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Abstract: The European Union is planning a new program to achieve climate neutrality by 2050. In
this context, the Icelandic government plans to ban new registrations of fossil fuel cars after 2030
as one of the strategies to make Iceland a carbon-neutral country by 2040. Upgraded biogas can be
directly used in vehicles with CNG engines, reducing CO2 emissions by 80%. In this paper, several
alternatives of biogas plants, simulated in previous research, were evaluated by considering techno-
economic and environmental criteria through the application of multi-criteria decision-making tools.
Twelve alternatives were analyzed using the Definite 3.1 software. A weighted summation algorithm,
which transforms all criteria into the same scale by multiplying them by weights and then summing
them to obtain the results, was used in the analysis. The multi-criteria analysis of the twelve proposed
alternatives included eleven criteria (three technical, five economic, and three environmental) whose
weights were changed in a total of eleven scenarios. From a global perspective, when all criteria were
considered (9.1% weight) the best alternative with a score of 0.58 was the single-stage biogas plant
working with municipal solid waste. Sensitivity and uncertainty analyses also demonstrated that the
multi-criteria results obtained were robust and reliable.

Keywords: biogas; biomethane; multi-criteria analysis; municipal solid waste; food waste; lignocellulosic
biomass; weighted summation

1. Introduction

The EU has announced an ambitious plan to reduce GHG emissions to 80–95% below
1990 levels by 2050 [1]. In Europe, so far, much of the combined total GHG emissions
reduction has come from the power and heating and cooling sectors, achieving a reduction
of 23% from 1990–2014, while the transport sector emissions increased by 20.1% in the same
period [2]. In the meantime, recent studies indicate that the energy demand will grow by up
to 50% until 2050 and, therefore, the security of the energy supply is a crucial challenge [3].

There are several alternatives for reducing GHG emissions, among them, the EU
strategy proposes intensifying the use of biomass. Processing biomass into bio-based and
renewable products allows for a decrease in the consumption of non-renewable resources
and boosts the circular economy [4,5]. Anaerobic digestion (AD) of organic compounds
to produce biogas is a promising alternative for biomass utilization. AD is a biological
process where organic matter is biodegraded under anaerobic conditions, leading to the
production of biogas along with a digestate [6]. The digestate is a black-in-color by-product
that can be divided into solid (SD) and liquid phases (LD). The SD can be transformed into
energy through incineration, pyrolysis, gasification, or hydrothermal carbonization (HTC);
composted, or used to fertilize agricultural crops. The LD contains high concentrations
of nitrogen, phosphorous, and potassium and must be treated before its discharge into
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the environment [7–9]. Recent studies also used the SD in bioethanol production [10] or
in construction materials such as medium density fiberboards and wood–plastic compos-
ites [11]. Biogas is made up mainly of CH4 (40–75% v/v) and CO2 (15–60% v/v) [3] together
with other trace species: H2S, H2, N2, NH3, O2, and CO. Upgraded biogas can be used in
various applications such as in the production of electricity, heat and steam generation in
households and industry, injection into the natural gas grid, and as a vehicular fuel [12,13].

In the European Union, primary energy production from biogas has increased in the
last decade from 167 PJ in 2005 to 654 PJ in 2015, with biogas volume increasing from
2.5 billion m3 in 2000 to 18 billion m3 methane equivalent in 2015, representing half of the
global biogas production [14]. The gross inland energy consumption of biogas in Europe
has tremendously increased since 1990 and has been multiplied by a factor of 25, reaching
values of 14,079 ktoe (164 TWh) in 2019. Nevertheless, in 2019 biogas provided a marginal
share of the total gross inland energy consumption of the EU27 (approx. only 1%). In
addition, the total gross inland energy consumption of biogas was equivalent to around
4% of the natural gas consumed across Europe in 2019 [15]. Consequently, there is a lot of
effort needed to promote biogas for a low-carbon energy transition.

The increasing interest in biogas production has been analyzed from European [16]
and global perspectives [17]. In a previous work recently published by the co-authors,
different AD biogas plants were simulated in Aspen Plus v10 by working with the three
main feedstocks collected in the landfill of the Reykjavik capital area, operated by the waste
company of SORPA, which also operates the waste management for the capital area [18].
Different AD biogas plant sizes were simulated, working with different configurations (one
or two anaerobic digestion steps), feedstocks (municipal solid waste, MSW, food waste,
FW, and lignocellulosic biomass (LCB)) and operation modes (co-digestion or conventional
digestion). The complexity and heterogeneity of the formulated alternatives, and the
significant number of parameters that resulted from the Aspen Plus model simulations,
make it very difficult to establish the optimum solution considering all the stakeholders’
viewpoints. This issue can be solved by using a multi-criteria analysis (MCA) decision-
making tool that can account for and evaluate multiple dimensions of impacts, based on
an explicit set of criteria, in a way that facilitates the comparison of a range of alternatives
in a simple manner [19,20].

The aim of this research was to decide which is the best alternative (AD biogas plant)
from technical, environmental, and economic perspectives by implementing MCA in the
capital area of Reykjavik. The MCA of the twelve proposed alternatives included three
technical criteria (CH4:CO2 ratio, biogas yield, and methane yield); five economic criteria
(capital costs, operation costs, utilities costs, equipment costs, and installed costs); and three
environmental criteria (digestate generation, equivalent CO2, and amount of contaminants
in the digestate). Such a study has never been completed before in Iceland, but it responds
to the needs of the Climate Action Plan (CAP) for the years 2018–2030 for the Icelandic
Government since methane from the biogas plants will be used as vehicular fuel. Currently,
road transport is one of the biggest sources of emissions in Reykjavik [21]. On the one
hand, this research contributes to the phasing out of fossil fuels in transport in Iceland. On
the other hand, the digestate, which is the main byproduct generated by organic waste
(after AD), serves as fertilizer, contributing to the second goal of the CAP, consisting of
land restoration, revegetation, and afforestation.

2. Materials and Methods
2.1. Multi-Criteria Analysis and Weighted Summation Method

The MCA analysis was performed using the Definite 3.1 software, which included a
weighted summation MCA algorithm to obtain the results [22,23]. The Definite v3.1 is a
decision-making software for a finite set of alternatives developed by the SPINlab of the
University of Amsterdam [24]. Weighted summation (WS) methodology, which transforms
all criteria into the same scale by multiplying them by weights and then summing them
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to obtain the results, was used in the analysis. The main steps followed to implement the
MCA methodology are summarized in Figure 1.
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In this case, the method selected (step 4 of Figure 1) was weighted summation (WS).
This method can be used to address problems that involve a finite and discrete set of
alternatives that must be evaluated based on conflicting objectives [25]. For any given
objective, one or more different attributes or criteria are used to measure the performance
in relation to the objective. Impacts of all alternative options for all criteria are presented
in the impact matrix. Such criteria are usually measured on different scales and therefore
cannot be compared with each other directly.

The process to be followed to carry out WS can be further detailed as follows: (1)
definition of the alternatives that will be compared against each other; (2) selection and
definition of criteria identifying the most relevant indicators for the decision; (3) assessment
of scores for each alternative by assigning values to each indicator for all the alternatives; (4)
standardization of the scores to make the criteria comparable with each other; (5) weighting
of criteria to assign priorities to them; (6) ranking of the alternatives. A total score for each
alternative is calculated by multiplying the standardized scores with their appropriate
weight, followed by summing the weighted scores of all criteria.

2.2. Anaerobic Digestion Plants

A total of twelve alternatives (biogas plants) were considered and evaluated in the
MCA as shown in Figure 2. The biogas plants included three different inlet flows (300 t/d,
320 t/d, and 323 t/d) and three kinds of feedstocks (MSW, FW, and LCB), operating in
single or in co-digestion. The chemical composition of the three materials was previously
described and can be consulted in the literature [18].
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Plant sizes and kinds of feedstocks were taken from the SORPA landfill. In a period of
four years (from 2016 to 2019) the landfill collected on average 110,000 t/y of MSW, 8000 t/y
of FW, and 1000 t/y of LCB. Consequently, the inlet flows of co-digestion alternatives were
set at 323 t/d (all residues), 320 t/d (MSW and LCB), and 3 t/d (MSW and FW).

Two Aspen Plus model approaches (one or two anaerobic digestion steps in series)
were evaluated. The AP model approaches work under thermophilic conditions of 55 ◦C.
The single-stage AD model approach includes a total of 7 reactions based on the Nduse and
Oladiran model [26]; the two-stage AD model approach considers 45 reactions and is based
on the Rajendran model [27]. In this case, hydrolysis occurs in the stoichiometric reactor,
whereas acidogenesis, acetogenesis, and methanogenesis occur in the continuously stirred
tank reactor. All details of the AP developed models, assumptions, and considerations
were fully described in a previous publication [18]. A block scheme of the alternatives (A1
to A12) is summarized in Figure 2.

2.3. Criteria Definition

To build a comprehensive evaluation dimension system, the bioenergy sector focuses
on environmental, technical, economic, and social factors. Consequently, the evaluation
dimensions of the present paper mainly consisted of eleven criteria divided into three
categories, respectively, technical, economic, and environmental, as shown in Table 1.
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Table 1. Set of criteria considered in this case study.

Criterion N Criterion Name Units Indicator Cost/Benefit Category

C1 CH4:CO2 ratio v/v quantitative benefit technical
C2 Biogas yield m3/kg quantitative benefit technical
C3 Methane yield m3/kg quantitative benefit technical
C4 Digestate generated t/t quantitative cost environmental
C5 CO2 eq. kg/kg quantitative cost environmental
C6 Digestate contaminants - quantitative cost environmental
C7 Capital costs USD/t quantitative cost economic
C8 Operating costs USD/y·t quantitative cost economic
C9 Utility costs USD/y·t quantitative cost economic
C10 Equipment costs USD/t quantitative cost economic
C11 Installed costs USD/t quantitative cost economic

The eleven criteria included in the impact matrix to perform the MCA were quantita-
tive. The WS method requires criteria to be comparable amongst each other. Therefore, all
criteria were standardized by dividing each one of them by the inlet mass flow of feedstock.
Among the eleven criteria, the three technical ones were of the type “benefit”, which means
that the higher the score of this effect is, the better are the alternative results. The rest of the
criteria (five economic and three environmental) were of the type “cost” or in other words,
the higher the score of this effect is the worse are the alternative results.

Regarding the technical criteria, the CH4:CO2 ratio gives an idea of the selectivity of
the AD process and is calculated as shown in Equation (1). Biogas and methane yields are
among the most important indicators of these kinds of plants. They were calculated as
shown in Equations (2) and (3).

CH4 : CO2 ratio
(v

v

)
=

QCH4
b

(
m3/d

)
QCO2

b (m3/d)
(1)

where QCH4
b and QCO2

b are the volumetric flow rate of methane and carbon dioxide in the
biogas outlet stream, respectively.

yieldb

(
m3

kg

)
=

.
mb(t/d)

ρb

(
kg
m3

)
· .
m f (t/d)
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where yieldb, ρb,
.

mb, and
.

m f are yield of biogas, density of biogas, outlet mass flow of
biogas, and inlet mass flow of feedstock, respectively.

yieldCH4

(
m3

kg

)
=

.
mCH4(t/d)

ρCH4

(
kg
m3

)
· .
m f (t/d)

(3)

where yieldCH4 , ρCH4 ,
.

mCH4 , and
.

m f are yield of methane, density of methane, outlet mass
flow of methane, and inlet mass flow of feedstock, respectively.

Regarding the environmental criteria, carbon emissions measured in kg of CO2 eq.
per kg of inlet feedstock were determined through the Aspen Energy Analyzer (AEA). The
digestate generated is the result of the bottom stream, named ‘sludge’ in the flowsheet
previously published by the co-authors [18], and is obtained as an outlet stream of the flash
unit, which is placed after the anaerobic digestion units. The criterion digestate contami-
nants (Equation (4)) considers the sum of the mass fractions of carbon dioxide, methane,
ammonia, acetic acid, propionic acid, benzene, and the phenol forming part of the digestate
matrix (‘sludge’ stream of the AP flowsheet). These components were selected based on
their effects on atmospheric acidification, stratospheric ozone depletion, photochemical
ozone (smog) formation, human health (carcinogenic) effects, aquatic oxygen demand, or
ecotoxicity to aquatic life [28]. In addition, CO2 and CH4 were considered because they
are GHG.
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Digestate cont. = ∑
mi(t)
md(t)

= xCO2 + xCH4 + xNH3 + xC2 H4O2 + xC3 H6O2 + xC6 H6 + xC6 H6O (4)

where xCO2 , xCH4 , xNH3 , xC2 H4O2 , xC3 H6O2 , xC3 H6O are the mass fractions of the previously
aforementioned components considered in the digestate.

Regarding the economic criteria, all of them were determined through the Aspen Plus
Economic Analyzer tool (APEA). A brief description of the fixed costs (capital, equipment,
and installed costs) and variable costs (operating and utility costs) considered in the MCA
is given [29]:

• Capital costs include all cost-based technical project details, including design, equip-
ment, civil, structural, piping, mechanical, steel, instrumental, electrical, insulation,
paint, labor, and management;

• Operating costs include the total raw materials costs, utility costs, operating labor
costs, maintenance costs, operating charges, and plant overhead;

• Utility costs are the costs incurred by using electricity, water, heating, or waste dis-
posal;

• Equipment costs include costs of vessels, pipelines and in general all the unit opera-
tions used in the plant;

• Installed costs are the total costs of labor and materials of the facility.

2.4. Formulated Scenarios

Once the criteria were selected, the next step in the MCA-WS methodology is to define
the importance (weight) of each criterion and decide the scenarios that will be considered
for evaluating the biogas plant alternatives. Such scenarios are represented in Table 2.

Table 2. Proposed scenarios evaluated through MCA-WS.

Scenarios Criteria Weights Distribution Purpose

SCE.1 100% CH4:CO2 ratio Biogas quality
SCE.2 100% biogas yield Biogas production
SCE.3 100% methane yield Methane production

SCE.4 33.3% three technical criteria Full technical compromise
solution

SCE.5 100% CO2 eq. emissions Minimization of GHG
SCE.6 50% digestate generation and toxicity Load and quality of digestate

SCE.7 33.3% three environmental criteria Full environmental compromise
solution

SCE.8 33.3% capital, equipment, and installed
costs Fixed costs minimization

SCE.9 50% operating and utility costs Variable costs minimization

SCE.10 20% five economic criteria Full economic compromise
solution

SCE.11 9.1% all criteria Techno-economic and
environmental solution

Table 2 summarizes the scenarios (SCE) contemplated, together with the weights as-
signed to each criterion and the purpose pursued in each scenario. The developed scenarios
had the aim of analyzing the biogas plant alternatives not only from a global perspective,
which corresponds to the SCE.11, but also from different perspectives depending on the
stakeholders’ viewpoints. Thus, looking at Table 2, there is a total of four scenarios (SCE.1
to SCE.4) considering only technical criteria, three scenarios (SCE.5 to SCE.7) considering
environmental criteria, three scenarios (SCE.8 to SCE.10) considering economic criteria,
and the last scenario (SCE.11) combines all criteria with the same weight (9.1%).
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2.5. Robustness Analysis

Weights of the criteria considered in the formulated scenarios of Section 2.4 together
with the scoring values of the alternatives could contain some uncertainties. An important
issue is to know how the final ranking of the alternatives is sensitive to the changes of some
input parameters of the decision model. Therefore, uncertainty and sensitivity analyses
were conducted. The uncertainty of input data was set to 10% and 25%. Sensitivity analysis
of each criterion to determine how its weight affected the final ranking was also studied
by varying weights from 0 to 100%. In addition, perspectives of the ranking alternatives
at 20%, 40%, 60%, 80%, and 100% weights of three selected criteria (biogas yield, CO2 eq.,
and capital costs) were also checked.

3. Results and Discussion
3.1. Results of the Multi-Criteria Analysis by the Weighted Summation Method (MCA-WS)

The first step to starting the MCA-WS is to build the impact matrix with all the
quantitative effects. Table 3 includes each of the twelve biogas plant alternatives in the
columns and the eleven quantitative criteria in the rows. The impact matrix values were
introduced into the Definite software, and each of the formulated scenarios (SCE.1 to
SCE.11) will be discussed. Figure 3 shows all the MCA-WS results for a given scenario.
The scores are represented in bars graphs and all the alternatives are plotted in descending
order. Weighting criteria distribution is represented in the circular graphs.

The technical scenarios (SCE.1 to SCE.4) plotted in Figure 3a–d show similar ranking
scores. In general, two-stage AD plants showed better results except for SCE.2 (100%
weight-to-criterion biogas yield). In this case the highest production of biogas occurred
working in the co-digestion mode in a two-stage model, followed by in the biogas plant
alternatives working in single-stage conditions. From the rest of the technical scenarios
(SCE.1, SCE.3, and SCE.4) the two-stage models in mono-digestion and co-digestion modes
become the best choices due to their higher CH4 presence in the biogas. The highest biogas
amount under single-stage conditions was obtained by using MSW (score of 0.95) as can be
seen in SCE.2 (Figure 3b) because the MSW used in the AP models contains higher amounts
of carbohydrates than do FW and LCB feedstocks. In addition, the C/N ratio of MWS
fits better with the 20–30 C/N ratio requirements than do those of LCB and FW [30,31].
Regarding the methane yield (SCE.3 in Figure 3c), LCB is the feedstock that obtained the
highest score (1.00). Among all the feedstocks checked, LCB is the one with the most
carbohydrates, and according to the bibliography, carbohydrate concentrations higher than
8.3% and proteins and lipids lower than 5.0% and 5.6%, respectively, could be an effective
way for maintaining higher methane production and shorter digestion retention [32]. In
line with this, the results of SCE.1, where the CH4:CO2 biogas ratio was considered, had
the best score when the biogas plants worked with FW in a two-stage model, with a
maximum score of 1.00 (SCE.1 in Figure 3a). The co-digestion alternatives also obtained
good scores in all the formulated technical scenarios. Such behavior can be explained
because co-digestion offers an improvement of the balance of nutrients and the C/N ratio,
alleviation of inhibitory effects, and enhancement of methane production kinetics [33,34].
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Table 3. Impact matrix for the MCA of the biogas plant alternatives introduced in the Definite software.

Criteria

Single-Stage Biogas Plant Alternatives Two-Stage Biogas Plant Alternatives

MSW FW LCB MSW and
FW

MSW and
LCB All Wastes MSW FW LCB MSW and

FW
MSW and

LCB All Wastes

CH4:CO2 ratio 1.35 1.41 1.34 1.35 1.35 1.35 1.63 2.02 1.25 1.63 1.60 1.40
Biogas yield 0.36 0.26 0.32 0.36 0.35 0.35 0.28 0.20 0.11 0.28 0.26 0.41

Methane yield 0.09 0.07 0.11 0.09 0.09 0.09 0.23 0.17 0.59 0.24 0.23 0.36
Digestate generated 0.530 0.651 0.635 0.531 0.536 0.537 0.670 0.658 0.916 0.670 0.689 0.700

CO2 eq. 1.1×10−1 8.0×10−2 1.0×10−1 1.1×10−1 1.1×10−1 1.1×10−1 3.5×10−2 3.4×10−4 1.0×10−3 3.5×10−2 3.3×10−2 3.7×10−2

Digestate contaminants 4.2×10−3 4.1×10−3 1.4×10−3 2.2×10−3 2.2×10−3 2.2×10−3 4.7×10−3 2.7×10−1 2.2×10−1 5.0×10−3 2.3×10−2 3.5×10−3

Capital costs 14,961 8146 15,085 14,813 14,026 13,897 16,049 10,997 22,234 19,874 19,665 19,550
Operating costs 6629 4874 6347 6568 6228 6175 6629 4874 6347 6568 6228 6175

Utility costs 1097 636 836 1091 1040 1035 1316 763 206 1309 1254 1139
Equipment costs 2864 302 2947 2835 2685 2661 5727 605 3873 5671 5369 5321

Installed costs 4565 1209 4664 4519 4279 4241 5249 1390 5130 4519 4707 4665
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SCE.3; (d) SCE.4; (e) SCE.5; (f) SCE.6; (g) SCE.7; (h) SCE.8; (i) SCE.9; (j) SCE.10; (k) SCE.11.

MCA results of the three environmental scenarios SCE.5, SCE.6, and SCE.7 are rep-
resented in Figure 3e–g, respectively. When the CO2.eq is considered with a weighing of
100% (SCE.5 in Figure 3e), all two-stage AD model approaches resulted in better scores than
those of the single-stage AD model approaches. This behavior can be explained because
the direct CO2 emissions in the biogas are lower in the two-stage models than they are
in the single-stage models, which is in accordance with the CH4:CO2 ratios analyzed in
the technical scenario SCE.1. When the two digestate criteria were evaluated with the



Water 2021, 13, 2150 10 of 17

same weight of 50% in SCE.6 (Figure 3f), the trend was the opposite of the trend observed
in SCE.5. In this case, the single-stage AD model approaches achieved the best scores in
the range of 0.61 and 0.56 due to all the side-reactions considered in the two-stage AD
model approaches, which translated into higher mass fractions of toxic compounds in
the digestate. Finally, when all the environmental criteria were evaluated with the same
weights of 33.3% in SCE.7 (Figure 3g), the highest score of 0.53 was obtained in two biogas
plant alternatives: MSW-2S and co-digestion of MSW and FW-2S.

MCA results of the economic scenarios SCE.8, SCE.9, and SCE.10 are plotted in
Figure 3h–j. SCE.8 was formulated with the purpose of minimizing fixed costs and SCE.9
to minimize variable costs, while the last scenario, SCE.10, represented a compromise
solution where all the economic criteria were considered with 20% weights. In all cases
analyzed, the best scores were obtained with single-stage AD models. In the last scenario
SCE.11 represented in Figure 3k, where all criteria were evaluated with 9.1% weights, the
best biogas plant alternative was MSW-1S with a total score of 0.58.

3.2. Ranking MCA Results of Selected Criteria

The next step was to show the perspectives of certain criteria. In this case, biogas yield
(technical criterion), CO2 eq. (environmental criterion), and capital and operating costs
(economic criteria) were selected.

Biogas yield was chosen because all the literature consulted agrees that it is a key
parameter at any AD biogas plant [35–38].

CO2 eq. was chosen because a key point of this research was the reduction of GHG
according to the Paris Agreement, and no other biogas plant alternative can fulfill this
objective better.

Finally, fixed capital and variable operating costs were also studied in this section
because they include the biggest expenses of the biogas plants.

Looking at the ranking scores of the biogas yield (Figure 4a), the single-stage AD plant
operating with MSW seems the most adequate alternative. This trend becomes higher
as the weight of this criterion increases. The scores at 20%, 40%, 60%, 80%, and 100%
were 0.62, 0.70, 0.78, 0.86, and 0.94, respectively. Even though scores constantly increase,
the co-digestion mode alternatives become the best choice, reaching a maximum score
of 1.00 in the two-stage plant working with all wastes (MSW, FW, and LCB) at the same
time. This behavior in co-digestion is in line with the literature that demonstrates how
co-digestion is an effective way to enhance the digestion process for better biogas quantity
and quality [30].

In the case of the ranking scores of the CO2 eq. represented in Figure 4b, two-stage
mono-digestion biogas plants were shown to be the best alternative. The first choice was
the FW-2S with scores of 0.57 (20% weight), 0.68 (40% weight), 0.78 (60% weight), 0.56
(80% weight), and 0.99 (100% weight). The second choice was the LCB-2S with very similar
scores as those obtained by the first choice: 0.50 (20% weight), 0.62 (40% weight), 0.74 (60%
weight), 0.40 (80% weight), and 0.98 (100% weight).

The best results in capital and operating costs (Figure 4c) were obtained in the single-
stage AD model approaches either in mono-digestion or in co-digestion modes. In none of
the scenarios did the two-stage alternatives have better results than those of the single-stage
biogas plants.
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3.3. Robustness Analysis

Sensitivity analysis (Figures 5 and 6) assesses the influence of the weights assigned to
each criterion, while uncertainty analysis (Figure 7) assesses the effect of uncertainties in
the criteria scores.
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A key method to determine the robustness of the findings of an MCA study is to
determine how sensitive the results are to changes in the weighting factors [39]. In the
previous sections, MCA-WS results from eleven scenarios, with different weights and
combinations of the criteria, were discussed. Next, the effect of the weight of each criterion
over the ranking score was analyzed. It is of great importance to know how the final
ranking of the alternatives is sensitive to the changes of some input parameters of the
decision model [22]. For this reason, the evolution of the ranking order (y-axis) with the
weight distribution (x-axis) is represented in Figures 5 and 6. The sensitivity analysis of the
technical and environmental criteria is displayed in Figure 5; the sensitivity analysis of the
economic criteria is shown in Figure 6.
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In Figures 5 and 6, the y-axis represents in ascending order the ranking position
of the biogas plants (alternatives). The x-axis is the distribution of weights given to a
specific criterion. Each line represents a biogas plant alternative. The best alternative is the
one located in the highest position (i.e., in Figure 5a, the red line that corresponds to the
MSW-1S alternative is the best solution when the weight of biogas yield reaches between 0
and 70%).

Looking at the technical criteria, in general, a single-stage biogas plant working
with MSW (red line) seems to be the best alternative at all the weight ranges (from 0 to
100%) except for the methane yield (Figure 5c) and the CH4:CO2 ratio (Figure 5e). This
trend is in line with the biogas yield ranking perspective studied in the previous section
(Figure 4a). Regarding the methane yield, when this criterion weights more than 30%, the
best alternative is the two-stage plant working with LCB, reaching the maximum score of
1.00 when the importance of the methane yield achieves 100%. In the case of the CH4:CO2
ratio at the beginning, when the weight of this criterion is in the range of 0 to 45%, the scores
of MSW-1S, MSW-2S, and FW-1S are quite similar and these three are the best alternatives.
However, when this indicator gains importance from 45 to 100% weight, FW-2S becomes
the best alternative.

Regarding the environmental criteria, LCB-2S is the worst biogas plant alternative
when analyzing the effect of the digestate generation (Figure 5e) and the digestate contami-
nation (Figure 5f). This trend is the same in both criteria at all the range of weights tested
in the two-stage biogas plant alternatives, due to the amount of degradation compounds
and reactions considered in the two-stage model approach in comparison with those of
the single-stage model. To make these alternatives more sustainable, valorization of the
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digestate is required. A different behavior was observed in the CO2 eq. sensitivity analysis
(Figure 5f). In this case, the best choice was the FW-2S plant followed by LCB-2S. The
same ranking was achieved when looking at the CO2 eq. weight given in Section 3.3 and
represented in Figure 4b. Looking at the impact matrix values, the two-stage model ap-
proach has the lowest CO2 eq. emissions. This behavior is also explained by the CH4:CO2
ratio because the CO2 present in the biogas outlet streams at the two-stage biogas plants is
significantly lower than that in single-stage biogas plants, whereas the CO2 present in the
digestate is higher in the two-stage biogas plants. This can be explained again with the
scheme of reactions considered in the two-stage plants.

The last sensitivity analysis was carried out for the economic criteria. Looking at
Figure 6, when analyzing equipment costs (Figure 6b) and utility costs (Figure 6d), the
best scores at all weights were obtained by plants working with MSW. As was expected,
the worst ranking positions when studying capital (Figure 6c) and operational (Figure 6a)
costs were the two-stage plants due to the second reactor and all the costs derived from
this issue.

In general, alternatives that use MSW in a single stage are the best biogas plants for
most of the technical and economic criteria.

Results of the uncertainty analysis are plotted in Figure 7. The robustness of the
MCA-WS ranking results was demonstrated by changing the impact matrix values to 10%
(Figure 7a) and 25% (Figure 7b).

Biogas plants (alternatives) are represented on the y-axis, whereas the ranking position
is represented on the x-axis. The size of the circles is proportional to the probability that
each biogas plant alternative occupies a certain position in the rank order. The large-sized
circles on the main diagonal indicate that, despite the scores deviating from the assigned
values of up to 10%, the ranking hardly varied. This behavior changes in Figure 7b when
the criteria values change by 25%. In this case, the biogas plant alternatives located in the
second, third, eighth, ninth, and tenth ranking position might vary based on the smaller
circle size in comparison with the circle size at 10% uncertainty (Figure 7a). The highest
score in both analyses was the single-stage biogas plant working with MSW (first green
circle) and the worst ranking position belonged to the two-stage biogas plant working in
co-digestion mode with MSW and LCB (last red circle). Looking at the 25 % uncertainty
analysis for all the criteria (Figure 7b), ranking positions 2, 3, 8, 9, and 10 corresponding to
MSW-2S, FW-1S, LCB-1S, all wastes co-digestion 2-S, and LCB-2S, respectively, might vary.
This behavior can be detected based on the smaller circle size in comparison with that of
the 10% uncertainty analysis of Figure 7a. Nevertheless, the probability of changing the
ranking position is still low since medium size circles prevail over small size circles.

4. Conclusions

The complexity, heterogeneity, and seasonality of the organic residues collected in
the metropolitan area of Reykjavik and the significant amount of technical, economic,
and environmental parameters resulting from the biogas plant simulated in Aspen Plus
makes it very difficult to establish the optimum solution considering all the stakeholders’
viewpoints. Therefore, an adequate decision-making tool able to solve for these concerns
was required. In this sense, MCA-WS methodology was applied to evaluate the twelve
biogas plant alternatives within eleven different scenarios by using a total of eleven criteria
(three technical, three environmental, and five economic criteria).

The best solution from a technical viewpoint was the anaerobic digestion biogas plant
working at co-digestion in a two-stage model approach, reaching a maximum score of 0.88
when the three technical criteria were considered in SCE.4.

From an environmental perspective (SCE.5 to SCE.7) there was a dichotomy: (i) when
the most important criterion was the CO2 eq., the two-stage model approaches obtained
the best scores due to its lower amount of direct CO2 emissions in the biogas; (ii) when the
two digestate criteria were evaluated, the three single-stage co-digestion plants alternatives
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obtained the best scores (three of them with the same score of 0.61) because the reaction
schemes did not contemplate the by-products presented in the digestate.

From an economic perspective, all the evaluated scenarios (SCE.8 to SCE.10) presented
the best results in the single-stage model approach. In general, best scores were obtained in
the biogas plant using FW in a single stage, reaching scores of 0.65 (SCE.8) and 0.48 (SCE.10).

Finally, a compromise solution was obtained in the last scenario (SCE.11) where all
criteria were analyzed under the same weights of 9.1%. In this case, as occurs in the
technical scenarios, the best choice was the biogas plant fed with MSW in a single-stage
model anaerobic digestion approach.
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