + + + + + + + + + + + + +

11. Yangpo 35.511111 129.385833 + + + + + + + + + + + + + + + + +
12. Jukbyeon 35.877818 129.519892 + + + + + + + + + + + + + + + + +
13. Donghae 37.498889 129.134356 + + + + + + + + + + + + + + + + +
14. Sokcho 38.210444 128.596249 + + + + + + + + + + + +



Water 2021, 13, 2164 8 of 10

4. Discussion

Several widely distributed botryllids, including B. diegensis, have been misidentified,
and the correct identification of these species is critical for understanding their biology and
spread, as well as for detecting the spread of additional species [27]. Preliminary molecular
analyses revealed that these one-toned color colonies included specimens attributable to
B. diegensis. Thus, B. diegensis might be misidentified in the field as B. violaceus based on
the criterion of possessing one-toned color rather than two-toned color [3]. In addition,
one-toned color B. diegensis is morphologically very similar to B. violaceus in Korea. In this
study, we selected the mitochondrial cytochrome c oxidase subunit 1 (COI) for the detection
of one- and two-toned color B. diegensis in South Korea. The COI was identified as the
marker of choice for species discrimination [28] and has been effectively used for detecting
NIS [8,29] and botryllids [27,30]. As a result, we recognized the presence of B. diegensis in
South Korea based on DNA barcoding analysis. Thus, we needed to know when and where
this species first appeared. We reviewed the monitoring data from 2017–2019, focusing on
two-toned colonies of B. diegensis. As a result, B. diegensis was found to be present in six
harbors in July 2017. It has now spread to 14 harbors along the coastal line of South Korea.
Botrylloides diegensis was not present in the Northwest Pacific region, including Korea and
Japan [18,31,32], according to previous ascidian studies (~2020). Professor Rho, a great
ascidian taxonomist in Korea, did not report this species either. Only two Botrylloides, B.
magnicoecum and B. violaceus, have been reported by Rho [19,33–40]. However, in 2021,
Nydam et al. [27] first reported B. diegensis in Japan and these specimens were collected in
2005–2009 in three localities of Japan. Thus, we supposed that B. diegensis was introduced
to the Northwest Pacific region before 2006. Botrylloiodes violaceus and B. diegensis are both
native to the North Pacific [3]. While the former is native to the Northwest Pacific, there is
more uncertainty regarding the native range of the latter [41]. Although B. diegensis was
originally described from the Northeast Pacific (southern California), it might have been
introduced from the Indo-Pacific [31,42]. This remains unclear. The presence of B. diegensis
was confirmed through this study, and therefore, the investigation of the introductory route
of B. diegensis is urgently needed, and also investigate the ecological and economic impact
from B. diegensis in South Korea.

5. Conclusions

Based on our DNA barcoding results, one- and two-toned color B. diegensis has spread
along all coastal lines of South Korea. It was possibly introduced to South Korea between
1999 and 2016 based on field monitoring data and previous studies. Further studies
are needed to analyze the specific route of its introduction to South Korea based on the
population genetic studies and previous monitoring data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w13162164/s1. Table S1: Pairwise distances (%) within 11 species of Botrylloides and Botryllus
schlosseri from South Korea and GenBank, based on the Kimura 2-parameter model. Figure S1:
Botrylloides diegensis, Botrylloides violaceus and Botryllus schlosseri in South Korea.
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