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Abstract: Climate predictions using recent and high-resolution climate models are becoming im-
portant for effective decision-making and for designing appropriate climate change adaptation
and mitigation strategies. Due to highly variable climate and data scarcity of the upper Blue Nile
Basin, previous studies did not detect specific unified trends. This study discusses, the past and
future climate projections under CMIP6-SSPs scenarios for the basin. For the models’ validation
and selection, reanalysis data were used after comparing with area-averaged ground observational
data. Quantile mapping systematic bias correction and Mann–Kendall trend test were applied to
evaluate the trends of selected CMIP6 models during the 21st century. Results revealed that, ERA5
for temperature and GPCC for precipitation have best agreement with the basin observational data,
MRI-ESM2-0 for temperature and BCC-CSM-2MR for precipitation were selected based on their
highest performance. The MRI-ESM2-0 mean annual maximum temperature for the near (long)-term
period shows an increase of 1.1 (1.5) ◦C, 1.3 (2.2) ◦C, 1.2 (2.8) ◦C, and 1.5 (3.8) ◦C under the four
SSPs. On the other hand, the BCC-CSM-2MR precipitation projections show slightly (statistically
insignificant) increasing trend for the near (long)-term periods by 5.9 (6.1)%, 12.8 (13.7)%, 9.5 (9.1)%,
and 17.1(17.7)% under four SSPs scenarios.

Keywords: Upper Blue Nile (Abay); temperature; precipitation; CMIP6; climate projection

1. Introduction

Africa is the most vulnerable to climate change because of adverse direct effects
on food security and national growth domestic product (GDP), and limited resilience to
climate change [1,2]. The average percentage of poverty rates for East African countries is
38.83 and 38.08 in 2020 and 2021 respectively. In particular, East Africa, where the majority
of the population are in poverty, is vulnerable to climate change and climate extremes [2,3].
The Intergovernmental Panel on Climate Change (IPCC’s) fifth assessment report indicated
that future climate change will lead to an increase in climate variability with the frequency
and intensity of extreme events in the region [4].

One of the river basins in east Africa likely affected by climate change is the Upper
Blue Nile Basin (UBNB). It drains a large area of the Ethiopian highlands and is the largest
tributary of the Nile River, providing a vital source of freshwater to downstream riparian
users in Sudan and Egypt. The effects of climate change on the future flow of the river
and the effect to downstream countries is not well quantified [5,6].To quantify the impact
of climate change on different sectors of the basin, research have been carried out using
top-down approach of General/Global Circulation Models (GCMs) which have little local
precision and has failed to address the regional consequences of climate change [7]. Previ-
ous studies [8–12] on the impacts of climate change in the Nile basin come up with highly
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variable findings. Some of the plausible reasons are the higher variability of rainfall in the
basin, insufficiency in temporal and spatial extent of analyzed data, different statistical
measures used in each study [11,13]. GCMs cannot even agree on the signs; some have a
positive sign (increase) and others have a negative sign (decrease) in the same region of
study from different studies. Therefore, predicting future climates by studying past trends
and using recent high-resolution climate models scenarios can be an effective method [5].

Data scarcity in the basin hampered understanding of the climate and hydrological
processes that is required for sustainable water resource management. Reliable climate
information is the basis for developing a climate-resilient system and intervention mecha-
nisms to minimize the vulnerability of the region to various climatic risks [14]. Currently,
Ethiopia is constructing the Great Ethiopian Renaissance Dam over the UBNB which
requires research based adequate future climate effects of the dam and the basin [15–17].

As suggested in different guidelines and documentations developed by the IPCC,
climate projections at relevant temporal and spatial scales are essential to assess potential
future climate change impacts on climatologically diverse regions such as the UBNB [18,19].
The major challenge in climate change projections is the selection of an appropriate subset
of GCMs. GCM simulations are associated with large uncertainties due to model resolution,
mathematical formulation, initial assumptions, and calibration processes that restrict the
use of all GCMs for reliable projections of climate at the regional or local scale [20,21].
Mostly it is assumed that more up-to-date, higher-resolution, and more complex mod-
els will perform better and produce more robust projections than previous-generation
models [22].

The most recent state-of-the-art climate model experiments are now becoming avail-
able as part of the Coupled Model Intercomparison Project Phase 6 (CIMP6) ensemble.
CMIP6 models are running a number of new and updated emission pathways that explore
a much wider range of possible future outcomes than were included in CMIP5. CMIP6
represents a substantial expansion over CMIP5, in terms of the number of modelling
groups participating, the number of future scenarios examined and the number of different
experiments conducted.

The CMIP6 GCMs differ from previous generations, including high spatial resolutions,
enhanced parameters of the cloud microphysical process, additional earth system processes
and components such as biogeochemical cycles and ice sheets [23,24]. The major difference
between CMIP5 and CMIP6 is the future scenarios CMIP5 projections are available on
the basis of 2100 radiative forcing values for four GHG concentration pathways [25]. In
contrast, CMIP6 uses socioeconomic pathways (SSPs) which are considered as more realistic
future scenarios [26]. Another update of CMIP6 is the development and support of the
intercomparison model, focusing on biases, processes, and climate model feedbacks [27].
The SSPs are based on five narratives describing alternative socio-economic developments,
including sustainable development, regional rivalry, inequality, fossil-fueled development,
and middle-of-the-road development. The objective of this research is therefore to evaluate
and project the past and future climate trends using recent high-resolution climate models
under different SSPs to overcome data scarcity issues. In order to select climate models for
future projections, the model simulations of the historical climate have to be assessed and
validated against reliable observational data with good spatial coverage to determine the
skill and uncertainty of the models.

2. Materials and Methods
2.1. Study Area

Upper Blue Nile River (locally known as Abay) Basin is located in the northwestern
part of Ethiopia between 7◦45′ and 12◦45′ N and 34◦05′ and 39◦45′ E and has a drainage
area of about 176,652 km2 [10,13]. The topography of the UBNB (UBNB) is composed of
hills, highlands, valleys, and rock peaks. The most common land use feature of the basin is
cultivated land with rainfed agriculture covering 64% of the basin. The Blue Nile River runs
from its origin, Gish-Abbay, to the Sudanese border, and eventually meets the White Nile
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River at Khartoum, Sudan. The length of the upper Blue Nile River from the outlet Lake
Tana to the Ethio-Sudan border is 944.5 km [11]. Most of the streams feeding the Blue Nile
are perennial [5]. The upper BNB contributes to around 70 percent (48.5 billion m3 year−1)
of the total annual flow component of the main Nile [10,28].

The UBNB covers 17% of Ethiopia’s surface area, generates 43% of the country’s
total average runoff, and is home to about 25% of its total population [29]. The UBNB’s
elevation ranges from 350m a.m.s.l near the Sudanese border to 4239 m a.m.s.l in the
central part of the basin [30], for detail see Figure 1 below. The climate of the basin varies
significantly according to the altitude and is governed by the seasonal migration of the
Inter-Tropical Convergence Zone (ITCZ) [31]. The basin receives considerable amount
of annual precipitation ranging between 800 and 2200 mm [10,32,33]. The mean annual
temperature from 1961 to 1990 estimated to be 18.3 ◦C with a seasonal variation of less
than 2 ◦C, and the annual potential evapotranspiration about 1100 mm [32]. The Blue Nile
River discharge regime is highly seasonal with over 80% of its annual discharge occurring
from July to October, and only 4% from January to April [34].
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2.2. Data Set 

Figure 1. The geographical location of the Upper Blue Nile Basin (Abay) and meteorological station locations.

2.2. Data Set

Temperature and precipitation monthly observational, reanalysis, and CMIP6 model
products over the UBNB (Abay) were retrieved from the Royal Netherlands Meteorologi-
cal Institute (KNMI) Climate Explorer website and the World Climate Research Program
(WCRP). Temperature and precipitation monthly observational data were extracted from
the Climatic Research Unit (CRU TS 4.04) [35] and Global Precipitation Climatology Centre
(GPCCv2020) [36]. Reanalysis products also derived from European Community Medium-
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range Weather Forecasts v5 (ECMWF-ERA5) [37], NOAA-Climate Forecast System Re-
analysis v2 (CFSR) [38] and NASA-MERRA v2 Modern Reanalysis [39]. For the future
climate projection and trend analysis of the basin, data were extracted from the World
Climate Research Programme’s (WCRP)-CMIP6 under low forcing scenario (SSP1-2.6), a
medium forcing scenario (SSP2-4.5), medium to high forcing scenario (SSP3-7.0), and a
strong forcing scenario (SSP5-8.5). The detail description of scenarios is available in [22,24]
and CMIP6 products are summarized in Table 1 which gives acronyms, resolution, sources,
and references. For validation, available ground observation climatological data within
the basin and for the baseline period (1981–2010) were collected from the archive of the
National Meteorology Agency (NMA) of Ethiopia.

Table 1. List of employed CMIP6 climate models for evaluation and projection of the UBNB climate.

No. CMIP6 Model Name Country Horizontal Res
(lon. × lat. deg) Key References

1. BCC-CSM2-MR China 1.1◦ × 1.1◦ [40]
2. CAMS-CSM1-0 China 1.1◦ × 1.1◦ [40]
3. CanESM5p1 Canada 2.8◦ × 2.8◦ [41]
4. CanESM5p2 Canada 2.8◦ × 2.8◦ [41]
5. CESM2 USA 1.3◦ × 0.9◦ [42]
6. CESM2-WACCM USA 1.3◦ × 0.9◦ [43]
7. FGOALS-g3 China 2◦ × 2.3◦ [44]
8. MCM-UA-1-Of2 USA 2.5◦ × 2.5◦ [45]
9. MIROC6 Japan 1.4◦ × 1.4◦ [46]
10. MIROC-ES2L Japan 2.8◦ × 2.8◦ [46]
11. MRI-ESM2-0 Japan 1.1◦ × 1.1◦ [27]
12. UKESM1-0-LL UK 1.9◦ × 1.3◦ [47]

2.3. Baseline Period Reanalysis and Monthly Observation Validation

The most important time series data necessary for this research is monthly precip-
itation and temperature data. Even though there are 202 meteorological stations in the
basin, only 67 stations that have greater than 30 years were processed. For 21 stations, an
attempt was made in estimating the missing data for those having less than 10% missing
data for each station. These missed data have been estimated by using Markov chain
simulation model of INSTAT [48]. This statistical package fits a model to the past data
and then generates similar time series for any number of desired years. The monthly
observational and reanalysis of temperature and precipitation data were validated with the
ground observations using statistical measures such as the root mean square error (RMSE),
coefficient of determination (R2) and Nash–Sutcliffe Efficiency (NSE). These statistical
measures determine different aspects of the data’s accuracy for the purpose of CMIP6
model validation and selection for climate projections in the UBNB (area-average of 7◦45′

& 12◦45′ N and 34◦05′ & 39◦45′ E) over the period 1981–2010.

2.4. Climate Models Bias Correction

It is common that regional climate models (RCM) simulations are known to exhibit
systematic biases in precipitation and temperature. In order to produce reliable estimators
of local scale climate, RCM need to be post processed. Popular quantile mapping (QM)
approaches implement statistical transformations for post-processing of climate modeling
outputs. The statistical methods involve transforming the distribution functions of the
modeled variables into the observed ones using a mathematical function. These transfor-
mations are mathematically expressed [49] as xo = f(xm); in which xo = observed variable;
xm = modeled variable; and f () = transformation function. The QM methods use the
quantile-quantile relation to converge the simulated variables’ distribution function to
the observed one. The cumulative distribution functions (CDFs) of both observed and
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simulated variable time series, their quantile relation can also be determined, as shown
below [50]:

xo = fo
−1[Fm(xm)]

where, Fm(xm) = CDF of xm; and fo
−1 = inverse form of the CDF of xo, which is technically

referred to as the quantile function. The quantile mapping attempts to adjust the distribu-
tion of modelled data such that it closely resembles the observed climatology. Practical
evaluation of a wide range of QM methods showed that most of them are capable to remove
biases in RCM precipitation especially non-parametric transformations have the highest
skill in systematically reducing biases in RCM precipitation [51].

In this study, for precipitation and temperature bias correction, non-parametric QM
methods were applied by checking their suitability using Nash-Sutcliff efficiency (NSE)
and Mean Absolute Error (MAE) statistical measures of model climatology (1981–2010).
Before evaluating precipitation and temperature for the dozen CMIP6 models, biases were
corrected over the basin (Abay) using the RQUNT method in the R software package ‘qmap’
developed by the Norwegian Meteorological Institute [52].

2.5. Evaluations of CMIP6 Models

The skill of the 12 bias corrected CMIP6 models over the UBNB (Abay; 1981–2010)
against the reanalysis and monthly observations were evaluated through four error metrics:
the root mean square error (RMSE), the percent of bias (PBIAS %), Coefficient of Deter-
mination (R2) and Nash–Sutcliffe Efficiency (NSE). In addition to these error metrics, a
Taylor diagram was used to graphically describe how closely the patterns match ground
observations [9]. It considers three error metrics including correlation coefficient, centered
(unbiased) RMSE, and standard deviation in a single diagram to describe the temporal
performance of climate models to the monthly observation and the reanalysis [53]. Finally,
from those bias-corrected CMIP6 models, the best performing models were selected for
future climate projection for the basin.

2.6. Future Climate Projection and Trend Analysis

For future climate projections, the monthly mean maximum temperature and monthly
mean precipitation data were analyzed over 30-year time intervals for the baseline period
(1981–2010), the near term (2031–2060), and the long term (2071–2100). The significance of
temperature and precipitation trends were then examined for a continuous period from
2031 to 2100 through the non-parametric Mann–Kendall (MK) trend test method using
the R “trend” package [54,55]. Non-parametric methods provide an alternative series of
statistical methods that require few assumptions to be made about the data. These methods
are most often used to analyze data which do not meet the distributional requirements of
parametric methods. In particular, skewed data are frequently analyzed by non-parametric
methods; [56] showed that the parametric-test has less power than the non-parametric
Mann–Kendall test.

The Mann-Kendall (MK) test is a non-parametric test for identifying trends in time
series data. To apply non-parametric MK test, the data time series does not need to be
normally distributed, but it must be serially independent and randomly ordered. The
test compares the relative magnitudes of sample data rather than the data values them-
selves [57]. Prior to the trend analysis, Statistical tests were used to examine the normality
and auto-correlation of the data.

The presence of a statistically significant trend is determined using the Z-value. This
statistic is used to test the null hypothesis of no trend exists against the alternative hy-
pothesis that a trend does exist. A positive Z-value indicates an increasing trend in the
time-series, while a negative Z-value indicates a decreasing trend. In this study, the signifi-
cance levels of high (0.01), medium (0.05), and low (0.1) were applied, and the significant
level p-value was obtained for each analyzed time-series.



Water 2021, 13, 2110 6 of 22

3. Results
3.1. Data Checking

Climatic Research Unit (CRU TS 4.04), Global Precipitation Climatology Centre
(GPCCv2020), European Community Medium-range Weather Forecasts v5 (ECMWF-
ERA5), NOAA-Climate Forecast System Reanalysis v2 (CFSR), and NASA Modern Reanal-
ysis Evaluation (NASA-MERRA v2) validation using area-averaged of 21 UBNB stations
observations for the baseline period (1981–2010) show that observational temperature data
from the ECMWF-ERA5 (RMSE = 1.14, r2 = 0.88 and NSE = 0.76) and precipitation data
from the GPCC.25 (RMSE = 76.21, r2 = 0.92 and NSE = 0.76) have best agreements with the
UBNB area-averaged ground observation as shown in Table 2 and Figure 2. As shown in
Figure 2a MERRA reanalysis precipitation over estimates in the rainy season and CFSR
temperature over estimates temperature throughout the year.

Table 2. Monthly observations and reanalysis maximum temperature and precipitation validation with UBNB area-averaged
ground observations for the baseline period (1981 to 2010).

Monthly Observations and Reanalysis ERA 5 CRU TS4.04 MERRA CFSR GPCC.25

Temperature (◦C)

RMSE 1.14 1.19 6.10 2.82
Corr. Coeff (r2) 0.88 0.86 0.62 0.85

NSE 0.70 0.67 −7.50 −2.28

Precipitation (mm/Month)

RMSE 80.34 79.09 117.84 116.34 76.21
Corr. Coeff (r2) 0.86 0.88 0.85 0.49 0.92

NSE 0.73 0.76 0.18 0.40 0.76

The temperature and precipitation climatology were computed using the ECMWF-
ERA5 and GPCC.25 datasets, respectively, for the period 1981–2010. The spatial distribution
of mean annual maximum temperature (◦C) and precipitation (mm/day) climatology over
the UBNB (Abay) is shown in Figure 3a,b.

3.2. CMIP6 Climate Models Bias Correction

The performance or suitability of non-parametric quantile mapping using empirical
quantiles (QUANT), robust empirical quantiles (RQUANT), and smoothing-splines (SS-
PLIN) were checked for the dozen CMIP6 models’ precipitation versus GPCC monthly
observational datasets in order to use appropriate methods for bias correction. The Nash–
Sutcliff efficiency (NSE) and mean absolute error (MAE) values between the observed
and the corrected empirical cumulative distribution function (CDF) showed that most of
them are capable to remove biases in CMIP6 models’ precipitation. Figures A1–A4 reveals
that the fitted quantile-quantile plots of all CMIP6 models versus observed precipitation
(GPCC) and temperature (ERA5) achieve a good fit. Therefore, based on the highest NSE
and lowest MAE value as shown in Table A1 the robust empirical quantiles (RQUANT)
method was selected and employed as most suitable for reducing biases in CMIP6 climate
models over the UBNB.

3.3. Performance Evaluation of CMIP6 Models at Regional Scale

The performance of CMIP6 models under different shared socio-economic pathways
(SSPs) were evaluated in simulating future climate variables (precipitation and temperature)
in the UBNB (Abay) based on efficiency criteria found under “hydroGOF” R package [58].
The efficiency criteria’s include the root-mean-square errors (RMSEs), normalized root-
mean-square errors (NRMSE), percent of bias (PBIAS), ratio of observed and simulated
standard deviation (rSD), Nash–Sutcliff efficiency (NSE), and R2. Results revealed that
except UKESM1-0-LL, the remaining CMIP6 models were able to simulate the basin’s major
climate variables.
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Dozen CMIP6 climate models evaluation with monthly observation ECMWF ERA5
and GPCC for the baseline period (1981–2010) shows that BCC-CSM-2MR (RMSE-25.66,
NRMSE-27.1, PBIAS-16.4, rSD-1.17, NSE-0.93, and r2-0.98) for precipitation and MRI-ESM2-
0 (RMSE-0.74, NRMSE-32, PBIAS-(−0.9), rSD-0.75, NSE-0.90, and r2-0.92) for temperature
thereby identified certain CMIP6 models for use in UBNB (Abay) future climate projection
as shown in Table 3.
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Figure 2. Temporal distribution of monthly observation and reanalysis of (a) precipitation (mm/month), (b) max. tempera-
ture (◦C/month) within the Upper Blue Nile basin area-averaged.

A Taylor diagram can provide a comprehensive visualization of how well datasets
relate to each other in terms of the correlation coefficient (CC) and the standard deviation.
Figure 4 shows that most of CMIP6 evaluated models effectively capture the temporal
changes in maximum temperature over the basin. Of these, MRI-ESM2-0, BCC-CSM2-
MR, and CanESM5p1 maximum temperature outperformed, as presented by the shorter
distances from the red and brown overlapped point (the observed and ECMWF-ERA5
maximum temperature data). MRI-ESM2-0 showed the shortest distance which indicated
the largest CC and the lowest standard deviation compared to the observed ground and
ECMWF-ERA5 maximum temperature data series. By contrast, the CanESM5p2, FGOALS-
g3, MIROC6, MIROC-ES2L, and UKESM1-0-LL products showed either the lower CC or the
larger standard deviation, indicating their poor performances on capturing the temporal
temperature changes. Taylor diagram for precipitation in Figure 5 shows BCC-CSM2-MR
outperformed, as presented by the shorter distances from the red and brown overlapped
point (the observed and GPCC precipitation). Relative to CESM2, MIROC6 and UKESM1-
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0-LL products CAMS-CSM1-0, CanESM5p1, CanESM5p2, CESM2-WACCM, FGOALS-
g3, MCM-UA-1-0f2, MIROC-ES2L, and MRI-ESM2-0 captured the temporal changes in
precipitation over the basin. On the other side, CESM2, MIROC6, and UKESM1-0-LL
products showed undesired performances in capturing temporal precipitation changes, as
presented by their larger distances from the observed and GPCC overlapped points.
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Table 3. Twelve CMIP6 models precipitation and temperature evaluation with observed GPCC and
ECMWF-ERA5 using statistical parameters.

Models RMSE PBIAS % NSE R2

Precipitation (mm/month)

BCC-CSM-2MR 25.66 16.4 0.93 0.98
CAMS-CSM1-0 57.66 −39.4 0.63 0.96

CanESM5p1 32.51 10.5 0.88 0.98
CanESM5p2 32.97 9.8 0.88 0.98

CESM2 C 56.01 38.4 0.65 0.98
ESM2-WACCM 64.02 42.1 0.54 0.96

FGOALS-g3 49.8 22.2 0.72 0.96
MCM-UA-1-0f2 96.38 49 −0.04 0.85

MIROC6 113.2 83.5 −0.43 0.96
MIROC-ES2L 48.77 37.9 0.73 0.96
MRI-ESM2-0 35.26 26.4 0.86 0.98

UKESM1-0-LL 3236.65 1919.8 −1168.9 0.90

Temperature (◦C)

BCC-CSM2MR 1.54 5 0.55 0.92
CanESM5p1 2.21 8.1 0.08 0.94
CanESM5p2 1.79 6.4 0.4 0.90
FGOALS-g3 0.81 0.9 0.88 0.92

MIROC6 1.48 5.1 0.59 0.94
MIROC-ES2L 1.82 −6.1 0.38 0.86
MRI-ESM2-0 0.74 −0.9 0.9 0.92
UKESM1-0-LL 3.06 11.6 −0.76 0.98

Bold values are selected model highest performance values for statistical parameters.
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Figure 5. Taylor diagram comparing the temporal performances of twelve CMIP6 models pre-
cipitation (mm/day) against the ground-observed and GPCC reanalysis for the baseline period
(1981–2010).
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3.4. Future Precipitation and Temperature Trend Analysis

The nonparametric Mann–Kendall trend test was performed in R studio. The annual
mean time series of MRI-ESM2-0 maximum temperature for SSP1-2.6, SSP2-4.5, SSP3-3.7,
and SSP4-8.5 scenarios shows an increasing trend with Z value of (2.74, 6.36, 9.16, and 9.98)
and p-value of 0.006 (medium), <0.002 (high), <0.002 (high), and <0.002 (high) significance
levels respectively. During the twenty-first century, a continuous warming is projected
as shown in Figure 6. The increasing trend in temperature over the UBNB (Abay) under
SSP1-2.6, SSP2-4.5, SSP3-3.7, and SSP5-8.5 is projected to be 1.32 ◦C, 1.73 ◦C, 2.02 ◦C, and
2.6 ◦C, respectively. For the near (long)-term period, projected warming under SSP1-2.6,
SSP2-4.5, SSP3-3.7, and SSP4-8.5 scenario is 1.1 (1.5) ◦C, 1.3 (2.2) ◦C, 1.2 (2.8) ◦C, and
1.5 (3.8) ◦C respectively.
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Figure 6. MRI-ESM2-0 model projections under SSP126, SSP245, SSP370, and SSP585 scenario for two future eras
(2030s, 2070s). (a) Monthly mean max. temperature (◦C) and (b) mean max. temperature (◦C) mean annual cycle.

The trend tests of CMIP6 (BCC-CSM-2MR) precipitation projection in the rainy season
JJAS (June, July, August and September) for the period 2031–2100 under SSP1-2.6, SSP2-
4.5, SSP3-3.7, and SSP4-8.5 scenarios also shows positive Z-statistics of 0.10, 0.45, 2.30,
and 0.87 with P-values 0.92 (low), 0.65 (low), 0.02 (high), and 0.3832 (low) significance
levels respectively. The basin (Abay) also shows a slightly increasing (insignificant) seasonal
precipitation trend of the near (long)-term period for SSP1-2.6, SSP2-4.5, SSP3-3.7, and SSP4-
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8.5 with 5.9 (6.1)%, 12.8 (13.7)%, 9.5 (9.1)% and 17.1(17.7)% (See Figure 7). The projected
rainy season precipitation increments during the twenty first century are 14.4 mm, 30.5 mm,
31.8, and 46.4 mm under SSP1-2.6, SSP2-4.5, SSP3-3.7, and SSP4-8.5, respectively.

Water 2021, 13, x FOR PEER REVIEW 11 of 25 
 

 

 

Figure 6. MRI-ESM2-0 model projections under SSP126, SSP245, SSP370, and SSP585 scenario for two future eras (2030s, 

2070s). (a) Monthly mean max. temperature (°C) and (b) mean max. temperature (°C) mean annual cycle. 

The trend tests of CMIP6 (BCC-CSM-2MR) precipitation projection in the rainy sea-

son JJAS (June, July, August and September) for the period 2031–2100 under SSP1-2.6, 

SSP2-4.5, SSP3-3.7, and SSP4-8.5 scenarios also shows positive Z-statistics of 0.10, 0.45, 

2.30, and 0.87 with P-values 0.92 (low), 0.65 (low), 0.02 (high), and 0.3832 (low) significance 

levels respectively. The basin (Abay) also shows a slightly increasing (insignificant) sea-

sonal precipitation trend of the near (long)-term period for SSP1-2.6, SSP2-4.5, SSP3-3.7, 

and SSP4-8.5 with 5.9 (6.1)%, 12.8 (13.7)%, 9.5 (9.1)% and 17.1(17.7)% (See Figure 7). The 

projected rainy season precipitation increments during the twenty first century are 14.4 

mm, 30.5 mm, 31.8, and 46.4 mm under SSP1-2.6, SSP2-4.5, SSP3-3.7, and SSP4-8.5, respec-

tively. 

 

20

22

24

26

28

30

32

34

J F M A M J J A S O N D

M
R

I-
ES

M
2

-0
 (

M
ax

. T
em

p
(o

C
))

SSP126(2031-2060) SSP126(2071-2100) SSP245(2031-2060)

SSP245(2071-2100) SSP370(2031-2060) SSP370(2071-2100)

SSP585(2031-2060) SSP585(2071-2100) UBNB Observed Areal-averaged

b)

200

250

300

350

400

450

2031 2038 2045 2052 2059 2066 2073 2080 2087 2094

JJ
A

S 
M

e
an

 P
re

cp
(m

m
)

BCC-CSM2-MR_ssp126 BCC-CSM2-MR_ssp245 BCC-CSM2-MR_ssp370 BCC-CSM2-MR_ssp585
a)

Water 2021, 13, x FOR PEER REVIEW 12 of 25 
 

 

 
Figure 7. BCC-CSM-2MR model projections under SSP126, SSP245, SSP370 and SSP585 scenario for two future eras (2030s, 

2070s). (a) Rainy season (JJAS) mean precipitation (mm/month). (b) Monthly mean precipitation mean annual cycle. 

For all scenarios of BCC-CSM-2MR precipitation and MRI-ESM2-0 maximum tem-

perature trend test, it is noted that the rainy season (JJAS) precipitation shows increasing 

trend with low significance level except SSP3-3.7 whereas, the annual maximum temper-

ature trend shows an increasing trend with statistically high significance level except in 

the low forcing scenario (SSP1-2.6) as shown in Table 4. 

Table 4. Changes in mean annual maximum temperature and mean annual precipitation by the end 

of century (2071–2100) relative to the baseline period (1981–2010) in the UBNB (Abay). 

RCM runs Time Scenarios 

BCC-CSM-2MR 

Mean Precipitation 

(mm/Month) 

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

 Baseline 261.8 261.8 262.9 261.8 

 2031–2060 277.13 295.4 287.87 306.55 

 2071–2100 277.79 297.60 286.89 308.26 

 2031–2100 276.19 292.33 294.71 308.23 

 

Change of 

21th Century 

(%) 

5.5 11.7 12.1 17.7 

 
Change of 

Near-term (%) 
5.9 12.8 9.5 17.1 

 
Change of 

Long-term (%)  
6.1 13.7 9.1 17.7 

MRI-ESM2-0 

Max. Temperature (°C) 
SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

 Baseline 26.5 26.5 26.5 26.5 

 2031–2060 27.6 27.8 27.7 28 

 2071–2100 28.0 28.7 29.3 30.3 

 2031–2100 27.8 28.2 28.5 29.1 

 

Change of 

21th Century 

(°C) 

1.3 1.7 2.0 2.6 

0

50

100

150

200

250

300

350

400

450

J F M A M J J A S O N D

M
ea

n
  
P

re
ci

p
ta

ti
o

n
(m

m
/M

o
n

th
)

SSP126(2031-2060) SSP126(2071-2100) SSP245(2031-2060)

SSP245(2071-2100) SSP370(2031-2060) SSP370(2071-2100)

SSP585(2031-2060) SSP585(2071-2100) UBNB Observed Areal-averaged

Figure 7. BCC-CSM-2MR model projections under SSP126, SSP245, SSP370 and SSP585 scenario for two future eras
(2030s, 2070s). (a) Rainy season (JJAS) mean precipitation (mm/month). (b) Monthly mean precipitation mean annual cycle.

For all scenarios of BCC-CSM-2MR precipitation and MRI-ESM2-0 maximum temper-
ature trend test, it is noted that the rainy season (JJAS) precipitation shows increasing trend
with low significance level except SSP3-3.7 whereas, the annual maximum temperature
trend shows an increasing trend with statistically high significance level except in the low
forcing scenario (SSP1-2.6) as shown in Table 4.

3.5. Spacial Distribution of Future Precipitation and Temperature

The spatial distribution of projected changes in mean annual maximum temperature
of MRI-ESM2-0 for SSP1-2.6, SSP2-4.5, SSP3-3.7, and SSP4-8.5 scenarios over the basin
has shown similar spatial distribution with the observed ERA5. Relative to the baseline
(1981–2010) climate, the future temperature projections indicate enhanced warming over
the basin under all future scenarios except the low forcing scenario (SSP1-2.6) during both
the near and long-term periods. The warming is more pronounced in the northeastern parts
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of Abay basin relative to the southwestern part for both the near and long-term projections.
(Figures 8 and A5).

Table 4. Changes in mean annual maximum temperature and mean annual precipitation by the end of century (2071–2100)
relative to the baseline period (1981–2010) in the UBNB (Abay).

RCM Runs Time Scenarios
BCC-CSM-2MR

Mean Precipitation (mm/Month) SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

Baseline 261.8 261.8 262.9 261.8
2031–2060 277.13 295.4 287.87 306.55
2071–2100 277.79 297.60 286.89 308.26
2031–2100 276.19 292.33 294.71 308.23

Change of 21th Century (%) 5.5 11.7 12.1 17.7
Change of Near-term (%) 5.9 12.8 9.5 17.1
Change of Long-term (%) 6.1 13.7 9.1 17.7

MRI-ESM2-0
Max. Temperature (◦C) SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

Baseline 26.5 26.5 26.5 26.5
2031–2060 27.6 27.8 27.7 28
2071–2100 28.0 28.7 29.3 30.3
2031–2100 27.8 28.2 28.5 29.1

Change of 21th Century (◦C) 1.3 1.7 2.0 2.6
Change of Near-term (◦C) 1.1 1.3 1.2 1.5
Change of Long-term (◦C) 1.5 2.2 2.8 3.8
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Figure 8. Spatial distribution of CMIP6-MRI-ESM2-0 model daily mean maximum temperature (◦C) for (a) SSP126(24–37.6),
(b) SSP245(24.4–37.5), (c) SSP370(24.3–37.4), and (d) SSP585(24.5–37.7) scenarios over the UBNB for the near-term projections
(2031–2060). The spatial distributions of daily mean maximum temperature for four SSP scenarios looks identical but the
range of the value are different.
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The spatial distribution of projected changes in rainy-season (JJAS) mean precipitation
of BCC-CSM-2MR for SSP1-2.6, SSP2-4.5, SSP3-3.7 and SSP4-8.5 scenarios over the basin is
shown to have a similar distribution with the observed GPCC. The future precipitation
projections indicate wetter conditions over the basin under all future scenarios except the
medium to high forcing scenario (SSP3-3.7) during both the near and long-term periods.
The bilinear interpolated spatial distribution of changes in precipitation over the basin is
shown in Figures 9 and A6 for near and long-term projection of BCC-CSM-2MR; SSP1-
2.6, SSP2-4.5, SSP3-3.7, and SSP4-8.5 scenarios. The precipitation pattern shows a slight
reduction over the northern, east, and west parts of the basin, and an increase in the
southern parts, during both the near and long-term periods under the four scenarios. The
projected change shows lower precipitation over the northern, east, and west parts as
compared with the southern parts.
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Figure 9. Spatial distribution of CMIP6-BCC-CSM2-MR model daily mean precipitation(mm/day) for (a) SSP126 (0.8–7.3),
(b) SSP245(1.0–8.0), (c) SSP370 (0.9–7.8), and (d) SSP585 (1.0–7.9) scenarios over the UBNB for the near-term projections
(2031–2060). The spatial distributions of mean precipitation for four SSP scenarios looks identical but the range of the value
is different.

4. Discussions
4.1. Baseline Validation and Bias Correction

Climate modeling using GCMs/RCMs over the complex topography of UBNB needs
systemic error reduction in every step of investigation. Several previous works consid-
ered CRU, NCEP/CFSR, NCEP/NCAR, GPCC, ERA-interim, and GPCP reanalysis and
monthly observation to depict baseline period climatology for climate prediction of the
UBNB [8,12,17,31,59,60]. In most studies, the reanalysis and monthly observation products
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were applied directly without validating with ground observational data. In this study,
dataset validation is done using area-averaged over 21 UBNB stations observations for the
baseline period (1981–2010). Statistical measures showed that reanalysis temperature data
from the ECMWF-ERA5 with RMSE (1.14), R2 (0.88), NSE (0.70), and precipitation data
from the GPCC.25 with RMSE (76.21), R2 (0.92), NSE (0.76) are steadiest than the remaining
products as shown in Table 2. This increases the level of confidence on model selection and
climate projection of the basin.

Quantile mapping suitability checkup demonstrates that apart from DIST, PTF, and
SSPLIN, the rest of the considered QM methods can provide relatively improved results for
both rainfall and temperature variables for the basin (Abay). The robust empirical quantiles
(RQUANT) methods proved to be excellent options to correct the bias of rainfall data, from
all bias correction methods. In a comprehensive inter-comparison study of seven empirical
statistical downscaling and error correction methods for daily precipitation, quantile
mapping (QM) outperforms over all other investigation methods [61]. Similarly, [52]
has also proved that area-averaged observations of 82 precipitation stations in Norway
using nonparametric transformations have the highest skill in systematically reducing
biases in RCM precipitation [51]. Quantile mapping methods (QUNT) comparison showed
that robust quantile mapping method (RQUNT) has a good performance in reproducing
evaluation criteria’s like Nash–Sutcliff efficiency and mean absolute error (MAE) [51].

4.2. Model Selection and Future Climate Projection

It is subjective and difficult to select a specific model for a given study area [8]. In their
study [26] proved that most of CMIP6 models are able to simulate the East African major
climate variables. In this study for UBNB, twelve CMIP6 models evaluation confirmed
that BCC-CSM-2MR for precipitation and MRI-ESM2-0 for temperature have excellent
agreement with the baseline period observational datasets. The comparative analysis [62] of
six CMIP5 model outputs showed that BCC-CSM-2MR had similar trends to the observed
precipitation.

Several previous works projected the future climate of the basin using various gen-
eration of models and came up with diversified results as summarized in Table 5. Most
studies project a clear increase in temperature by the end of the 21st century, in the order of
1–7 ◦C. On the other hand, the direction and magnitude of precipitation change in the basin
at regional, basin-wide, and sub-basin scale, and is challenging to figure out. All of these
studies used different periods, numbers, and types of climate models, emission scenarios,
and downscaling methods which make generalizing difficult. From Table 5, changes in
rainy season (JJAS) precipitation ranges between −36% and +35%. Most importantly, more
than half of the reviewed studies showed a slight increasing trend over the basin which
aligns with the projections of this study.
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Table 5. Projected changes in temperature and precipitation by 21 previous studies in East Africa, Ethiopia, and UBNB
(Abay).

No. Region/Basin/Watershed Area (km2) Model Runs Time Scenarios Change in
Max. Temp. (◦C)

Change in
Precip. (%) Source

1 East Africa 23 CMIP5 1981–2010 RCP8.5 Increasing [62]
2006–2100

2 East Africa - COSMO-CLM 1950–2005 RCP4.5 3 [63]
2006–2100 RCP8.5 6

3 East Africa - 27 CMIP6 1981–2010 SSP1-2.6 1.2 (1.3) 14.2 (12.3) [26]
2030–2059 SSP2-4.5 1.3 (2.3) 16.9 (18.4)
2070–2099 SSP5-8.5 1.7 (4.1) 24.5 (51)

4 Ethiopia 1.29 million 6 CMIP 5
1971–1990
1991–2010
2035–2054

−10.6
−17.5

[64]

5 Ethiopia 1.29 million GFDL- GCM 1948–2006
2001–2050 A1B 4 −3 [12]

6 Blue Nile 3.35 million 19 CMIP5 2006–2100 RCP2.6 3 −20 [63]
RCP8.5 6 −20

7 Blue Nile 3.35 million 11 GCMs 1950–1999
2010–2099 A2 (B1) 1.5 (1.3) 115 (117)mm [59]

8 Blue Nile 3.35 million 17 GCMs 2081–2098 A1 5.00 No change [11]

9 Blue Nile 3.35 million 11 GCMs 1950–1999 [59]

10 Blue Nile
UBNB 3.35 million 11 GCMs

3 GCM

2010–2039 A2 (B1) 1.5(1.3) 115 (117)mm
2040–2069 3.2(2.8) 98 (104) mm
2070–2099 4.4(3.6) 93 (96) mm
2010–2039 A2 −8.8

176,000 2040–2069 B2 23.30 [28]
2070–2099 54.60

11 UBNB 176,000 COSMO-CLM 1981–2010 RCP4.5 2.48 −10.8 [60]
2070–2099 RCP8.5 4.89 −19.0

12 UBNB 176,000 11 GCMs 2070–2099 −24.0 [59]

13 UBNB 176,000 3 CMIP3 1979–2013 A1B 2–2.7 17.42–46.12 [17]
2046–2064
2081–2099 2.7–3.7 7.73- 48.44

14 UBNB 176,000 5 CMIP 5 1971–2000 RCP4.5 Decreasing [65]
2041–2070

15 UBNB 176,000 ECHAM5 GCM 1961–1990 [66]
2011–2040 A1B 8% 1.8
2015–2030 13.80% −6.6
2041–2070 23.90% −6.4

16 UBNB 176,000 3 GCMs 1970–2000 [67]
2046–2065 A1B 0.6–2.7 −36 to 1
2081–2100 A2 0.9–4.63

17 UBNB 176,000 6 GCMs 1961–1990 A2 2.3 11 [32]
2011–2040

18 UBNB 176,000 COSMO-CLM 1983–2100 [31]
1971–2000 A1B Increasing Decreasing

19 Tana and Belse 28,549 6 CMIP5 1979–2010 [68]
2041–2065 RCP2.6,

RCP4.5 8.6% (15.7%) 11.0(17.6)

2075–2099 RCP6.0,
RCP8.5 2.4% (21.2%) 11.7(18.4)

20 Tana Basin 15,000 CanESM2 GCM 2011–2040, RCP2.6 2.14 25 [69]
2041–2070 RCP8.5
2071–2100 RCP4.5

21 Tana basin 15,000 5 CMIP5 2035–2064 RCP 4.5 3.9 −8.9 to 25.2 [19]
2071–2100 RCP 8.5 7.1 −10.8 to 34.4

Bold values are baseline periods for projections.

From these studies, recently [60] mean annual maximum (minimum) temperature
projection showed an increasing trend by 2.48(4.74) ◦C under RCP4.5 and 4.89(2.22) ◦C
under RCP8.5 by the end of the 21st century (2070–2099). Similar warming trends of mean
annual temperature with large seasonal and spatial variations over the basin were also
reported by other studies e.g., [11,12,17,28,59,60,63,65–69].
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Refs. [17,70] found increasing trends of mean annual rainfall up to 27%. Unlike [69,71]
reported an increasing trend during the rainy season and no significant trend during the
dry season. An increasing tendency for extreme precipitation event contributions to total
precipitation for East Africa was reported by [26,61]. Refs. [62,71] also stated that precip-
itation over Africa is expected to become more concentrated and intense. Recent study
by [26] using CMIP6, North East Africa (NEAF) region shows an increasing precipitation
trend in SSP5-8.5, while SSP2-4.5 and SSP1-2.6 had no uniform trend during these periods.
However, several climate change studies showed that precipitation projections are full of
uncertainty [72,73]. For instance, on the contrary of all the above results, [60], [67] reported
declining trends of mean annual precipitation up to −10.8% under RCP4.5 and −19.0%
under RCP8.5 by the end of the century. In some studies, non-linear trends emerged: warm-
ing increases toward the end of the twenty-first century, especially in the high-emission
SSP5-8.5 scenario. Recently, [26] reported maximum temperature increment trends for
all implemented scenarios of CMIP6 over “North East Africa (NEAF)” as defined in the
IPCC’s sixth assessment [74].

In general, the tenable reasons that specific unified trends were not detected in the
previous studies are the higher variability of rainfall in the UBNB, complex topography of
the basin, insufficiency in the number of analyzed data for the extraction of a long-term
trend, and different statistical measures used in each study.

5. Conclusions

Climate predictions using recent and high-resolution climate models are becoming
important for effective decision-making and suitable adaptation strategies. The Nile River
faces competing water resource demands, which in turn, require a sufficient understanding
of the climate and hydrological processes at basin scale. This study discusses, the past
and future climate under the sixth phase of the Coupled Model Intercomparison Project
(CMIP6) Shared-socio-economic pathways (SSPs) scenarios projection for UBNB (Abay).

The findings in this study revealed that, ECMWF-ERA5 for temperature and GPCC
for precipitation have best agreement with the ground observational data for the baseline
period (1981–2010), RQUNT transformation had the highest skill in systematically reducing
biases in CMIP6 models precipitation and temperature. In the twenty-first century, MRI-
ESM2-0 mean annual maximum temperature under the Shared Socioeconomic Pathways
(SSPs) for low, medium, medium to high, and strong forcing, referenced as SSP1-2.6,
SSP2-4.5, SSP3-3.7, and SSP5-8.5 trend test showed the expected warming trend over the
basin.

On the other hand, the BCC-CSM-2MR precipitation projections show slightly in-
creasing trend under all the Shared Socioeconomic Pathways (SSPs): SSP1-2.6, SSP2-4.5,
SSP3-3.7, and SSP5-8.5. The spatial distribution of the rainy season precipitation showed
reduction from south to north while the maximum temperature shows increment from east
to west.

The data and results contained herein can be used to estimate the uncertainty in future
precipitation and temperature and to predict future hydro-meteorological variables of the
basin. This study is one of the initial assessments of a CMIP6 climate models over UBNB
(Abay) in which a large number of climate models have been employed. It offers useful
information about the basin patterns of projected temperature and precipitation. In general,
according to the model’s projection the basin will most likely benefit from the evident
climate change in this century.
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Figure A5. Spatial distribution of CMIP6- MRI-ESM2-0 model daily mean max. temperature (◦C) for
(a) SSP126(24.3–37.9), (b) SSP245(25.3–38.3), (c) SSP370(25.8–41.9), and (d) SSP585(26.8–40.4) scenarios
over the UBNB for the long-term projections (2071–2100). The spatial distributions of mean max.
temperature for four SSP scenarios looks identical but the range of the value are different.
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Figure A6. Spatial distribution of CMIP6-BCC-CSM2-MR model daily mean precipitation (mm/day) for (a) SSP126 (1.2–8.2),
(b) SSP245 (1.1–7.8), (c) SSP370 (1.2–8.1), and (d) SSP585 (0.9–7.6) scenarios over the UBNB for the long-term projections
(2071–2100).The spatial distributions of mean precipitation for four SSP scenarios looks identical but the range of the value
are different.

Table A1. Non parametric quantile mapping methods performance evaluation using Nash–Sutcliff efficiency (NSE) and
mean absolute error (MAE) values for bias correction.

Model PRECP RQUANT (NSE) QUANT (NSE) SSPLIN (NSE) RQUANT (MAE) QUANT (MAE) SSPLIN (MAE)

BCC-CSM2-MR 0.756 0.755 0.734 40.402 40.464 41.168
CAMS-CSM1-0 0.603 0.599 0.600 26.400 26.521 26.469

CanESM5p1 0.758 0.758 0.754 39.235 39.332 39.514
CanESM5p2 0.735 0.731 0.728 41.812 42.017 42.183

CESM2 0.748 0.748 0.740 46.733 46.741 47.307
CESM2-WACCM 0.739 0.738 0.732 48.354 48.436 48.790

FGOALS-g3 0.704 0.703 0.702 48.700 48.716 48.831
MCM-UA-1-0f2 0.148 0.110 0.104 103.444 104.401 104.562

MIROC6 0.797 0.796 0.794 52.094 52.162 52.512
MIROC-ES2L 0.695 0.694 0.693 48.041 48.068 48.261
MRI-ESM2-0 0.699 0.698 0.693 45.319 45.407 45.611

UKESM1-0-LL 0.766 0.764 0.751 775.618 780.088 793.310
Model TEMP

BCC-CSM2-MR 0.797 0.796 0.794 1.498 1.509 1.508
CanESM5p1 0.695 0.694 0.693 1.036 1.044 1.042
CanESM5p2 0.699 0.698 0.695 1.035 1.039 1.039
FGOALS-g3 0.766 0.764 0.751 1.005 1.009 1.007

MIROC6 0.797 0.796 0.794 1.498 1.509 1.508
MIROC-ES2L 0.695 0.694 0.693 1.036 1.044 1.042
MRI-ESM2-0 0.699 0.698 0.695 1.035 1.039 1.039

UKESM1-0-LL 0.766 0.764 0.751 1.005 1.009 1.007

Bold values are highest performance values for NSE and MAE for RQUNT.
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