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Abstract: The generation of synthetic time series is important in contemporary water sciences for
their wide applicability and ability to model environmental uncertainty. Hydroclimatic variables
often exhibit highly skewed distributions, intermittency (that is, alternating dry and wet intervals),
and spatial and temporal dependencies that pose a particular challenge to their study. Vine copula
models offer an appealing approach to generate synthetic time series because of their ability to
preserve any marginal distribution while modeling a variety of probabilistic dependence structures.
In this work, we focus on the stochastic modeling of hydroclimatic processes using vine copula
models. We provide an approach to model intermittency by coupling Markov chains with vine copula
models. Our approach preserves first-order auto- and cross-dependencies (correlation). Moreover,
we present a novel framework that is able to model multiple processes simultaneously. This method
is based on the coupling of temporal and spatial dependence models through repetitive sampling.
The result is a parsimonious and flexible method that can adequately account for temporal and
spatial dependencies. Our method is illustrated within the context of a recent reliability assessment
of a historical hydraulic structure in central Mexico. Our results show that by ignoring important
characteristics of probabilistic dependence that are well captured by our approach, the reliability of
the structure could be severely underestimated.

Keywords: vine copula; copula; stochastic simulation; intermittent behavior; multivariate simulation;
time series; hydroclimatic processes

1. Introduction

In the field of hydrology, the study of time series and their synthetic generation
is of great importance. They are used to drive models in a wide range of applications,
from reservoir design [1–3] and planning [4–7], ecological flow estimation [8], to flood
risk [9]. There are a fair amount of models available in the literature and despite potential
differences between them, they share two common goals: i) adequate modeling of the
marginal distribution and ii) adequate characterization of the auto-correlation structure.

Regarding the modeling of time series of hydroclimatic variables, several challenges
can be identified. Firstly, these variables typically present highly skewed behavior, espe-
cially in fine time scales [10,11]. In common practice, skewed distributions are simulated
using the Thomas–Fiering models [12]. These are linear models that approximate skewness
by introducing non-Gaussian white noise in the generation scheme; however, the estima-
tion of white noise distribution parameters requires moments with an order higher than
two. The estimates of higher-order moments are very uncertain [13] and have a significant
impact on the reproduction of the distribution [14]. Additionally, the linear combination of
the i.i.d. non-Gaussian white noise terms does not necessarily result in the target distri-
bution [15], but rather a distribution that has equal moments up the preserved order [16].
Furthermore, hydroclimatic processes exhibit a wide range of dependence structures. Typi-
cally, these are categorized as short-range dependence (SRD) and long-range dependence
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(LRD) [17]. The main characteristic of SRD is the fast decay of the auto-correlation after a
few lags, while LRD implies the persistence of high auto-correlation after many lags. It has
been shown that LRD is present in many geophysical processes [17–21]. Most applications
employ models that are able to reproduce only SRD with some notable exceptions [22,23].

Modeling auto-correlation with linear models (such as those typically used to account
for SRD) can have some serious implications. Tsoukalas et al. [16] show that linear models
result in unnatural bounded auto-correlation structures when processes other than Gaus-
sian are simulated. This effect was termed envelope behavior. Envelope behavior is caused
by the linear combination of white noise described by bounded distributions in the time
series generation scheme. For example, when a Pearson-III distribution (which is bounded
from below) is used to model the white noise terms in a first-order auto-regressive model
(AR(1)), the resulting auto-correlation structure is bounded from below as well [16].

Tsoukalas et al. ([16]) show the importance of shifting the focus from the traditional
narrow view of correlation, as expressed by the Pearson correlation coefficient, to the
dependence structure in a joint distribution. This is a very important step not only in an
effort to recognize the limitations of linear stochastic models, but also to understand better
the dependence relationships between hydroclimatic variables. Contemporary research
indicates that in many cases this relationship deviates from the Gaussian and the effects on
the resulting uncertainty estimates are significant [24,25].

A promising alternative can be found in copulas. Copulas are joint distributions with
uniform [0, 1] margins. They allow the modeling of the joint distribution through the
decoupling of the dependence structure between variables and their marginal distributions.
In many cases, this enables the entire description of the dependence structure between
variables (or between lagged versions of the same variable) to one measure, such as
Spearman’s coefficient. Moreover, copula models are able to reproduce explicitly the
marginal distributions.

In comparison to fitting a linear model, copula models can be relatively more com-
plex and time-consuming. In order to fit a variable to a copula function, knowledge
about the (physical) behavior of such a variable is required. Additionally, the complexity
of these models grows significantly when dimensionality increases. Consequently, this
hinders mathematical and computational handling as well as conceptual understanding.
Nevertheless, copulas have been widely used and it is a rapidly growing field.

Copulas have gained popularity among the hydrological community [25–29]. Bivariate
copulas have been used to generate synthetic time series at the River Nile [30] and the
Colorado River [31]. Further, they have been applied to generate multi-site precipitation
time series [32]. In the field of hydraulic engineering, for example, [33] applies copulas to
produce wind speed and wave height time series for the scheduling of off-shore operations.

Bivariate copulas are limited on the order of auto-correlation they can preserve and the
number of variables (for example in terms of geographical location) they can simultaneously
simulate (some recent developments allow for approximating non-parametrically complex
joint densities. See for example [34,35]). For this reason, extended copula models, i.e., vine
copulas, can be used to represent a more complex joint distribution. This method, which
was introduced by [36], uses bivariate copulas to decompose multivariate joint distributions.
For example, ref. [37] generated cyclostationary stream flow time series considering higher-
order auto-dependence. Jäger and Nápoles [38] demonstrated how to produce correlated
significant wave heights and mean zero-crossing periods. Sarmiento et al. [39] successfully
employed a regular vine (R-vine) model developed by [40] for the simulation of wind
speed and direction time series. Vine copulas require the fitting of a large number of copula
functions. For example, for the simulation of four variables (taking into consideration
only the first-order auto-dependence and their cross-dependence), it would require the
calculation of 22 copula parameters.

In this paper, we present a methodology that can be used to generate synthetic time
series of hydroclimatic variables. Specifically, we present a case study that concerns an
ancient dike that was located within an extinct lake in present-time Mexico City. In order
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to recreate the hydrological conditions of the lake at the time where the dike was used,
time series of precipitation and evaporation are needed. A first attempt to characterize the
dependence between the two variables is the model developed in [41]. In this paper, the
model presented in [41] is extended to reproduce the first-order auto-dependence struc-
ture in the evaporation process. Additionally, specific considerations to better reproduce
cross-correlations between the evaporation and precipitation processes are introduced.
Furthermore, a novel framework to simulate from an arbitrary number of geographical
locations is presented. This approach introduces the coupling of the spatial and tempo-
ral models using repetitive sampling. In this way, the spatial model and the temporal
model can be freely chosen according to each data set and the required parameters for the
quantification of the joint distribution are reduced.

This paper starts by describing the general methodology to generate the time se-
ries. Next, the case study is presented including the description of the data. Then, the
precipitation–evaporation model is applied to simulate daily realizations for one and four
stations. Finally, a discussion of the results, conclusions, and recommendations for future
work are presented.

2. Methods
2.1. First-Order Univariate Processes

At the core of the modeling methodology proposed here lies the notion of copulas.
Copulas are multivariate distributions with uniform marginals in [0, 1]. They provide an
elegant way to describe the dependence between variables by removing the effects of the
marginal distributions. Sklar [42] showed that any multivariate joint distribution can be
expressed as a function of its marginals. In a two-dimensional context his theorem states:

FX1,X2 (x1, x2) = C{FX1 (x1), FX2 (x2)} (1)

where X1 and X2 are random variables with marginal distributions FX1 (x1) and FX2 (x2) and
C the copula function. Equation (1) indicates that two components are required to define
the joint distribution: the copula function and the marginal distributions.

Bivariate copulas have been used before to model time series [43]. The simplest case of
temporal dependence regards only two time steps. Let {Xt} for t ∈ N denote the time series
of interest. In terms of a copula, the relationship between consecutive time steps can be
written as FXt ,Xt−1 (xt, xt−1) = C{F(xt), F(xt−1)}where, F(xt) = FXt (xt) is the marginal distri-
bution of Xt. Moreover, P(X ≤ xt|Xt−1 = xt−1) = F(xt|xt−1) = CXt |Xt−1

{F(xt)|F(xt−1), Θ},
where CXt |Xt−1

is the conditional copula with arguments ∈ [0, 1]2. Notice that the parame-
ter vector Θ would model auto-correlation of order 1 for the time series of interest. Since
{Xt} is assumed to be a stationary process F(xt|xt−1) corresponds to a first-order Markov
model, which is characterized with a single marginal distribution and an appropriate
copula. Often, the conditional distribution is expressed as [44]:

CXt |Xt−1
{F(xt)|F(xt−1)} = ∂C{F(xt), F(xt−1)}

∂F(xt−1)
(2)

For simplicity, a different notation is introduced based on Aas et al. [45], according to

which hXt ,Xt−1

(
F(xt), F(xt−1), Θ

)
=

∂C{F(xt),F(xt−1)}
∂F(xt−1) . Moreover, let h−1

Xt ,Xt−1
(F(xt−1), v, Θ) be

the inverse conditional distribution, where the F(xt−1) is the conditioning variable, v is an
independent uniform [0,1] random variable and Θ the parameter vector of the bivariate
copula CXt ,Xt−1 . Solving for xt yields the definition of the first-order univariate process.

xt = F−1[h−1
Xt ,Xt−1

(
F(xt−1), v, Θ

)]
(3)

where F−1 is the inverse marginal distribution. The process, briefly described in this section,
has been used previously, for example, to model traffic loads for bridge reliability in [46,47].
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2.2. First-Order Bivariate Processes

In this section, the univariate model briefly described in Section 2.1 is extended to
account for dependence between two variables. Let us consider two dependent processes
{Xt} and {Yt} that present additionally serial correlation. Similarly, as in the univariate
case, t ∈ N. A good alternative to model these kinds of processes are vine copulas or simply
vines. Vines were originally introduced in Joe [44], Cooke [36], and Bedford and Cooke [48]
(see [49]). Vines are a graphical way of representing multivariate joint distributions. They
are a generalization of dependence trees. Roughly, a vine on n elements V(n) = {T1, . . . , Tn}
is a nested set of trees where the edges of tree j are nodes on the tree j+ 1 for j = 1, . . . , n− 1.
In particular, regular vines are of interest. These are vines whose edges in tree j are connected
as nodes in tree j+ 1 only if they share a common node in tree j. Vine copulas as dependence
models assign a bivariate copula to each edge in the first tree of the vine and conditional
bivariate copulas to the edges of every tree > 1. For a formal definition and their statistical
treatment see for example [45]. A graphical representation of a regular vine on 3 nodes is
presented in Figure 1. The edges in Figure 1 are assigned copulas that are parametrized
by rank correlation coefficients and a conditional rank correlation of Xt, Yt|Yt−1. Rank
correlations are denoted by r followed by a subscript indicating the respective variables
and time step. For example, rYtYt−1 denotes the rank correlation between process Y at times
t and t− 1.

Xt Yt

Yt−1

rYtYt−1

rXtYt−1

rXtYt |Yt−1

Figure 1. Vine representation of a joint distribution in 3 nodes.

Notice that the essential correlations that the model needs to capture are the tempo-
ral dependencies {Xt} and {Yt} and the cross-correlation {Xt, Yt}. If the process {Xt}
is generated independently with the univariate conditional copula model discussed in
Section 2.1, then all that is left is to induce the correct dependence {Xt, Yt} and {Yt}. This
can be achieved by modeling Yt conditional on both Yt−1 and Xt with a vine as the one
presented in Figure 1. Yt can be sampled according to Equation (4) where FX and FY are the
marginal distributions underlying Xt and Yt (F−1

X and F−1
Y their inverses). Notice that the

time index t is omitted since both processes are stationary. Moreover, h is the conditional
copula (and h−1 its inverse) operator, as it was established earlier, and v is as before, an
independent uniform random variable on [0,1] .

yt = F−1
Y

î
h−1

Yt ,Yt−1

Ä
FY(yt−1), h−1

Yt ,Xt |Yt−1
(FX(xt), v, Θ1), Θ2

äó
(4)

The modeling procedure for the generation of a continuous bivariate stochastic process
may be summarized as:

i Fit the appropriate marginal distributions characterising the random variables (or
use the empirical distribution).

ii Select suitable copulas CXt ,Xt−1 , CYt ,Yt−1 , and CYt ,Xt |Yt−1
.

iii Generate the first variable (Xt) using the univariate copula model from the
previous subsection.

iv Generate the second variable (Yt) using Equation (4).

Similar models to the one briefly described in this section have been used in [33,38].
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2.3. First-Order Intermittent-Continuous Bivariate Processes

In this section, the algorithm introduced in Section 2.2 is expanded to take into account
intermittency. Results are based on the methodology presented in Torres-Alves et al. [41].
The basic idea is the coupling of the copula models with Markov chains. Specifically, the
intermittent process is split into two sub-processes, (i) a discrete state-time Markov Chain
accounting for the occurrence of a certain environmental condition, and (ii) copula models
accounting for “amounts”. For example, in the case of daily precipitation, the Markov
chain model would simulate days with or without rain while the copula models would
account for the amount of rain (mm) per day. In an intermittent process, a Markov Chain
model accounts for two states: one for zero amount (i.e., a dry day) and one for larger
than zero amount (i.e., a wet day). The first-order discrete state-time Markov process is
described by:

P(Xt = s|Xt−1, Xt−2, ..., X1) = P(Xt = s|Xt−1) (5)

Similar to previous subsections, t ∈ N while s ∈ S for a countable set S. The probabili-
ties that express the chance of transition between states are called transition probabilities.
Continuing with our example, the two states of precipitation could be wet⇒ 1 and dry⇒ 0,
thus S = {0, 1}. The probabilities of interest are defined as follows:

P(Xt = 1|Xt−1 = 1) = P1|1

P(Xt = 0|Xt−1 = 1) = P0|1

P(Xt = 1|Xt−1 = 0) = P1|0

P(Xt = 0|Xt−1 = 0) = P0|0

(6)

For the above probabilities it holds that P1|1 = 1− P0|1 and P1|0 = 1− P0|0. These
probabilities comprise the so-called transition-probability matrix:

P =

ñ
P0|0 P1|0
P0|1 P1|1

ô
(7)

This matrix characterizes the Markov chain, providing all the information necessary
to reproduce the process. In this way, the probability of each state is explicitly simu-
lated. Another way to approach intermittency could be by adopting mixed type distribu-
tions that consider the dry state as an atom of probability. These have been adopted in
literature [50,51] but they will not be discussed in this text; however, they are theoretically
compatible with the proposed copula models.

The way that intermittency has been approached, by splitting the main process into
two sub-processes of occurrence and amount dictates that the generation algorithm cannot
be continuous. Specifically, the generation of the ”occurrence” process must precede the
“amount” process. In other words, the Markov chain must precede the copula time series.

Consequently, to generate a synthetic time series, the first step is to generate realiza-
tions of the Markov chain. This will define the different state blocks (i.e., sequences of wet
and dry periods of time) of the time series. For the dry (zero amount state) block of the
intermittent process, no further action is needed. What follows is the generation of the
amount process for the wet blocks. This can be performed for each block by employing
the univariate model of Equation (3). Then the continuous process can be generated con-
ditionally on the intermittent one of the same time step using the vine copula model of
Equation (4); however, dry blocks require special treatment. Naturally, zero amount does
not allow the expression of dependence via a copula. To overcome this, the cross-correlation
is treated implicitly by conditionalizing the continuous process distribution according to
the two states, wet and dry.

On a final note, to preserve correctly the first-order auto-dependence structure of the
continuous process the generation of blocks must be sequential. This means that the first
realization of each block should be conditional on the final realization of the previous block.
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The generation procedure is schematized in Figure 2. Superscripts W and D denote the
conditional wet and dry continuous process marginal distributions, respectively.

Xt−1 Xt Xt+1

YW
t−1 YW

t YW
t+1

Wet Block Generation Procedure

YD
t−1 YD

t YD
t+1

Dry Block Generation Procedure

Figure 2. Proposed bivariate (intermittent process Xt, continuous process Yt) generation algorithm
explanatory diagram. Superscripts W and D denote the conditional wet and dry continuous process
marginal distributions, respectively.

The generation algorithm is summarized below:

i Fit the appropriate marginal distributions characterizing the RV’s.
ii Select and fit the suitable copulas CXt ,Xt−1 , CYt ,Yt−1 , and CYt ,Xt |Yt−1

.
iii Calculate the transition-probability matrix of the Markov chain for the intermittent

process Xt. Simulate a desired length of the Markov sequence.
iv Split the time series into dry and wet blocks.
v Generate “blocks” representing {Xt} using the univariate copula model

(Equation (3)).
vi Generate the wet block Yt using the vine model of Equation (4) and the appropriate

marginal distribution. Use as seed for the first value of the wet block the last value
of the previous dry block.

vii Generate the dry block Yt using the vine model (Equation (3)) and the appropriate
marginal distribution. Use as seed for the first value of the dry block the last value
of the previous wet block.

2.4. Multivariate Processes

Equations (3) and (4) define univariate and bivariate models, respectively; however,
using the vine decomposition, higher-order models can be can be defined. As it was
discussed during the introduction, while such models that account for temporal and spatial
dependence exist, they require the calculation of a great number of parameters and are
limited in the dependence structures they can represent. The methodology described herein
aims to approximate dependent processes in time and space (for example precipitation
and evaporation from an arbitrary number of stations) while remaining parsimonious
and flexible. The key of this methodology is to approximate the conditional distribution
of the spatial and temporal dependence through repetitive sampling instead of inferring
it theoretically. It should be noted that the use of repetitive sampling in the context of
hydrology has been used in [52,53] for the coupling of different temporal scales.

For simplicity, let us first assume a two-dimensional case. Let us define a two-
dimensional process {Y1

t , Y2
t } where the superscripts denote, for example, a corresponding

station and the subscripts the time step. Moreover, let us assume that the temporal and spa-
tial dependence can be described by the first-order model of Equation (3). The methodology
can be described in four steps:

i Generate one realization of {Y1
t } from Y1

t−1 based on the temporal model.
ii Generate n realizations of Y2

t based on Y1
t according to the spatial model. These are

denoted with a tilde and the superscript S2 as [ỸS2
t,1 , · · · , ỸS2

t,n].
iii Generate n realizations of Y2

t based on Y2
t−1 according to the temporal model. These

are denoted with a tilde and the superscript T2 as [ỸT2
t,1 , · · · , ỸT2

t,n ]. The spatial and



Water 2021, 13, 2156 7 of 19

temporal realizations are all plausible realizations of Y2
t , which implies that a section

between the two sets exists.
iv Identify the common space. This is performed by identifying the realizations that

minimize the root mean squared error (RMSE).

min
i
{
√(

ỸT2
t,i − ỸS2

t,i
)2} (8)

Notice that RMSE in step iv above is not used as a goodness of fit measure but rather
as a selection criterion between the spatial and temporal components of the model. Another
way to approach this could be a Monte Carlo procedure where a convergence criterion is
targeted; however, in the context of time series generation this would result in non-practical
computational demand. Other measures for selection may be very well possible; however,
investigating them is out of the scope of this paper since we focus mainly on the general
methodology for simulating spatially diverse data sources.

The above procedure can easily be extended to more dimensions. Let us consider
another case where a set of four correlated variables [Y1

t , Y2
t , Y3

t , Y4
t ] is generated. It is

reminded that the vine representation in four variables is not unique [54]. Two very
common vines are the canonical or a C-Vine and the D-Vine. Their graphical representations
are found in Figure 3.

Y1
t

Y3
t

Y2
t

Y4
t

rY1
t Y2

t

rY1
t Y3

t

rY1
t Y4

t

rY2
t Y3

t |Y1
t

rY2
t Y4

t |Y1
t

rY3
t Y4

t |Y1
t Y2

t

Y1
t Y3

tY2
t Y4

t

rY1
t Y2

t
rY2

t Y3
t

rY3
t Y4

t

rY1
t Y3

t |Y2
t

rY2
t Y4

t |Y3
t

rY1
t Y4

t |Y2
t Y3

t

a. b.

Figure 3. Graphical representation of four-dimensional C-vine (a) and D-vine (b). Figures recon-
structed from [54], with permission from Elsevier.

It can be seen that the C-Vine representation has a unique variable, in our case Y1
t ,

from which the other variables depend. On the contrary in the D-Vine representation, the
variables depend serially. Both could be probable representations of spatial dependence;
however, the algorithm depends on the vine’s sampling order. Let us assume that a C-Vine
is selected. Further, let v1, v2, v3, v4 denote independent random draws from the uniform
(0, 1) distribution. The sampling algorithm is given by the following equations:

y1
t = F−1

Y (v1)

y2
t = F−1

Y

î
h−1

Y2
t ,Y1

t

(
FY(y1

t ), v2, Θ1
)ó

(9)

y3
t = F−1

Y

î
h−1

Y3
t ,Y1

t

Ä
FY(y1

t ), h−1
Y2

t ,Y3
t |Y1

t

(
FY(y2

t ), v3, Θ2
)
, Θ3
äó

y4
t = F−1

Y

¶
h−1

Y4
t ,Y1

t

î
FY(y1

t ), h−1
Y2

t ,Y4
t |Y1

t

Ä
FY(y2

t ), h−1
Y3

t ,Y4
t |Y1

t ,Y2
t

(
FY(y3

t ), v4, Θ4
)
, Θ5
ä

, Θ6
ó©

Furthermore, let us assume that the temporal dependence can be described by the first-
order model of Equation (3). The first step is to generate a basis realization on which the
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repetitive sampling will be based. This decision depends on the selected spatial dependence
model. It is noted that according to Equation (9), the C-Vine sampling order is 1-2-3-4.
Thus, in this case, the algorithm should start by computing Y1

t . If a D-Vine was selected
instead, the algorithm should start by computing Y3

t since the sampling order of a D-Vine is
3-2-4-1 [54]. The rest of the steps remain the same. n realizations are generated according to
the spatial and temporal models of which the one that minimizes the RMSE (Equation (10))
is selected.

min
i


√

∑m
j=1
(
ỸTj

t,i − ỸSj
t,i
)2

m

 (10)

where m = 4 in our case. This procedure is schematized in Figure 4.

Y1
t

ỸS3
t,1 ỸS4

t,1
I I.

I I I.
Y1

t−1

Y1
t

Y2
t−1

ỸT2
t,1

min{e}
Y1

t Y2
t Y3

t Y4
t

Y1
t−1 Y2

t−1 Y3
t−1 Y4

t−1

Y1
t

ỸS2
t,n ỸS3

t,n ỸS4
t,n

...

Y2
t−1

ỸT2
t,n

· · ·
I.

IV.

1
...
n

 ỸS2
t,1

[
1 · · · n

]
Y3

t−1

ỸT3
t,1

Y3
t−1

ỸT3
t,n

· · ·

[
1 · · · n

]
Y4

t−1

ỸT4
t,1

Y4
t−1

ỸT4
t,n

· · ·

[
1 · · · n

]
Figure 4. Four-dimensional generation algorithm. The roman numerals denote the steps of the algorithm. Superscripts S
and T denote a realization according to spatial and temporal models, respectively. The tilde denotes a possible realization.

The methodology above can be extended for m stations. The required number of
parameters of such a model is:

NΘ = m(m + 1)/2 (11)

The multivariate generation algorithm is summarized below:

i Fit the appropriate marginal distributions characterizing the RV’s.
ii Identify suitable models to describe spatial and temporal dependence.
iii Select and fit NΘ suitable copulas to model dependencies.
iv Select the number of trials n for the repetitive sampling.
v Generate the first temporal realization according to the sampling order of the se-

lected spatial model.
vi Generate n realizations from the spatial and temporal models independently.
vii Select the realization which minimizes the error (Equation (10)).

2.5. Admissible Marginal Distributions and Copula Fitting

One of the major benefits of modeling stochastic time series with copulas is the direct
use of the marginal distribution, instead of moment approximations. This allows the
utilization of classical fitting techniques such as maximum likelihood estimation [55] and
L-Moments [56] and state-of-the-art methods such as K-Moments [14] and the metastatis-
tical extreme value framework (MEV) [57]. Moreover, any finite variance distribution is
admissible, which increases the flexibility of the models.

The same flexibility can be demonstrated in the admissible copula fitting techniques.
In this study, the estimation of copula parameters is performed via the Spearman or Rank
correlation coefficient accompanied by measures to test the goodness of fit, such as the
Cramer–Von Mises statistic [58] and semi-correlations [43]; however, other methods such
as maximum likelihood, Bayesian information criteria, or Kendall’s tau can be supported.
A more comprehensive review can be found in [25,59].
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3. Case Study

To demonstrate the effectiveness of the proposed vine copula model, two scenarios
are presented: (i) simulation of daily evaporation and precipitation at one station and
(ii) simulation of daily evaporation at four stations, all located at the Valley of Mexico.
Additionally, the first scenario illustrates the influence of the dependence structure on the
reliability of flood defenses.

The proposed methodology is validated on the accuracy of the reproduced historical
characteristics, such as the approximation of the historical marginal distributions, the
first-order auto-correlation dependence, and the cross-correlation dependence structure.

3.1. Area of Study

The case study described herein is presented in Torres-Alves & Morales-Nápoles
(2020) [41]. It concerns the reliability analysis due to overflow of the ancient Nezahualcoyotl
dike that was once located in the Valley of Mexico (Figure 5). The Aztecs built this structure
around 1450 AD to protect their capital, the city of Tenochtitlan, from rising water levels in
the lacustrine system.

Figure 5. Outline of the study area. Reconstructed from information taken from [41].

Around 1519, the Valley of Mexico was covered by a lacustrine system comprising
of six interconnected lakes. These lakes connected during high water and because of the
salinity of the lakes, the rising water posed a threat to agriculture and freshwater supplies
in Tenochtitlan. Nowadays, there are no remains of this dike and the lakes were almost
completely drained by the end of the 19th century. Ref. [41] reconstructed the geometry
and position of the ancient structure based on historical sources. The dike was 16 km long
with a height of 8 m and a width of 3.5 m. It was made out of wood, stone, and mud.
Moreover, ref. [41] estimated the extent of the lacustrine system and proposed a simple
hydrological balance equation (Equation (12)) to compute the water level fluctuation at the
lake. Finally, an assessment of the reliability of the dike due to overflow was presented.

Xt Atr −Yt Al =
dVt

dt
(12)
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where:

• Xt is the precipitation at time t (m/day).
• Yt is the evaporation at time t (m/day).
• Atr is the tributary area of the basin (m2).
• Al is the surface area of the lake (m2).
• dV

dt is the daily change in volume (m3/day).

The hydrological balance was simulated only for the wet seasons. For this reason,
an initial water level (L0) needed to be assumed. The dike’s probability of failure due to
overflow was computed for six initial water levels (1 to 6 m).

3.2. Data

To simulate the precipitation and evaporation time series, records from five stations
situated within the Valley of Mexico are analyzed. This analysis was originally performed
in [41]. Therefore, only a brief overview is provided in the present work. For a detailed
presentation of the historical records the reader is referred to the original publication. The
data are available from Mexico’s national database [60]. Information about the stations is
given in Table 1.

Table 1. Summary of precipitation and evaporation information for each station.

Code Name
Coordinates

Time Period
Longitude Latitude

15008 Atenco −98.92 19.54 1 January 1961–22 August 2013
15044 La Grande −98.92 19.58 1 January 1964–31 August 2014
15083 San Andres −98.92 19.53 1 May 1967–31 December 2014
15167 El Tejocote −98.92 19.44 1 December 1957–1 January 2007
15170 Chapingo (DGE) −98.9 19.48 13 March 1957–1 January 2000

In this region, two seasons are identified, (i) wet season (May–October), and (ii) dry
season (November–April). The data from the stations were analyzed and appropriate
distributions were fitted using Maximum likelihood (Table 2). The respective cumulative
distribution functions are presented in Appendix A.

Table 2. Selected distributions for all variables and stations.

Station
Probability Distribution Function

Precipitation Evaporation

Atenco Weibull Generalized Extreme Value
La Grande Weibull Generalized Extreme Value
San Andres Weibull Generalized Extreme Value
El Tejocote Weibull Generalized Extreme Value
Chapingo (DGE) Weibull Generalized Extreme Value

Furthermore, bivariate copulas were fitted for each data pair (precipitation–evaporation).
The results are presented in Table 3. In [41] the authors use different goodness of fit (GOF)
techniques to show that the pairs in Table 3 are adequate choices for the (conditional)
copulas of interest. For further details about the GOF techniques used, the reader is referred
to [41] and references therein. Their functional representations are given in Appendix B.
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Table 3. Selected copula pairs for all stations.

Pairs Atenco La Grande San Andres El Tejocote Chapingo (DGE)

Xt−Xt−1 Gauss Gauss Gauss Gauss Gauss
Yt −Yt−1 Gumbel Gumbel Gumbel Gumbel Gumbel
Xt −Yt Gumbel Gumbel Gumbel Gumbel Gumbel

3.3. Simulation of Daily Evaporation and Precipitation

The simulation of precipitation {Xt} and evaporation {Yt} poses a particular challenge
due to the intermittent behavior exhibited by precipitation. Moreover, these variables are
the basic drivers for many hydrological models (i.e., [61]). Producing correlated time series
enables the quantification of uncertainty in these drivers and a probabilistic description
of the results. For this scenario, the data from Atenco station were analyzed (for further
details on why this station is selected, refer to [41]). From these data, 5000 hypothetical wet
seasons were generated, each with a length of 185 days.

The ability of the model to reproduce the historical distributions is exhibited in
Figure 6 with the use of QQ plots. These depict the relationship between the theoretical
and empirical quantiles of the cumulative distribution function. In the presented case, the
plotted quantiles form an almost straight line; thus, good agreement is found between
historical and simulated CDFs for both variables. Figure 7 provides a comparison between
historical and synthetic dependence structure in the real domain. Precipitation and evap-
oration exhibit a moderate correlation in the range of 0.3 to 0.4. Additionally, between
the variables, a low negative correlation is observed. These dependencies are quantified
in terms of rank correlations in Table 4. Overall, the model reproduces adequately the
first-order auto-dependence as well as the dependence between variables.

Figure 6. Comparison between empirical and theoretical quantiles for Precipitation {Xt} (a) and
Evaporation {Yt} (b).

3.3.1. The Effect of the Choice of Copula

For the description of the historical first-order auto-dependence, a Gumbel copula
was employed; however, in non-copula models addressing directly the characteristics of
the observed dependence structure is not straightforward. To demonstrate the importance
of a correct dependence description, a reliability calculation will be performed using two
sets of the synthetic time series. The first one will be the one generated during the previous
section. The second one is a precipitation and evaporation pair with the auto-dependence of
evaporation described by a Gaussian copula. The latter is selected for comparison purposes
because it represents a simple dependence structure that is reproduced by commonly used
linear Gaussian models and more recent models such as [50,51,53,62]. The results for both
cases are summarized in Table 5.
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Figure 7. Scatter plot presenting the dependence structure of historical and synthetic data.
(a) Precipitation–Evaporation {Xt, Yt}, (b) Precipitation–Precipitation {Xt, Xt−1}, (c) Evaporation–
Evaporation {Yt, Yt−1}.

Table 4. Comparison of historical and simulated rank correlations.

Xt − Xt−1 Yt − Yt−1 Xt − Yt

Historical 0.27 0.4 −0.22
Synthetic 0.27 0.37 −0.18

Table 5. Probability of failure for different initial water levels (Lo) as calculated with the Gaussian and Gumbel time series.

Water Level at the
Foot of the Dike (m) (Lo) m.a.s.l.

Gaussian Copula Gumbel Copula

Pf Return Period (Years) Pf Return Period (Years)

1 2231 0.00171 586 0.00099 1006
2 2232 0.02641 38 0.02068 48
3 2233 0.16189 6 0.14956 7
4 2234 0.45131 2 0.44657 2
5 2235 0.74568 1 0.75102 1
6 2236 0.91468 1 0.92038 1

Given an initial water level of L0 = 1 m. the probability of failure computed for the
Gaussian copula case is 73% higher than the Gumbel case.

Note that the Gaussian copula reproduces the same first-order rank auto-correlation
as the Gumbel. The difference can be entirely attributed to the change in the shape of the
dependence structure (Figure 8). In the absence of tail dependence, there is no clustering of
high evaporation events. This moderates the outgoing flux of the lake resulting in more
frequent high-water levels and thus, a larger probability of failure. This can be illustrated
by comparing the two evaporation time series (Figure 9).
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Figure 8. Scatter plot comparison of generated Evaporation {Yt} auto-dependence structures with
(a) Gumbel copula and (b) Gaussian copula. Historical data plotted as reference.

Figure 9. Evaporation {Yt} time series generated by Gumbel and Gaussian copulas.

In Figure 9, the time series generated by the Gumbel copula presents clusters of high
evaporation values around time steps 40 to 70, 100 and 160. On the contrary, the time series
generated by the Gaussian copula demonstrate a more symmetrical dependence pattern.
This is in accordance with the scatter plots provided in Figure 8 where the difference of
tail dependence between both copulas is demonstrated. Additionally, it is observed that
the differences between the computed probabilities decrease as the initial water level L0
increases (Table 5). This is because larger probabilities (smaller return periods) correspond
to events further from the tail, where the differences between the copula functions are
found. These results provide evidence on the importance of selecting an appropriate model
that characterizes the dependence structure of extreme events.

3.4. Simulation of Evaporation across Multiple Stations

This section presents the application of the multivariate methodology. The developed
multivariate algorithm is implemented for the simulation of daily evaporation in four of the
five stations at the Valley of Mexico. Evaporation data from Atenco {Y1

t }, La Grande {Y2
t },

San Andres {Y3
t }, and Chapingo (DGE) {Y4

t } were used to generate 100 seasons (each of
185 days). The spatial dependence is described by a Gaussian copula while the temporal
dependence is described by a Gumbel copula. For the latter, only the first-order auto-
dependence is taken into account. The sampling number is set to n = 100. A comparison
between historical and simulated first-order auto-dependence is provided in Figure 10.
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Figure 10. Scatter plot of historical and synthetic auto-dependence structures. (a) Atenco {Y1
t }, (b) La

Grande {Y2
t }, (c) San Andres {Y3

t }, and (d) Chapingo (DGE) {Y4
t } stations.

On the temporal level, evaporation in all stations demonstrates a rank correlation
in the range of 0.35 to 0.45. Moreover, the historical data exhibit upper tail dependence
between consecutive time steps. In all cases, the simulated data reproduce the shape of the
historical dependence structure. The results are quantified in Table 6 where a very good
agreement is found between historical and simulated rank correlations.

Table 6. Comparison of historical and simulated rank auto-correlations.

Y1
t − Y1

t−1 Y2
t − Y2

t−1 Y3
t − Y3

t−1 Y4
t − Y4

t−1

Historical 0.41 0.36 0.45 0.44
Synthetic 0.41 0.37 0.46 0.40

Furthermore, evaporation exhibits a high spatial correlation, in the order of r ≈ 0.6
among the stations. From a physical point of view, this can be explained by the proximity
of the stations and their position within the same watershed. The proposed algorithm
was able to reproduce these dependencies to a good extent (Figure 11); however, a small
deviation is observed between pairs Y1

t −Y4
t and Y2

t −Y3
t (Table 7). This difference can be

attributed to the copula choice.

Table 7. Comparison of historical and simulated rank cross-correlations.

Y1
t − Y2

t Y1
t − Y3

t Y1
t − Y4

t Y2
t − Y3

t Y2
t − Y4

t Y3
t − Y4

t

Historical 0.57 0.70 0.70 0.50 0.48 0.63
Synthetic 0.60 0.70 0.62 0.56 0.50 0.63

Finally, the model’s ability to reproduce the marginal distributions is presented in
Figure 12 where the empirical and synthetic quantiles of the cumulative distribution
function are compared. Overall, a good agreement is observed for all variables; however,
small differences are found near the tails. The size of this disagreement is not atypical in
hydrological research or other fields where uncertainty in modeling or observations is, in
general, significant.



Water 2021, 13, 2156 15 of 19

Figure 11. Scatter plot of historical and synthetic cross-dependence structure. (a) Atenco–La Grande
{Y1

t , Y2
t }, (b) Atenco–San Andres {Y1

t , Y3
t }, (c) Atenco–Chapingo (DGE) {Y1

t , Y4
t } (d) La Grande–

San Andres {Y2
t , Y3

t }, (e) La Grande–Chapingo (DGE) {Y2
t , Y4

t }, and (f) San Andres–Chapingo
(DGE) {Y3

t , Y4
t }.

Figure 12. Empirical and theoretical quantiles comparison for (a) Atenco {Y1
t }, (b) La Grande {Y2

t },
(c) San Andres {Y3

t }, and (d) Chapingo (DGE) {Y4
t } stations.

Exploration of the Repetitive Sampling Length

As with any repetitive sampling approach, the accuracy of the method depends upon
the sampling length. To determine the relationship between accuracy and sampling length,
four simulations were performed with n = [25, 50, 100, 250] and the empirical cumulative
distributions of their RMSE (Appendix B) were computed. In Figure 13, the relationship
between RMSE and sampling length for 90%, 95%, and 99% percentiles is plotted. As the
sampling length increases, the RMSE decreases. The largest decrease can be found between
n = 25 and n = 50. For n = 100, the RMSE of the 99% percentile is equal to 0.1. The
previous simulation suggests that this level of error yields adequate results. Furthermore,
increasing the sampling length does not offer significant improvements in accuracy while
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at the same time it drastically increases the computational cost. From this perspective, a
sampling length between 50 to 100 is a reasonable choice.

Figure 13. RMSE as a function of sampling length (n) for 90%, 95%, and 99% quantiles.

4. Conclusions

This paper presents a methodology to simulate hydroclimatic variables through
copula-based models. The proposed methodologies focus on the use of vine copulas
to characterize complex temporal and spatial probabilistic dependence. Two cases are
presented: (i) the generation of correlated precipitation and evaporation on a daily scale
and (ii) the generation of correlated daily evaporation time series from four stations. The
first case consists of a trivariate vine copula to handle temporal dependence of evaporation
and cross-dependence with precipitation. To capture intermittency, Markov chains were
coupled with a copula-based model. In the second case, the methodology relied on
repetitive sampling to couple the temporal and spatial vine copula models. The result is a
parsimonious and flexible model capable of simulating accurately observations from an
arbitrary number of stations.

In both case studies discussed herein, the models proved their capability to capture the
underlying dependence structures, reproduce the marginal distributions, and intermittency.
In fact, for the dependence structure, important asymmetries (such as tail dependence) may
be incorporated. These asymmetries are often found but overlooked in the modeling of
hydroclimatic variables. One of our case studies shows that by ignoring these asymmetries,
the reliability of hydraulic structures, for example, could be underestimated by a factor of
2 in some cases (Table 5).

We have shown the ability of our approach combining Markov chains and vine copula
models to reproduce short-range dependence (SRD) structures [63]. Many hydroclimatic
processes however exhibit long-range dependence (LRD) [64–66]. The performance of our
approach for these kind of dependence may be a subject for future research.
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Appendix A. Distribution Functions

Weibull

F(x) = 1− e−(κ x
λ )1/κ

where κ is the shape parameter and λ is the scale parameter.
Generalized Extreme Value

F(x) =


e
−
î

1+κ
(

x
λ−ψ

)ó− 1
κ

´
if κ 6= 0

e−e

(
x
λ
−ψ

) }
if κ = 0

where κ is the shape parameter, λ is the scale parameter and ψ is the location parameter.

Appendix B. Inverse Conditional Copulas

Gaussian Copula

h(u, v, ρ) = Φ
ÄΦ−1(u)− ρΦ−1(v)√

1− ρ2

ä
(A1)

h−1(u, v, ρ) = Φ
Ä

Φ−1(u)
»

1− ρ2 + ρΦ−1(v)
ä

(A2)

Gumbel Copula

h(u, v, δ) = C(u, v)
1
v

(−log v)δ−1((−log u)δ + (−log v)δ
)1/δ−1 (A3)

where C is the copula function C(u, v) = exp
î
− {(−logu)δ + (−logv)δ}1/δ

ó
.

In the case of the Gumbel copula, the inverse of the h-function cannot be given analyti-
cally. The use of a numerical method is necessary, such as Secant, Newton–Raphson, or
even brute force. It should be noted that convergence of the solution close to the tails can
be difficult and can affect the reproduction of the marginal distribution and the desired
dependence structure. Moreover, accuracy in the order of at least 10−4 is required for
reliable simulation results. This task can be computationally very expensive.
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