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Abstract: Terrestrial evapotranspiration (ET) over the Tibetan Plateau (TP) exerts considerable im-
pacts on the local climate and the water cycle. However, the high-altitude, mountainous areas over
the TP pose a challenge for field observations. To finely capture its ET characteristics, we employed
dynamical downscaling modeling (DDM) with a 28 km resolution and convection-permitting model-
ing (CPM) with a 4 km resolution in a normal climatology year, 2014. The benchmark data were the
surface energy balance–based global land ET dataset (EB). Other compared data included the Global
Land-Surface Data Assimilation System (GLDAS) and two reanalysis datasets: ERA-Interim and
ERA5. Results showed that EB exhibits a gradient from the southeastern to northwestern TP, which
is in line with the precipitation pattern. GLDAS generally reproduces the annual mean magnitude
and pattern but poorly represents the seasonal variations. DDM and CPM perform well in the mon-
soon season but underestimate ET in the non-monsoon season. The two reanalysis datasets greatly
overestimate the ET in the monsoon season, but ERA-Interim performs well in the non-monsoon
season. All five datasets underestimate the ET over tundra and snow/ice areas, both in the annual
and seasonal means. ET deviations are dominated by precipitation deviations in the monsoon season
and by surface net radiation deviations in the non-monsoon season.

Keywords: terrestrial evapotranspiration; Tibetan Plateau; convection-permitting modeling; mon-
soon season; non-monsoon season

1. Introduction

The Tibetan Plateau (TP) is often referred to as “the roof of the world” and “the Asian
water tower” because of the considerable impacts it exerts on the regional and global
climate and water cycle. As the highest and widest plateau in the world, its complex and
mountainous terrain is not only a barrier to the westerly belt at the same latitude but
also strengthens the Indian monsoon through strong dynamic and thermodynamic effects,
which accelerates the large-scale atmospheric circulation [1,2]. In addition, the TP possesses
abundant water resources and is home to the sources of many of Asia’s major rivers such
as the Yangtze, Yellow, Tarim, Indus, Ganges, and Mekong [3,4]. The TP has attracted
continuous attention amongst scientists owing to its sensitivity to climate change and its
tendency to warm faster than the global average during the past few decades [5,6]. This
enhanced warming has led to significant glacial and snow melt, permafrost degradation,
and increasing precipitation [7,8], and these warming-induced changes also have marked
effects on the processes of terrestrial evapotranspiration (ET) over the plateau, which
accelerates the increase in ET [9].

As a critical component of water cycle, ET connects the land, ocean, and atmosphere;
transports 60% of the world’s precipitation over land [10]; affects the long-term evolution
of vegetation [11,12]; and plays an important role in regulating regional droughts and
floods [13]. As for the ET over the TP, research indicates that the mean ET ranges between
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250 and 400 mm/year, is lowest in the northwestern TP and highest in the southeastern
TP [9,14], and is limited by water in dry areas and by energy in wet areas at the annual
scale [15]. Moreover, several studies have focused on the interannual variability of ET in
the TP. For example, Zhang et al. estimated the ET in 16 catchments across the plateau
and pointed out the rate of increase was 7 mm/(10 years) during 1966–2000 [16]. Li et al.
investigated the ET of the Yellow, Yangtze, Qiangtang, and Qaidam basins from 1983
to 2006 and also found the ET showed an upward trend for all seasons [17]. Yin et al.
pointed out that the increasing ET trend over the last 30 years is linked with increased
precipitation [18].

The terrestrial ET is closely linked with land-surface characteristics (e.g., soil and
land-use types). The altitude of the TP is mostly over 4000 m above the sea level, the
general tendency is higher in the northwest TP and lower in the southeast TP. Restricted
by the terrain height, the land-surface types over the TP are diverse, including grassland,
wetland, tundra, snow, and so on [19,20]. Previous studies have found that the multi-year
mean ET of low-covered grassland is much lower than that of medium- and high-covered
grassland [21,22]; additionally, that of wetland over the TP has been increasing in recent
years and may be responsible for wetland degradation [23]. The ET in the permafrost
region of the TP has also been found to be affected by the freeze–thaw cycle and presents
obvious seasonal changes [24]. Moreover, a recent study indicated that lake evaporation in
the south is 1171.9 mm during the ice-free season, which is higher than that of northern
TP (1059.7 mm), and the evaporated water amount is about 51.7 km3 per year when all
plateau lakes are included [25].

However, due to the complex topography and harsh natural environmental conditions,
observation sites are sparsely distributed, and the representativeness of station observations
is limited. Thus, considerable uncertainty exists with respect to the ET over the various
land-surface types of the TP.

Given the sparseness of site observations, remote sensing and numerical climate
simulations have provided alternative solutions for understanding ET at large scales and
causal attributions for the deviations of ET over the TP using the above two ways has
been addressed in some studies. Remote sensing usually combined with the traditional
methods such as the Penman–Monteith (P-M) method [26], or with the surface energy
balance methods, for example, the Surface Energy Balance System (SEBS) [27,28], these
methods have a sound physical basis, but the uncertainty in the parameterization of
environmental stress factors in the equation usually bring deviations of ET [29–32]. As for
the numerical simulations, two kinds of simulation can be employed to model ET: “off-line”
and “on-line”. The former uses a land-surface model or hydrological model driven by
near-surface meteorological variables, which is widely used in ET responses to climate
changes. The latter uses a climate model coupled with a land-surface model or hydrological
model. Compared to the former, the latter not only involves the ET responses to climate
changes but also the ET feedbacks to regional climate. Therefore, it is a more physically
reasonable way to simulate the land–atmosphere interaction, and both global and regional
climate models can be used in on-line simulations. Although the land-surface model and
global climate models are often used for climate studies, the ET over the TP remain poorly
modeled, and several studies point out that the deviations of ET over TP were from the
deviation of the storage of summer soil water storage, negative bias of precipitation, and the
overestimation of downward shortwave radiation flux [15,33]. Some studies also indicated
that these imperfections in global climate models (GCMs) may be induced by the coarse
resolution and parameterizations for large-scale processes [34,35]. Regional climate models
(RCMs) have higher spatial resolution and better depiction of physics parameterizations
for meso- and micro-processes compared with GCMs [36–38]. Thus, RCMs are used for
dynamic downscaling of the coupled coarse grid GCM output data or the input reanalysis
data [39,40], so they provide data with high spatial and temporal resolution, which are to
some extent more suitable for heterogeneous regions. Nowadays, this is called dynamical
downscaling modeling (DDM) and has been widely applied to study regional climate and
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climate change in North America, Europe, Africa, and Asia [41–47]. As for the TP, Gao
et al. showed that 30 km DDM can significantly reduce the biases in precipitation and
give a more accurate net precipitation (precipitation minus ET) over the TP [48], this is in
agreement with Lin et al., who indicated that the finer resolutions can greatly diminish the
positive precipitation deviations over the TP, especially from 30 to 10 km [49]. However,
because of the limitation of convection parameterization, the highest resolution of DDMs
obtained over the TP can only reach 0.25◦ (≈28 km), which is still not high enough for the
ET simulations over the TP [50,51].

Recently, the common calculation errors caused by the use of convection parameteri-
zation schemes were mentioned by some studies [52–56]. Meanwhile, Prein et al. and Ou
et al. also pointed out that the convection parameterization schemes start to break down
as deep convection starts to be resolved, explicitly when grid resolution becomes smaller
than 10 km, and a so-called “gray zone” existed when grid spacing was between 10 and
4 km, at these scales, the individual convective cells cannot be resolved and may lead to
insufficiently resolved deep convection [54,57]. Thus, convection-permitting modeling
(CPM), which not only removes the convection parameterization scheme, but also greatly
improves the data resolution and the representation of complex orography, is a more
advanced method than DDM and has become a better choice for researchers studying
the TP. Previous studies found that CPM usually gives more accurate results over the
TP, especially for precipitation [49,58]. However, detailed comparison and evaluation of
CPM-simulated ET over TP is rare. Therefore, in this study, we investigated (1) the perfor-
mance of “on-line” simulations in ET over TP compared to remote sensing and “off-line”
simulations; (2) whether dynamical downscaling (DDM and CPM) performs better in terms
of the heterogeneity of ET—for instance, over different land-surface types—over the TP
than global models; and (3) what causes the deviation of ET simulated by CPM and DDM
over the TP, and whether it varies with the seasons.

The paper is structured as follows: Section 2 briefly introduces the Weather Re-
search and Forecasting (WRF) model and model configurations, datasets, and methods.
Section 3 evaluates the datasets mentioned above in terms of annual and seasonal means,
as well as dominant land-use types, and then explores the factors contributing to the
deviation in ET. Finally, the main conclusions and some further discussions are presented
in Sections 4 and 5, respectively.

2. Model, Datasets, and Methods
2.1. Model and Configurations

The Weather Research and Forecasting (WRF) model is a next-generation mesoscale
numerical weather prediction system (http://www.wrf-model.org/index.php, accessed
on 20 June 2021) [59], which was initially developed in the late 1990s and is still being
improved today by scientists all over the world. WRF includes several dynamic cores,
such as a fully mass- and scalar-conserving flux from the mass coordinate version, as well
as many different physical parameterizations (e.g., microphysics, cumulus parameteri-
zation, planetary boundary layer, shortwave and longwave radiation, and land-surface
models) [51,60,61].

The DDM run (outer domain) covered the entire Eurasian continent with a 28 km
horizontal grid spacing, while the CPM run (inner domain) covered the entire TP with a
4 km horizontal grid spacing. The topography of the TP is shown in Figure 1a,b. Clearly,
the 4 km resolution topography shows far more detail in terms of mountain tops and
valleys, especially in the southern TP.

http://www.wrf-model.org/index.php
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Figure 1. (a,b) The distribution of topography (unit: m), and (c,d) the dominant land-use categories over the Tibetan Plat-
eau (TP). Panels (a,c) are from DDM (dynamical downscaling modeling), and panels (b,d) are from CPM (convection-
permitting modeling). (e) The land-use distribution (unit: %) of ten dominant categories. In (c–e), the numbers 1–10 stand 
for cropland, grassland, shrubland, mixed grassland/shrubland, forest, water bodies, wetland, barren or sparsely vege-
tated, tundra, snow or ice, respectively. 

Following our group’s previous study on DDM and CPM [51], the NCAR (National 
Center for Atmospheric Research) CAM (Community Atmosphere Model) radiation 
scheme [62], the WSM6 (WRF Single-Moment 6-class microphysics scheme) [63], Yonsei 
University planetary boundary layer scheme [64], the Kain–Fritsch convection scheme 
[65] (used in the DDM run but not in the CPM run), and the Noah LSM (land-surface 
model) four-layer soil temperature and moisture model [66] were employed in this study 
too. The specific model configurations are shown in Table 1. We selected 2014 as the re-
search period because the precipitation in this year was close to the climatological mean, 
which can help avoid the influence of certain extreme conditions and better test the ability 
of CPM and DDM to simulate ET under the climate mean state. The lateral boundary con-
ditions and sea surface temperature (SST) were provided by the ERA-Interim reanalysis 

Figure 1. (a,b) The distribution of topography (unit: m), and (c,d) the dominant land-use categories over the Tibetan Plateau
(TP). Panels (a,c) are from DDM (dynamical downscaling modeling), and panels (b,d) are from CPM (convection-permitting
modeling). (e) The land-use distribution (unit: %) of ten dominant categories. In (c–e), the numbers 1–10 stand for cropland,
grassland, shrubland, mixed grassland/shrubland, forest, water bodies, wetland, barren or sparsely vegetated, tundra,
snow or ice, respectively.

Following our group’s previous study on DDM and CPM [51], the NCAR (Na-
tional Center for Atmospheric Research) CAM (Community Atmosphere Model) radiation
scheme [62], the WSM6 (WRF Single-Moment 6-class microphysics scheme) [63], Yonsei
University planetary boundary layer scheme [64], the Kain–Fritsch convection scheme [65]
(used in the DDM run but not in the CPM run), and the Noah LSM (land-surface model)
four-layer soil temperature and moisture model [66] were employed in this study too. The
specific model configurations are shown in Table 1. We selected 2014 as the research period
because the precipitation in this year was close to the climatological mean, which can help
avoid the influence of certain extreme conditions and better test the ability of CPM and
DDM to simulate ET under the climate mean state. The lateral boundary conditions and
sea surface temperature (SST) were provided by the ERA-Interim reanalysis dataset at 6 h
intervals. For both DDM and CPM, the simulations were separated into two stages: the
first was initialized at 0000 UTC 1 October 2013, ended at 2300 UTC 31 May 2014, and
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archived in 3 h intervals; and the second was initialized at 0000 UTC 1 June 2014, ended at
2300 UTC 31 December 2014, and archived in 1 h intervals.

Table 1. The Weather Research and Forecasting (WRF) model configurations for dynamical downscaling modeling (DDM)
and convection-permitting modeling (CPM).

WRF 3.8 DDM CPM

Domain Region Eurasian continent (centered at (92.8◦E, 37.8◦N)) Tibetan Plateau (75-105◦E, 26-40◦N)
Grid Cells 280 × 184 750 × 414

Horizontal Grid Spacing 28 km 4 km
Vertical Levels 27

Radiation Scheme CAM (Community Atmosphere Model) [62]
Microphysics Scheme WSM6 (WRF Single-Moment 6-class microphysics scheme) [63]

Planetary Boundary Layer Scheme Yonsei University [64]
Convection Scheme Kain-Fritsch [65] Explicit
Land Surface Model Noah [66]

Boundary Conditions and SST ERA-Interim reanalysis

2.2. Datasets

Besides the DDM and CPM simulations, a gridded remote sensing dataset (EB), a
dataset from off-line simulations (GLDAS), and two large-scale reanalysis datasets (ERA-
Interim and ERA5) were adopted for comparison.

The EB dataset (http://data.tpdc.ac.cn, accessed on 20 June 2020) was derived from
satellite data and a surface energy balance method for the global land area. It includes
daily and monthly datasets from 2000 to 2017, with a 5 km horizontal resolution. This
dataset has been proven to be robust across a variety of land-cover types and performs well
in providing spatial and temporal information on the water cycle and land–atmosphere
interactions for the Chinese landmass [67]. Therefore, EB was used as the reference ET in
this study.

GLDAS [68] simulates the ET from four land-surface models driven by a series of
conventional and satellite-derived observations. GLDAS products have a spatial resolution
of 0.25◦ × 0.25◦ and a temporal resolution of 3 h. For a long time, GLDAS has been the
only gridded dataset for ET available over the TP [60,69] and has been found to perform
well in terms of surface air temperature and precipitation forcing [70].

ERA-Interim and ERA5 are commonly used reanalysis datasets released by the
ECMWF (the European Center for Medium-Range Weather Forecasts). ERA-Interim [71]
covers the period 1979 to 2019 and has a horizontal resolution of 0.7◦. It was produced
with a 12 h 4D-Var (four-dimensional variational) data assimilation scheme and an IFS
(Integrated Forecast System) release Cy31r2 forecast model. Previous studies have shown
that it is the outstanding performer among all reanalysis datasets in describing the water
cycle over TP [48,69].

ERA5 [72] is the successor to ERA-Interim, with a temporal resolution of 1 h and hori-
zontal resolution of 0.1◦. With a more sophisticated hybrid incremental 4D-Var system [73]
and advanced forecast model (IFS release Cy41r2), ERA5 covers a longer period from 1950
to the present day and outputs more meteorological elements. Moreover, its radiative
transfer model, land-surface model, and snow data assimilation are all different from those
of ERA-Interim. These improvements may have advantages in exploring regions with
complex terrain, such as the TP.

2.3. Methods

To intercompare the six datasets with different temporal and spatial resolutions, all of
the datasets were first monthly averaged and then interpolated into the same 0.25◦ grid
through the local area averaging method. The comparison was conducted in terms of
the annual and seasonal means as well as seasonal variabilities. According to the typical

http://data.tpdc.ac.cn


Water 2021, 13, 2096 6 of 21

seasonal variation of precipitation over the TP [2], the monthly data were further averaged
to the monsoon season (May–September) and the non-monsoon season (October–April).

Since the calculation of ET is directly land-use dependent, we compared the dominant
land-use types in the DDM and CPM simulations. There are 24 land-use types for the USGS
(United States Geological Survey) categories in the WRF model (http://www2.mmm.
ucar.edu/wrf/users/docs/user_guide_V3.8/AWUsersGuideV3.8.pdf, accessed on 20 June
2021) [74]. However, not all of them exist over the TP. To present the categories clearly,
we reclassified these land-use types over the TP into 10 categories (cropland, grassland,
shrubland, mixed shrubland/grassland, forest, water bodies, wetland, barren or sparsely
vegetated, tundra, and snow or ice) (provided in Table 2). The distributions of these 10
categories are shown in Figure 1c–e. Considering that the EB data do not include the
underlying surface of water bodies, all comparisons in this study do not consider this
surface type. The distributions according to DDM and CPM are quite similar, with very
slight differences in percentages for each category (Figure 1c–e). Therefore, the distribution
of the 10 dominant categories of CPM can be used in the comparison among the 0.25◦ grid
cells via the nearest neighbor algorithm. To investigate the contributions from each land-use
category to the TP average, the ET in the same category was averaged and intercompared
among the six datasets.

Table 2. Reclassified 10-category land-use categories.

Land Use Category Land Use Description USGS (United States
Geological Survey) [74]

1 Cropland 2–6
2 Grassland 7
3 Shrubland 8
4 Mixed Shrubland/Grassland 9-10
5 Forest 11–15
6 Water Bodies 16
7 Wetland 17-18
8 Barren or Sparsely Vegetated 19
9 Tundra 20–23
10 Snow or Ice 24

In addition, to better judge whether the ET deviation from the other five datasets over
the dominate land-use categories of TP is significant compared to EB, we also conducted
a 99% significance test with the Monte-Carlo method [75], which does not require the
data to be normally distributed. The Monte-Carlo method regards the two datasets with
sample sizes of na and nb as a method of randomly extracting na samples from the total
(na + nb) samples, it calculates the absolute value, Di, of the sample mean difference from
m resampled group as follows:

Di = |xai − xbi| (1)

where xai, xbi represent the averaged value of the two new datasets in each group;
i = 1, 2, 3, . . . , m; m is re-sampling times, and m = 10,000 in this study. Then, the ob-
tained Di is sorted from smallest to largest and compared with the original sequence mean
difference, Dori. If the Dori satisfies the following condition:

Dori< D α
2

or Dori > D 1−α
2

(2)

where α = 0.01 in this study, it is considered that the samples have passed the 99% Monte-
Carlo significance test, and there is a significant difference between the two compared
datasets.

Many factors play a key role in the simulation of ET, especially precipitation [76–78].
In addition, radiation provides the energy source for ET. However, the benchmark data EB
is a satellite-derived dataset and has no other matching variables. Thus, it cannot be used as

http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.8/AWUsersGuideV3.8.pdf
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.8/AWUsersGuideV3.8.pdf
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an attribution reference criterion. In order to explore the factors influencing the deviations
of simulated ET, first, EB was used as the standard to find the nearest and farthest datasets
to it, and then the nearest one was used as the reference in the comparison and the farthest
to explore the source of deviations in attribution analysis (in Section 3.3).

Then, to explore the influence of precipitation on deviations in ET, the deviations of
ET (dET) of the selected datasets were separated into those from precipitation (dP) and all
other types of deviation (dET-dP), which were obtained from

dAi = Asi − Are f i (3)

where dAi is an abstract symbol, which can be replaced by deviations from ET (mm/d),
precipitation (mm/d), net radiation flux (w m−2), or soil temperature (K) in this equation;
Asi is the corresponding variable (ET, precipitation, net radiation flux, or soil temperature)
of the dataset furthest from the ET value of the EB data (mm/d); Are f i is the corresponding
variable (ET, precipitation, net radiation flux, or soil temperature) of the dataset closest to
the ET value of the EB data (mm/d); i is the land-use type range from 1 to 10 without 6
(the water bodies).

To further explore the contributions from radiation and the land-surface model in
the non-monsoon season, the dET-dP was further analyzed by comparing deviations
from surface net radiation (dR) and soil temperature (dST), which can be calculated using
Equation (1). Considering the different units, a relative contribution was defined by
normalized deviations, and defined as

dBrj =

∣∣dBj
∣∣

|dBmax|
× 100% (4)

where dBj is an abstract symbol, which can be replaced by the deviations from net radiation
flux (w m−2) or soil temperature (K) in this equation; dBrj is the relative deviation (%) of
the corresponding variable (net radiation flux or soil temperature); dBmax is the maximum
deviation of the corresponding variable [net radiation flux (w m−2) or soil temperature
(K)] of all nine land-use types (without the water bodies); j is land-use type 9 (the tundra)
or 10 (snow or ice).

The relative contributions from surface net radiation (dRr) and the land-surface model
(dSTr - dRr) are represented by the magnitudes of the normalized deviations.

3. Results
3.1. Annual and Seasonal Mean ET

Figure 2 presents the annual mean distribution of ET in EB and its differences with
those of the GLDAS, ERA-Interim, ERA5, DDM, and CPM datasets. EB exhibits a decrease
in gradient from the southeastern TP to the northwestern TP. The daily ET reaches 2 mm
d−1 in the southeastern TP and is almost down to zero in the northwestern TP (Figure 2a).
The spatial distribution is generally in line with the pattern of precipitation over the
TP [50,51]. Compared to EB, GLDAS shows a very similar annual mean spatial distribution
(Figure 2b). ERA-Interim and ERA5 both significantly overestimate the ET almost for the
entire TP (Figure 2c,d). As for the DDM and CPM, the simulations are very similar, both of
them producing lower ET than EB in the central and southern regions of the plateau, with
CPM being relatively lower than DDM (Figure 2e,f).
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comparison with EB. ERA-Interim and ERA5 have the largest annual deviation, which 
was mainly from the monsoon season. The DDM and CPM are the closest datasets to EB 
in the monsoon season (Figure 3 and Table 3), while CPM is the only one that underesti-
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Figure 2. Distribution of the daily terrestrial evapotranspiration (ET) in 2014 in the (a) EB data (units: mm/d) and (b–f) the
deviation from the EB distribution in the (b) GLDAS, (c) ERA-Interim, (d) ERA5, (e) DDM and (f) CPM data.

Figure 3 shows the annual and seasonal mean ET for the six datasets in 2014 averaged
over the TP. Averaged over the TP, EB estimates around 0.79 mm of moisture was evapo-
rated per day in 2014. Broken down, this figure is 1.12 mm d−1 for the monsoon season,
which accounts for most of the annual ET, and 0.52 mm d−1 for the non-monsoon season.
GLDAS shows obvious deviation in both monsoon season and non-monsoon season in
comparison with EB. ERA-Interim and ERA5 have the largest annual deviation, which was
mainly from the monsoon season. The DDM and CPM are the closest datasets to EB in the
monsoon season (Figure 3 and Table 3), while CPM is the only one that underestimates
the ET.
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Figure 3. The annual and monsoon/non-monsoon seasonal mean ET in 2014 from the EB, GLDAS,
ERA-Interim, ERA5, DDM, and CPM data averaged over the TP (units: mm/d).

Table 3. The mean ET from the EB, GLDAS, ERA-Interim, ERA5, DDM, and CPM data, and the
standard deviation (SD), the root-mean-square error (RMSE), and spatial correlation coefficients
(CORR) of GLDAS, ERA-Interim, ERA5, DDM, and CPM compared to EB.

EB GLDAS ERA-
Interim ERA5 DDM CPM

Value (unit:
mm/d)

Ann 0.79 0.83 1.07 0.97 0.67 0.66
Monsoon 1.12 1.43 1.86 1.87 1.20 1.01

Non-Monsoon 0.52 0.40 0.51 0.32 0.29 0.41

SD
Ann 0.53 0.53 0.36 0.43 0.41 0.47

Monsoon 0.73 0.94 0.61 0.63 0.76 0.63
Non-Monsoon 0.41 0.30 0.25 0.38 0.20 0.45

RMSE
Ann — 0.34 0.41 0.42 0.33 0.38

Monsoon — 0.65 0.89 0.95 0.46 0.47
Non-Monsoon — 0.30 0.21 0.37 0.38 0.38

CORR
Ann — 0.94 0.95 0.91 0.95 0.93

Monsoon — 0.94 0.92 0.91 0.95 0.94
Non-Monsoon — 0.90 0.95 0.87 0.90 0.84

The seasonal mean ET of EB shows a great decrease in the non-monsoon season when
compared to that in the monsoon season (Figure 3), which is mainly due to the large
decrease in ET over the southern and central TP in the non-monsoon season in comparison
with the monsoon season (Figure 4a,b). As for the GLDAS, it is relatively larger in the
southeastern TP in the monsoon season and underestimated over the central and southern
TP in the non-monsoon season (Figure 4c,d), which results in a balance in the annual mean.
The overestimation of ERA-Interim and ERA5 exists almost across the whole TP but is
largest in the northwestern TP in the monsoon season (Figure 4e,g). This is unsurprising
given the known positive precipitation bias of ERA-Interim and ERA5 over the TP [79]. As
for the non-monsoon season, ERA-Interim performs best compared to EB (Figure 4f and
Table 3), while ERA5 shows an obvious underestimation especially for the southeastern
TP (Figure 4h). DDM and CPM are the closest datasets to EB in the monsoon season
(Figure 4i,k); however, in the non-monsoon season, DDM is significantly lower than EB for
most of the TP but especially in the southeast (Figure 4j), while CPM ranks as the next best
in comparison (Figure 4l and Table 3).
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Figure 4. Distributions of the daily ET from the (a,b) EB data (units: mm/d), and (c–l) the differences
of the (c,d) GLDAS, (e,f) ERA-Interim, (g,h) ERA5, (i,j) DDM, and (k,l) CPM data compared to EB,
averaged over the monsoon (left-hand panels) and non-monsoon (right-hand panels) seasons.

3.2. ET over Dominant Land-Use Categories

Figure 5 presents box-and-whisker plots of the ET of nine land-use types based on
the six datasets. The ET values averaged over the monsoon and non-monsoon seasons
are given in Figures 6 and 7, respectively. In addition, we also used the Monte-Carlo test
to detect whether the simulated ET is significantly different from EB, and the results are
shown in Table 4.
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Figure 6. Box-and-whisker plots of ET of nine land-use categories based on six datasets for the monsoon season in 2014:
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grid cells with the same land-use type. The lines in each box represent the median; red dots represent the mean.
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Figure 7. Box-and-whisker plots of ET of nine land-use categories based on six datasets for the non-monsoon season in 2014:
(a) cropland; (b) grassland; (c) shrubland; (d) mixed grassland/shrubland; (e) forest; (f) wetland; (g) barren or sparsely
vegetated; (h) tundra; (i) snow or ice (units: mm/d). The top and bottom of each box are the 20th and 80th percentiles in
grid cells with the same land-use type. The lines in each box represent the median; red dots represent the mean.

Results from Figure 5 indicate that the ET of EB is generally larger over the vegetated
ground of the TP. Cropland evaporates the most, with an annual mean value of 1.6 mm d−1,
while barren or sparsely vegetated ground only has 0.3 mm d−1. The tundra and snow or
ice surfaces present relatively high values for the annual mean. GLDAS shows relatively
high consistency with EB in its annual mean over most land-use types, except grassland
and tundra. Moreover, although the ET of GLDAS is also seen to be lower than that of
EB over the snow/ice land surface, it is not significant (Table 4). The annual mean ET of
ERA-Interim and ERA5 are relatively higher than those of EB, especially for the shrubland,
mixed grassland/shrubland, forest, and wetland, while DDM and CPM produce lower
annual mean ET over vegetated land.

Figure 6 presents the ET value of nine land-use types in the monsoon season. The
ET of the EB dataset in the monsoon season is in line with its annual mean situation, the
vegetated land evaporates generally more than the barren land. However, the performance
of GLDAS in terms of the seasonal mean is unsatisfactory. In the monsoon season, clear
overestimation exists for shrubland and grassland, which cover the largest area of the TP
(Figure 1). The values provided by ERA-Interim and ERA5 are generally higher than those
of other datasets, and this phenomenon exists and is significant for nearly all surfaces in
the monsoon season (Table 4). The most obviously overestimated land-surface type of the
reanalysis during the monsoon season is mixed grassland/shrubland, with the deviations
almost reaching 1.1 mm d−1. Moreover, for DDM and CPM, they both perform much better
than other datasets and are closer to the EB data over most surfaces in the monsoon season.
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Table 4. The Monte-Carlo significance test of ET at confidence level of 99% over nine land-use categories of GLDAS,
ERA-Interim, ERA5, DDM, and CPM compared to EB. * Indicates that the value has passed the 99% significance test, which
means the ET is significantly different from that of EB over the corresponding land-surface type.

99% Monte-Carlo Test

GLDAS ERA-Interim ERA5 DDM CPM

Cropland
Ann *

Monsoon *
Non-Monsoon * * * *

Grassland
Ann * * * * *

Monsoon * * * * *
Non-Monsoon * * * * *

Shrubland
Ann * * * *

Monsoon * * * *
Non-Monsoon * * * *

Mixed Shrub-
land/Grassland

Ann * * *
Monsoon * * * *

Non-Monsoon * * *

Forest
Ann * *

Monsoon * *
Non-Monsoon * * *

Wetland
Ann * *

Monsoon * *
Non-Monsoon

Barren or Sparsely
Vegetated

Ann * *
Monsoon * *

Non-Monsoon *

Tundra
Ann * * * *

Monsoon * * * *
Non-Monsoon * * * * *

Snow or Ice
Ann * * *

Monsoon * * * *
Non-Monsoon *

As for the non-monsoon season shown in Figure 7, the tundra and snow or ice surfaces
of EB still present relatively high values. Apart from the monsoon season, GLDAS shows
large underestimations over cropland in the non-monsoon season (Figure 7 and Table 4)
and needs further study as well. ERA-Interim agrees well with EB for nearly all dominant
land surfaces in comparison to the non-monsoon season, while the ET in ERA5 is generally
lower than that of ERA-Interim, except for wetland and barren or sparsely vegetated land.
The lower annual mean ET over vegetated land produced by DDM and CPM (shown
in Figure 5) is mainly due to underestimation in the non-monsoon season, especially
for DDM. As shown, DDM simulates considerably lower ET over cropland, grassland,
shrubland, mixed shrubland/grassland, and forest, while CPM underestimates the ET over
cropland, grassland as well as shrubland, which ultimately leads to the underestimation
over the whole of the TP. Moreover, the underestimations for tundra and snow/ice in
our simulations are significant, as Table 4 shows, and still need to be improved in future
simulations.

3.3. Attribution of ET Deviations

The DDM- and CPM-simulated ET deviations compared to ERA-Interim and their
counterparts from precipitation and other factors are presented in Figure 8. The solid lines
represent a constant dET. Most points are located along the solid lines, which demonstrates
that the ET deviation is equivalent for most land-cover categories, either in the monsoon or
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non-monsoon season. The dashed lines combined with the solid lines are used to separate
the ET deviation. Points above or below the angle between the dashed and solid lines
indicate that the ET deviation is more a result of the precipitation deviation. Points to the
left or right indicate that the ET deviation is more a result of the other effects. Meanwhile,
the points outside the red dashed box indicate that the deviations from precipitation and
other effects are larger than one SD, which means the deviations are significant and cannot
be ignored.
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of the second and fourth quadrants. The red dashed box indicates the SD from precipitation and other effects.

In the monsoon season, DDM and CPM agree well with EB. However, ERA-Interim
and ERA5 show a large difference. Considering that the boundary conditions and SST
in our simulations came from ERA-Interim, exploring its deviation from the two analog
values can also lead to a better understanding of where the WRF mode has improved. Thus,
DDM and CPM were selected as the reference data to explore the contributing factors to
the ET deviations of ERA-Interim in the monsoon season. As shown in Figure 8a,b, all
land-use categories in ERA-Interim, except snow or ice, show clear positive deviations
in precipitation in comparison with DDM, which indicates that the overestimation of ET
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in ERA-Interim mainly comes from its large precipitation bias, especially for grassland.
Importantly, the two WRF simulations greatly improve the result.

In the non-monsoon season, however, according to the previous analysis, the perfor-
mances of DDM and CPM are not as good as those of the monsoon season. ERA-Interim
shows the best performance and was, therefore, selected as the reference dataset in the
non-monsoon season. The deviation from other factors dominates over most land sur-
faces of the TP, except cropland, grassland, and forest. As shown in Figure 8c,d, although
most points are inside the red dashed box, the points for tundra and snow/ice show
significant deviation. The other-factor deviations of the snow or ice surface type almost
reach −3.0 mm d−1 in CPM. This is in line with the former analysis that precipitation
in the monsoon season dominates the ET differences, while other effects such as surface
radiation or deviations in the land-surface model play a relatively important role in the
non-monsoon season.

As known, in the non-monsoon season, radiation is the dominant forcing that controls
the energy balance of melting. To further explore the ET deviations over the tundra and
snow/ice surfaces in the non-monsoon season, the relative contributions from surface net
radiation deviation and land-surface process deviations were calculated and intercompared
(Figure 9). All points are located above the 1:1 line, regardless of DDM or CPM, indicating
that the lower ET of these two surfaces is mainly because of the underestimation of
radiation, which may cause stronger freezing in the model. Specifically, radiation deviation
of the tundra and snow/ice surfaces accounts for 90% and 62%, respectively, while the
deviation from the land-surface processes is only 10% and 28%, in DDM. In CPM, the
radiation deviation accounts for an even larger proportion, exceeding 90%.
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deviation from the land-surface processes. The black solid line indicates 1:1 correspondence of the
first and third quadrants.

4. Discussion

The ET from remote sensing, off-line and on-line simulations was intercompared over
the TP, and some significant deviations were found. There are, however, some drawbacks
in this study.
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4.1. Uncertainties of Usage Data

Site observations are generally considered to be the direct and most accurate measure-
ment of ET, some atmospheric field experiments have gradually been carried out over the
TP since 1970 [80–82], and several observation stations have been established [83]. How-
ever, due to the limited measurement space of one instrument, which can only measure a
limited area within a few hundred to several kilometers [84], the existing observation sites
on the TP are too few and insufficient to represent the ET over the whole TP.

Therefore, we selected the high-resolution remote sensing dataset EB, which performs
well in land–atmosphere interactions over China, as the benchmark in this study. EB is
based on the SEBS method, which requires parameterization of excessive resistance and
is sensitive to the errors of air temperature (Ta) and land-surface temperature (Ts) [29].
Unlike the clear-sky conditions, the Ts used for ET calculation in EB can only be obtained
by interpolation on cloudy days, and there is always error in interpolation, leading to un-
certainty in the EB data. Moreover, many previous studies have noted that the uncertainty
of lake parameterization and its impacts on regional climate are non-negligible [50,85,86]
in current models; however, the EB data exclude the surfaces covered by lakes, meaning
these areas were excluded in the present study, this is also a limitation of the EB dataset.
Thus, multiple datasets from remote sensing can be considered for use in the following
studies to reduce the uncertainties caused by a single dataset such as EB.

The other five datasets used in the study are all simulated from different models.
GLDAS is the “off-line” simulation, which has wide applications in research. The data
quality of GLDAS is mainly affected by the driving variables such as temperature, relative
moisture, and wind speed [87]. Meanwhile, the lack of feedback mechanism also leads to
the lack of the land–atmosphere interaction processes, which increases the uncertainties of
GLDAS data as well.

The reanalysis datasets ERA-Interim and ERA5 are objective datasets obtained by
conducting quality control on a series of observation data, including site observations,
satellites, radar, soundings, aircraft, and ship, and then calculated through the numerical
weather forecast data assimilation system. Therefore, these many sources of data bring to
the reanalysis not only the advantages of a long-time scale and high spatial resolution but
also the problem of poor data continuity [70,79]. The inherent uncertainties also come from
the forecast model and data assimilation [88].

As for the “on-line” simulated DDM and CPM datasets, the atmospheric variables
such as precipitation are also from simulation rather than being simply input as driving
data. The selection of parameters in the model and the uncertainties of the parameterization
scheme will influence the accuracy of ET, precipitation, and other variables simulated by
DDM and CPM.

In addition, limited by the available computational resources, only a one-year simula-
tion was conducted in this study. Uncovering whether the above results are of climatologi-
cal significance would require further analysis with multi-year data.

4.2. Parameterizations of the Land-Surface Process

The analysis of the attribution of the ET deviation was only separated into precipitation
and radiation deviation at present, with consideration of the water balance and energy
balance. As is known, ET consists of soil evaporation, canopy transpiration, and canopy-
intercepted water evaporation. Further in-depth study and analysis regarding the impacts
of land-surface processes on ET deviations need to be carried out.

Land-surface processes can be solved by parameterization in models; however, pre-
vious studies indicated that despite the improvements offered by current simulation ca-
pabilities, there are still numerous uncertainties in the parameterization of land-surface
processes. The DDM and CPM simulations underestimated the ET over vegetated ground,
and the inaccurate representation of canopy light use, interception loss, and root water
uptake processes resulting in underestimation of plant transpiration might be the reason for
this [89,90]. Furthermore, the difference in the months when the coldest soil temperature
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appears between the reanalysis data and the WRF simulations (not shown) also indicates
an insufficient consideration of snow parameterization, such as the higher snow albedo
feedback mechanism, which results in lower incoming radiation and ultimately a cold
deviation of the soil temperature [19,51].

Therefore, further investigations are necessary to improve the simulation effect of
models and to obtain a more comprehensive and accurate understanding of the ET and
water cycle process over the TP.

5. Conclusions

In this study, the ET from satellite merged data (EB), an off-line run (GLDAS), two
global climate datasets (ERA5 and ERA-Interim) and two WRF dynamical downscaling
simulations (DDM and CPM) were intercompared for a whole year, 2014, which is a normal
year for precipitation, over the TP in terms of the annual mean, seasonal variation, and
land-use types. Factors contributing to the deviations compared to EB were investigated in
order to provide some insight into subsequent model improvements and land–atmosphere
interaction simulations. The major conclusions are as follows:

Compared with the EB data, GLDAS generally reproduces the annual mean magnitude
and spatial distribution, but seasonal variations are poorly presented. ERA-Interim and
ERA5 generally overestimate ET, mainly in the monsoon season. ERA-Interim better
reproduces the ET in the non-monsoon season. DDM and CPM perform well in the
monsoon season but worse in the non-monsoon season.

ET is underestimated over tundra and snow or ice by all five datasets. GLDAS, ERA5,
DDM, and CPM underestimate the ET over cropland, grassland, and shrubland in the
non-monsoon season. GLDAS, ERA-Interim, and ERA5 overestimate the ET over grassland
and shrubland in the monsoon season. ERA-Interim and ERA5 also overestimate the ET
over the other four land-use types in the monsoon season.

Atmospheric forcing plays a dominant role in the simulation of ET. The considerable
overestimation of precipitation dominates the ET deviation for the whole year, which is
responsible for the particularly high results of ERA-Interim and ERA5 in the monsoon
season. In the non-monsoon season, surface net radiation plays a secondary role after
precipitation in the simulation of ET. The land-surface model exerts less impact than surface
net radiation.
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