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Abstract: Harmful cyanobacterial blooms pose an environmental health hazard due to the release of
water-soluble cyanotoxins. One of the most prevalent cyanotoxins in nature is microcystins (MCs), a
class of cyclic heptapeptide hepatotoxins, and they are produced by several common cyanobacteria
in aquatic environments. Once released from cyanobacterial cells, MCs are subjected to physical
chemical and biological transformations in natural environments. MCs can also be taken up and
accumulated in aquatic organisms and their grazers/predators and induce toxic effects in several or-
ganisms, including humans. This brief review aimed to summarize our current understanding on the
chemical structure, exposure pathway, cytotoxicity, biosynthesis, and environmental transformation
of microcystins.
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1. Introduction

Microcystins (MCs) are a class of liver toxins that are toxic to humans and animals,
alike [1]. MCs are produced as secondary metabolites by a number of widely distributed
freshwater cyanobacteria, including Microcystis, Planktothrix, Anabaena, and Oscillatoria
genera [2]. Once synthesized, MCs are stored intracellularly and only released into the
water following cell lysis, either by viral infection or during cell senescence [3]. During
growth seasons, MCs are often measured at concentrations that exceed the guideline values
published by the World Health Organization for safe use for drinking (>1 µg/L) and
recreational purposes (>20 µg/L for moderate probability for adverse health effects) in
freshwaters across the world, even in some of the largest lakes, like Lake Erie [4] (United
States) and Lake Taihu [5] (China).

Due to the wide distribution and important health implications of MCs, related
studies have attracted broad interests from scientists of various disciplines, including
(bio)chemistry, biology, ecology, and toxicology. Several reviews are available on specific
aspects of MC research, including chemical structures, detection [6,7], ecological impacts [8],
human health risk [9], mechanism of toxicity [10,11], synthesis [12], degradation/removal
pathways [13,14], and more. Among these different aspects, cellular toxicity has been
relatively under studied, which has been addressed in this review. However, a review that
encompasses the multifaceted features of MC research is lacking, which is necessary to
yield a comprehensive understanding of the health effects and ecosystem impact of MCs.
This review compiled the MC-related research on aspects which include MCs’ structure,
synthesis, toxicity, bioaccumulation, and biological degradation while highlighting the
current updates, and it aimed to provide a succinct but more comprehensive view on our
current understanding of MCs. This approach attempted to attract a broader readership
from researchers of varied backgrounds and to raise interdisciplinary research interests on
MC research.
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Structure of MCs

MCs congeners share a common cyclic structure that is formed by seven amino acid
residues, cyclo-(D-Ala1)-X2-(D-MeAsp3)-Z4-Adda5-(D-Glu6)-Mdha7 [15] (Figure 1). The
percentage variation for the amino acid residue has been depicted in Figure 1. The two L-
amino acids of MCs at positions 2 and 4, i.e., X2 and Z4, are the most variable by substitution
and account for the most diversity of MC congeners [15]. The structures of the rest of the
amino acid residues are largely constant, although variations at each of these positions have
been reported (Figure 1). The number of identified MC congeners has been consistently
increasing and reached 279 very recently [16]; more are expected to be discovered [17].
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Ala1, MeAsp3, and Glu6 were D-amino acids. Adda5, or C20 amino acid (3-amino-9-
methoxy-2, 6, 8-trimethyl-10-phenyldeca-4, 6-dienoic acid), and MdhA7 are non-proteinogenic
amino acids; they contribute significantly to the toxicity of MCs and are also found in the
structure of another cyanotoxin, i.e., nodularin [18].

MC congeners were named after the X2 and Z4 amino acid residues. With decreasing
commonalities, MC-Leucine2-Arginine4 (MC-LR), MC-Arginine2-Arginine4 (MC-RR), MC-
Leucine2-Phenylalanine4 (MC-LF), and MC-Leucine2-Alanine4 (MC-LA) are the most
abundant in natural environments [19,20]. Among these common MCs, MC-LR is the most
toxic [21], although it is milder than MC-LF, a far less common MC congener [22]. Due
to the universal distribution and high toxicity, MC-LR is widely used as a model for MC
studies [21,23].

2. Exposure and Toxicology
2.1. Modes of Exposure and Primary Toxicities

MCs in natural waters can affect humans via various routes, including chronic and
accidental ingestion of contaminated drinking or recreational water, inhalation or contact
with the nasal mucous membrane, dermal contact with toxins during recreational activities,
and consumption of contaminated food irrigated with (vegetables, fruits) or grown in (i.e.,
fish and shellfish) contaminated water [24] (Figure 2).

Developing a better understanding of the toxicity of MCs will enable us to assess the
risk of exposure to these commonly encountered cyanotoxins. The primary cytotoxicity
of MCs is the inhibition of Protein Phosphatases 1 and 2a (PP1 and 2a), which leads to
several subsequent harmful effects. Acute exposure via ingestion of MCs by humans at
concentrations over 10 µg/L can cause various symptoms, including vomiting, diarrhea,
abdominal pain, and blistering around the mouth, or it can even ultimately lead to liver
failure [25]. However, MCs are rarely ingested directly at acute lethal doses by humans.
Chronic and frequent exposure to MCs at low concentrations can ultimately lead to liver
failure due to chronic liver cell apoptosis or uncontrolled cell proliferation, leading to
primary liver cancer [26–28].
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Figure 2. Schematic representation of MC-uptake, release, and transfer when in the environment.
This schematic diagram represents the transfer of MCs from zooplankton to fish and finally humans.

2.2. Mechanism of MC Cytotoxicity

Once they have gained exposure to animal cells, MCs first get absorbed into the
intestinal tract and then earn entry to the blood stream, where they can be distributed
to a range of organs [29]. MCs enter human cells via transmembrane organic anion
transporter peptides (OATPs) (Fischer et al., 2005). Receptors of OATPs are abundant
on the hepatic cells, making liver a primary target for MCs; about 50–70% of MCs in
blood streams can be taken up by the liver [30]. With less abundance, OATPs also exist
on cells of other organs, such as kidney and brain cells, making them also susceptible to
MC toxicity [30]. In comparison with hepatic cells, non-hepatic cells require a greater MC
dose and longer exposure time for cell death to occur [10,31]. When being exposed to the
same concentrations of MC-LR (0.8 µM), hepatocytes were found to shrink and lose their
viability (dying) within 30 min, while endothelial, fibroblasts, and epithelial cells remained
viable for up to 5 days [31].

The final stage of MC intoxication may include cell death due to apoptosis or necrosis27;
the former mechanism has been found to be more common [10]. Many studies found that
MCs can induce apoptosis via the intrinsic pathway, starting with the production of reactive
oxidative species (ROS), which then increase mitochondrial permeability potential (MPP)
followed by the induction of caspase 9 and then 3 in that sequence [32–34]. A few recent
studies have also suggested the importance of extrinsic apoptosis, which starts with the
Fas/Fas-L receptor, followed by the induction of caspase 8, followed by the induction
of caspase 3 [35–37]. MC can also induce apoptosis via activation of the NF-kB pathway
(part of the extrinsic pathway) followed by caspase 9 induction [38] in INS-1 cells, which
involves both extrinsic and intrinsic pathways. A recent work has shown the induction of
caspase 8 before the induction of caspase 9 when we have a combination of extrinsic and
intrinsic pathways in MC-treated hepatic cells [37].

3. Production of MCs and Their Regulating Factors

MC synthesis in cyanobacteria is carried out by a gene cluster that possesses eight
genes of a total of over 55 kbp DNA (mcyA-J), which encode 48 catalytic reactions [39]. A
number of precursors are incorporated during the MC synthesis, including phenylacetate,
malonyl-CoA, SAM (S-adenosyl methionine), glutamate, serine, alanine, leucine, D-methyl-
iso-aspartate, and arginine [39,40]. The arrangements and sequences of mcy genes in the
genome and their products (enzymes/proteins) differ among cyanobacterial species [41]
(12); therefore, the prevalence of MC congeners during cyanobacterial blooms is determined
by dominant cyanobacterial species [17].

Besides inherent genetic properties, a number of environmental factors can impact
MC synthesis. Higher dissolved oxygen in water has been found to increase MC pro-
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duction [42–44]. High nitrogen concentrations have been found to limit the amount of
MCs produced by Microcystis aeruginosa, while high sulfur and phosphorous supplies
behave the opposite [45,46]. Solar irradiance, and UV-B intensities, in particular, has been
found to encourage the growth of MC-producing cyanobacteria over non-toxin producing
strains [47]. Solar irradiance and nutrient supplies together have also been found to impact
not only the amount but also the types of MC congeners produced by Microcystis aeruginosa
and Planktothrix agardhii [48,49]. Specifically, these cyanobacteria produced higher amounts
of MCs with more toxic variants, like MC-LR, than MC-RR under high solar irradiance
and nutrient supply. However, the above observations can be species-specific, as MC pro-
ductions were not altered by light for M. wesenbergii and Aphanizomenon aphanizomenoides
under varied light and nutrients [50].

4. Fate of Extracellular MCs in Environments

Dissolved MCs in natural environments are subjected to both abiotic and biotic transformations.

4.1. Abiotic Transformations

After being released from cyanobacterial cells, a significant fraction (34.8–72.6%) of
dissolved MCs in aquatic environments can be physically adsorbed to sediments [51].
Adsorption of MCs to sediment is affected by pH; an increase in adsorption is expected
when pH decreases [52]. Organic matter content in soil/sediment was found to enhance
MC adsorption to sediment [52,53].

Chemically, the ring-structured MCs are very stable under normal light irradiance
and temperatures in natural environments [54]. However, humic acids and pigments
(chlorophyll) can serve as photosensitizers to induce photolysis that starts at the site of
Adda [55,56]. MC-LR was completely degraded in the presence of photosensitizers in 48
hrs; in contrast, MC removal needed up to weeks if photosensitizers were not supplied [56].
The rate of MC photolysis is affected by pH (acidic pH reduces the degradation rate),
temperature (higher temperature promotes degradation) and the wavelength (energy) of
the light (UV showed higher lysis than visible light) [54].

4.2. Bioaccumulations

MCs can be taken up and gradually accumulate in aquatic plants and animals
(Figure 2) that live in or use CyanoHAB-impacted waters [50]. Depending on locations
in the food web (diets), organisms can have different bioaccumulation factors (BF = con-
centration in tissue vs. in ambient water) of MCs. Primary consumers, like filter feeders
and herbivore fish, that graze on MC-producing cyanobacteria can have BF values over a
wide range between 436–2409 [57]. Primary producers, like Hydrophytes in Lake Taihu,
have also been shown to bioaccumulate MCs with a BF of 200–250 [58]. The bioaccumu-
lation factor of MCs can vary seasonally [59]. Studies on freshwater fishes and mussels
have revealed higher BFs in June and July (132.81) than colder months [58]. MCs can be
accumulated even in the human body, through consumption of contaminated foods [58].
Bioaccumulation of MCs in humans differs among organs, and the liver typically showed
concentrations (767 ng/g) that were different than other organs [60].

4.3. Biodegradation
4.3.1. Pathways and Taxa Diversity

The stable ring structure of MCs protects them from proteases that are commonly
found in environments and a group of enzymes that is responsible for degradation of many
organic compounds [55,61,62].

Our current knowledge on MC biodegradation is primarily based on studies on
bacteria. Currently, one complete MC degradation pathway is known, which is encoded
by multiple mlr genes. Four genes, namely mlrA, mlrB, mlrC, and mlrD, are sequentially
located in the cluster. mlrD encodes a transporter-like protein, whereas mlrA, B. and C
encode enzymes required for the degradation of MCs. Enzyme MlrA (microcystinase)
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initiates the degradation by breaking up the ring structure of MCs at the peptide bond
between Adda and Arg and linearizing the cyclic MC-LR (Figure 1). The linearized MC-LR
is 100 times less toxic than the cyclic one [62]. Next, a serine peptidase (MlrB) catalyzes the
linearized MC-LR at the Ala~Leu peptide bond and produces a tetrapeptide [63]. Finally,
the third enzyme (MlrC) randomly cuts the peptide bonds between amino acid residues,
resulting in undetermined peptide fragments and amino acids. Since the initial cleavage is
the most critical step in MC-LR degradation, so far, genetic analysis of MC-LR degradation
is mostly based on the analysis of mlrA genes [64–66]. This mlr-dependent degradation has
been found to be regulated by acyl homoserine lactose (AHL)-mediated quorum sensing
(QS) [67]. This QS encodes two enzyme systems, namely novR1/novI1 and novR2/novI2,
which upregulate microcystin degradation. Identification of these regulators will help
control the biological degradation of microcystins. This mlr-dependent degradation has
been found to be regulated by acyl homoserine lactose (AHL)-mediated quorum sensing
(QS) [67]. This QS encodes two enzyme systems. namely novR1/novI1 and novR2/novI2,
which upregulate microcystin degradation. Identification of these regulators will help
control the biological degradation of microcystins.

Studies on bacterially mediated MC degradation are dominated by culture-dependent
work [62,68]. Nearly a third of current MC-degrading bacterial isolates are affiliated
with genera of a single family, i.e., Sphingomonas, Sphingopyxis, and Sphingoscinicella of the
Sphingomonaceae family (alphaproteobacteria) [69], with the rest belonging to gammaprotoe-
bacteria and firmicutes. However, many recent culture-dependent and independent studies
have consistently suggested that MC-degrading bacteria might be more taxonomically
diverse [70,71]. MC-degrading bacteria are now known to be distributed among species
(approx. 100) of Microbacterium of Actinobacteria families [72,73]; Bacillus, Brevibacillus, and
Lactobacillus of Firmicutes families [74–76]; and Pseudomonas, Stenotrophomonas, Acidovorax,
and Sphingomonas of alphaproteobacteria, betaproteobacteria, and gammaprotobacteria
families [62,77].

Most MC-degrading bacteria are isolated from aerobic environments, but studies have
also obtained MC degraders from oxygen-limited environments, such as alphaproteobacte-
ria and gammproteobacteria from drinking water sludge [78], deltaproteobacteria from the
mucilage of Microcystis cells [79], and commercially available probiotic bacteria [76], which
belong to Proteobacteria (alpha, beta, and gamma), Actinobacteria, and Firmicutes.

Both culture-dependent and-independent studies have revealed that MC-degrading
bacteria may or may not carry mlr genes [70–72]. Non-mlr bacteria might degrade MCs
via the xenobiotic degradation pathway [70]. A recent study has shown the presence
of microcystinase, linearized-microcystinase, tetrapeptidease, and PAAase (Phenylacetic
acid-ase) as enzymes for the degradation of microcystin by bacteria [80]. This study is the
first to have reported the presence of PAAase for complete degradation of microcystin
using the mlr degradation pathway. Non-mlr MC-degrading bacterial cultures [62] are
taxonomically more diverse than mlr-based MC degraders; they are mostly affiliated with
Proteobacteria (80% of the non-mlr based degrading bacteria) (alpha, beta, and gamma
classes), Actinobacteria (10%), and Firmicutes (10%), with bacteria containing mlr genes [30]
primarily belonging to alpha proteobacteria (60%), with some belonging to Firmicutes and
Gammaproteobacteria [68].

4.3.2. Factors Impacting MC Biodegradation

The rate of microbial degradation of MCs is affected by a number of abiotic factors,
including temperature, pH, DOC (dissolved organic carbon), and nutrient availability [81].
Temperature at the 30–40 ◦C range has been found to favor MC biodegradation [71,82,83].
Temperatures that are lower or higher (±10–20 ◦C) than this range can slow down the
degradation of MCs [82].

MC degradation has been observed in a wide range of pH (3–9) for most of the
bacterial isolates; whereby some isolates degrade at an alkaline pH of 9 [71,82,83], but
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rapid degradation was observed at a neutral pH (0.09–0.15 µg/mL/h). Lower rates of
MC-degradation were recorded at acidic pH of 3~5 [71,82,84].

Organic nutrients (C.N and P) are commonly found in excess in eutrophic lakes,
especially during CyanoHABs [85]. Many studies have revealed that a supply of dissolved
organic nutrients may slow down MC degradation [65,81]. However, a few recent studies
have found improved or unchanged microcystin degradation by certain bacteria species
after additions of an organic C source [71,86].

Studies on MC degradation by mixed cultures are limited. MC-degrading bacterial
consortia have been isolated from polluted reservoirs in Taiwan and contained a few
bacterial species, such as Sphingomonas spp., Sphingobium spp., and Pseudoxanthomonas
spp. However, whether and how each of these bacteria participate in MC degradation are
unknown [87]. A recent study using Lake Erie bacterial isolates found that combinations of
certain pairs of MC-degrading bacterial isolates could increase the MC degradation rate by
up to two-fold (mixed: 0.4 µg/mL/h; singular stains: 0.2 µg/mL/h [71].

5. Conclusions

MCs are commonly encountered toxins in lakes and coastal marine environments that
are affected by cyanobacterial harmful algal blooms. So far, greater than 100 variants of
MCs have been identified, and MC-LR, MC-RR, MC-LF, and MC-LA are among the most
common and toxic. MCs can be exposed to animals and humans via multiple routes (orally,
dermally), and their primary target organ is the liver. In liver cells, MCs’ toxicity likely
manifests by induction of both extrinsic and intrinsic apoptosis, which dysregulates the cell
cycle and induces carcinogenesis in hepatic cells. There still exists a knowledge gap for the
identification of the pathway used for the induction of carcinogenic effects. Biosynthesis
of MCs by cyanobacteria requires 48 catalytic reactions and is affected by cyanobacterial
species and environmental factors such as solar irradiance and nutrient supply. MCs are
released into environments during cyanobacterial death, and then, they are transformed
mainly by microbial degradation. A diversity of MC-degrading bacteria has been identified
across phyla, including alpha-, beta-, and gamma-Proteobacteria; Actinobacteria; and
Firmicutes. Bacterial degradation of MCs is carried out by mlr and non-mlr pathways.
Enzymes/genes of the mlr pathway have been identified, while much less is known for the
non-mlr pathway. Factors, such as pH, temperature, and presence of organic nutrients, can
impact bacterially mediated MC degradation in the environment.
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