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Abstract: Pilot point methodology (PPM) permits estimation of transmissivity at unsampled pilot
points by solving the hydraulic head based inverse problem. Especially relevant to areas with
sparse transmissivity data, the methodology supplements the limited field data. Presented herein
is an approach for estimating parameters of PPM honoring the objectives of refinement of the
transmissivity (T) interpolation and the model calibration. The parameters are the locations and
number of pilot transmissivity points. The location parameter is estimated by defining a qualifying
matrix Q comprising weighted sum of the hydraulic head-sensitivity and the kriging variance fields.
Whereas the former component of Q promotes the model calibration, the latter one leads to improved
T interpolation by locating pilot points in un-sampled tracts. Further, a three-stage methodology is
proposed for an objective determination of the number of pilot points. It is based upon sequential
upgradation of the Variogram as the pilot points are added to the data base, ensuring its convergence
with the head-based optimal Variogram. The model has been illustrated by applying it to Satluj-Beas
interbasin wherein the pumping test data is not only sparse, but also unevenly distributed.

Keywords: pilot point method; groundwater modeling; inverse problem; kriging; calibration with
sparse data

1. Introduction

Distributed models are nowadays routinely employed for regional planning of ground-
water development. The capability of a flow model to reliably predict the planning state
variables depends upon its numerical efficiency and accuracy of several inputs like aquifer
parameters, boundary conditions, and so on [1]. An important input in this regard is
the transmissivity (T) field which is known to influence the long-term model predictions
significantly. These fields are usually generated by interpolating cell transmissivities from
the sampled T values that are typically obtained through the pumping tests. The inter-
polation is mostly based upon kriging [2–4], finite element linked basis functions, spline
function, and polynomial approximation [5–7]. However, such T fields may not be credible
on account of the sparseness of sampled T values and hence resulting models may lack
predictive capability. Conducting an adequate number of pumping tests may not always
be possible due to their high cost and difficult logistics.

The problem of T data deficit can be overcome by adopting a multivariate interpolator
like cokriging that simultaneously invokes sampled values of T along with those of a
secondary variable that is well-correlated to T and is more abundantly available [3,8,9]. This
cokriging application has been reported with varying secondary variables like hydraulic
head [10,11], specific capacity [12,13], and electrical conductivity [14].

An alternative approach is to overcome the T data deficit by head based inverse
problem (IP) solutions [15,16]. Such an approach leads to T fields that are optimally
consistent with the historical heads and the flow equation. The simulator component of the
IP is joined to the interpolator to permit identification of T values at the chosen nodal points
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that may be the pumping test sites or un-sampled locations termed as pilot points [17–21].
The solution typically involves optimizing (minimizing) the sum of squares of the residues
(SSR) in respect of the observed and model-simulated hydraulic head fields treating the
unknown T values as the decision variables [17]. The minimization of SSR is conducted
at a stipulated target time that is usually ahead of the initial condition time by several
simulation time steps. This batch optimization is usually necessary because of the limited
resolution of the data in time domain [22]. This solution though essentially implying
optimal reproduction of the historic hydraulic head fields, is assumed to lead to optimal
model predictive capability. The reported studies have generally used kriging as the T
interpolator employing the sampled T values [17,23–26]. The other IP based approach for
parameter estimation is to predict (model) the parameter values at the sampled locations
and assimilate the sampled values into the predicted ones by ensembled Kalman filters
(EnKF) [27–29]. These numerical filters employ the covariance matrices of the prediction
and the sample, and facilitate correction (termed as Kalman gain) of the modeled values.

Solving the inverse problem at un-sampled pilot points provides additional T values
that may promote the credibility of the interpolated T fields and improve the model
predictive capability. The pilot point methodology (PPM) has two parameters viz. the
number of pilot points and their spatial coordinates (locations). These parameters may be
estimated addressing the two underlying motivations viz. containment of the interpolation
errors and secondly improvement of the model calibration. Apparently, the number of
pilot points needs to be optimized. Whereas too few pilot points may defeat the purpose,
an excessive number may lead to over-parameterization [23]. Ramarao et al. [17] suggested
that number of pilot points can be driven by either the desired efficacy (threshold SSR) of
the calibration or a user-defined maximum number. The next question is how to decide their
locations. Although placing the pilot points anywhere in the flow domain would improve
the interpolation and enhance the model calibration, additional criteria are required for
optimizing the advantage accrued. The current practice in this regard is to add the pilot
points one at a time, choosing the location with an objective of maximizing the potential
reduction of SSR. This is accomplished by placing a pilot point at the location of the highest
sensitivity [30] of hydraulic head field to the local transmissivity. This approach may,
however, lead to placement of pilot points in already well-sampled tracts. This aspect is
amply illustrated in the field illustration presented subsequently.

Other reported subjective criteria are placement of pre-stipulated number of the pilot
points in areas of high hydraulic gradients [31], uniformly distributed [25,26,32–35], in
areas of lower monitoring density [20], or at arbitrary locations [23]. These heuristic
approaches may compromise the potential gain from the pilot point data with respect to
the envisaged objectives.

Ideally speaking, the PPM parameters (number of pilot points and their locations)
should be governed by the requirement of reducing the interpolation error in nodal T
values—which in turn should improve the calibration. The improved calibration is ex-
pected to lead to improved model predictive capability which is the desired outcome of the
entire exercise. However, in practice, reduction of the interpolation error may not uncondi-
tionally lead to better calibration due to modeling assumptions and data errors and spatial
distribution of sensitivity. The present practice in respect of the PPM parameters is oriented
solely towards enhancing the calibration with almost no thought given to the interpolation
aspect. This is implemented by ensuring optimal reproduction of observed hydraulic head
fields corresponding to the historic forcings. The consequent optimization of the calibration
is assumed to be conducive for the optimal model predictive capability. However, in case
the T field is not interpolated accurately, the predictions corresponding to a different set of
forcings may not be realistic in spite of optimal reproduction of the historic hydraulic head
fields. This implies that unless the T field is credibly generated, optimal calibration may
not translate into optimal model predictive capability. Therefore, for ensuring improved
model prediction capability, both the requirements viz. improvement of interpolation and
calibration need to be considered compositely while determining the PPM parameters.
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The merger of pilot point transmissivity values with the sampled data has impli-
cations in terms of additional data points for interpolation and also modification of the
interpolation tools like Variogram in the context of kriging. The latter one has generally
been ignored in the reported studies [17,24].

The PPM can be used for overcoming the deficit of other model parameters and forcing
functions such as hydraulic conductivity and recharge [20,25,36]. It has also been used to
generate optimal fields of vadose zone parameters [37,38].

The present study postulates a methodology for an objective determination of the
PPM parameters (number of pilot points and locations) addressing the twin expectations
from the pilot points viz. improved T interpolation and the calibration. Contrary to the
current practice, the methodology allows placement of pilot points even in low hydraulic
head-sensitivity regions to ensure fulfillment of the former expectation. Its field application
has been illustrated by applying it to Satluj-Beas interbasin (India).

2. Methodology

Notwithstanding the current practice of locating the pilot points from only the view
point of model calibration, the proposed methodology simultaneously accounts for both the
requirements viz. ensuring improved T interpolation and the calibration. The requirement of
the improved model prediction capability is honored by partly following the current prac-
tice of employing the hydraulic head-sensitivity field (S). The interpolation improvement
aspect has been accounted for by conducting the interpolation employing kriging which
provides spatial distribution of kriging variance (E) [2,3,39] that indexes the interpolation
error. The proposed model meets the two requirements compositely by invoking a new
spatially distributed qualifying score (Q) that is obtained by taking a weighted mean of
normalized E and S fields. Normalization becomes necessary because of widely varying
orders of magnitude of E and S. Pilot point is placed at the location of highest Q and the
corresponding pilot point transmissivity is estimated by solution of SSR based inverse
problem. This location strategy may require placement of the pilot points at low S locations
which may compromise the SSR reduction but may also reduce E significantly in the
bargain. Using this procedure, pilot points are added sequentially one at a time, and the
Variogram is updated (using the enhanced T data base) for subsequent usage. Further
a three-stage procedure is proposed for an objective determination of the number of pilot
points. Details of the proposed methodology are presented in the following sections.

2.1. Determination of Pilot Point Location

Spatial coordinates and the transmissivity value of a new pilot point are determined by
employing the updated data base comprising the sampled T values and the transmissivity
values of the pilot points already added (if any). The introduction of new pilot point is
completed in the following steps.

2.1.1. Kriging

The updated data base is subjected to kriging analysis for generating the fields of
transmissivity and the kriging variance. This is accomplished by interpolating T and
computing the corresponding kriging variance at the nodes of a grid superposed over the
study area. Kriging analysis is performed on a modified set (TD) comprising de-trended log-
transformed T values to honor the assumption of stationarity and normal distribution [2]
respectively. Discrete values of the semivariance (γ) of (TD) for varying Euclidean distance
(h) are obtained by “pairing” the values with varying h. Subsequently parameters of the
chosen theoretical model are estimated by least-squares criterion. The most-commonly
used theoretical models are Gaussian, exponential and hole-effect models [2]. An important
parameter imbibed in all models is the Sill (σ2) depicting the asymptotic value of γ. The
resulting model facilitates interpolation of TD and the corresponding kriging variance
values at the nodal points as follows:

TDo = ∑m
i=1 λiTDi (1)
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Eo(x, y) = σ2 − ∑m
i=1 λi(TDi) (2)

where TDo, Eo = interpolated de-trended log-transformed transmissivity value and kriging
variance at the node under reckoning, (TDi) = sampled and the pilot point T values after log
transformation and detrending, m = number of TDi data, (λi) = weight associated with TDi,
σ2 = sill of the T Variogram. The weights are derived from the criterion of the minimization
of variance of estimation error and ensuring unbiasedness of the interpolation [2]. These
two criteria jointly lead to a determinate set of normal equations [3] in terms of (γ). The
corresponding interpolated T value is subsequently computed by adding the trend (ξ) at
the interpolation location and exponentiation as follows.

T = 10TDo+ξ (3)

2.1.2. Flow Modeling

The generated transmissivity field and other associated data of forcings, boundary
conditions, and storage parameters are fed to a flow model of the study area to simulate
the corresponding head field (hc) at a chosen target time or at a steady state. Employing the
sampled head field (hs) at the target time or steady state, the sum of squares of the residues
(SSR) is computed as follows.

SSR = ∑na
i=1(hci − hsi)

2 (4)

where, na = number of active nodes, hsi = sampled head at ith active node, and
hci = simulated head at ith active node. Further, the hydraulic head sensitivity matrix
S is determined as follows.

Step 1: The sampled T data is kriged to generate a T field that is fed to the flow model
to simulate the head field and hence SSR as per Equation (4).

Step 2: Considering a general ith active node in the grid, the kriged T field is per-
turbed by adding ∆T to the transmissivity of this node and kriging it together with
the sampled T data set. This perturbed T field is fed to the flow model to simulated
the modified head field and hence the modified SSR. The corresponding change in SSR
(∆SSR = new SSR − original SSR) is employed to compute the head-sensitivity at ith node
(Si) as follows.

Si =
∆SSR

∆T
(5)

This step is repeated for all active nodes. This provides the matrix of nodal head-
sensitivities S.

2.1.3. Placement Criteria for a Pilot Point

A qualification field Q is postulated herein whose elements depict the relative fitness
of various candidate nodes for hosting the pilot point. Formulation of the qualifying matrix
would apparently depend upon the motivation behind introduction of the pilot point. If, in
accordance with the current practice, the motivation is to optimize the model calibration by
minimizing the potential (SSR), the qualifying matrix shall be S, i.e., Q = S. This placement
criterion has been herein termed Strategy 1. However, as has been discussed earlier, this
may not improve the model prediction capability in spite of an improved calibration, if the
corresponding interpolation errors in the T field are large. Therefore, the other criterion may
be to place the pilot point with an objective of maximizing the reduction of interpolation
errors. From this viewpoint the kriging variance matrix E may be adopted as the qualifying
matrix, i.e., Q = E which has been termed Strategy 2., However, doing so may not lead to
any significant improvement in model calibration. This may preempt any improvement
in the prediction capability. The proposed methodology (termed as Strategy 3) in this
regard is to account for the objectives of improving the calibration as well as containment
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of the interpolation errors compositely. This is expected to lead to an improved prediction
capability. This approach is implemented by stipulating the qualifying matrix as follows:

Q = αE + (1 − α)nS (6)

n = O(E)/O(S) (7)

where O(E) and O(S) = orders of magnitude of E and S, respectively, n = a normalizing factor,
and α (0 < α < 1), (1 − α) = relative weights assigned to the interpolation refinement and
model calibration aspects. Spatial point where the qualifying matrix Q has the largest value is
deemed to be the pilot point location. Terms S and E may have different orders of magnitudes
and the factor n facilitates their normalization necessary for a fair representation of the twin
requirements viz. improvement of the calibration and interpolation. Parameter α provides
the modeler an opportunity to prioritize among the two requirements. The interpolation
aspect gets a larger priority with a higher value of α (>0.5). This may be desirable when
modeling inputs (historic forcing function, boundary conditions and so on) are known to
be less reliable than the T values. On the other hand, a lower value of α (<0.5) prioritizes
improvement of the calibration and may be adopted in the case of relatively more credible
modeling data. Equal weights (=0.5) may be assigned if the two data sets are known to have
errors of similar magnitudes or if no information about the relative errors is available.

It is relevant to point out that some of the pilot points placed as per qualification
matrix Q may occupy a low sensitivity zone, resulting in a lower reduction in SSR in
comparison to that in Strategy 1.

2.1.4. Estimating Pilot Pont Transmissivity

The transmissivity at the chosen pilot point location is estimated by solving a head
based inverse problem treating the unknown pilot point transmissivity (TP) as the decision
variable. This involves minimization of (SSR) (Equation (4)) with respect to (TP). In case
the pilot point is located in the low S region, the optimization may not lead to substantial
reduction of SSR.

2.2. Determination of the Number of Pilot Points

The current database is updated by adding to it the newly estimated pilot point
transmissivity value. Then, the three stage procedure discussed earlier is followed to check
the adequacy of the T network. In the first stage, an experimental Variogram is generated
using the updated data base (TU) and its parameters (θU) are estimated. In the second
stage, the parameters (θ∗) of the optimal variogram are estimated by minimizing SSR
(Equation (4)) with respect to (θ∗). The solution aims at estimating the optimal Variogram
parameters that produce a transmissivity field capable of optimal reproduction of the
sampled head field. It may be visualized that with the addition of pilot points, the sets
(θU) and (θ∗) (obtained in stage 1 and 2 respectively) would tend to merge. A convergence
between the two indicates that the interpolational and the head prediction requirements are
simultaneously fulfilled. In the third stage, this convergence is investigated. A satisfactory
convergence is deemed to imply that the current network is adequate and no additional
pilot point is necessary.

3. Application

The proposed model has been illustrated by applying it to Satluj-Beas interbasin that
encompasses an area of 8040 km2 and is bounded by rivers Satluj and Beas, and Shivalik
mountains (Figure 1a). Agriculture is the major occupation in the area with irrigational
demands met almost exclusively through groundwater development. This has resulted in
rapidly declining water table. The underlying aquifer is composed of alluvium deposits
consisting dominant sand strata with intermittent clay layers. Since the clay layers are
nearly horizontal and spatially intermittent, the formation may be deemed to be a single
horizontally isotropic unconfined aquifer. As per reported data, its T varies from 540 to
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1830 m2/day in the north-east to south-west direction [40,41]. A few well log sites and
a lithological section along this direction are presented in Figure 1b. Lithological profile
along this section is presented in Figure 1c.

The sampled data base (TS) comprises only fifteen pumping test derived T values
(Figure 1a). Further, most of the sampling locations cluster in the N-E tract that displays
high S on account of proximity to the mountainous boundary (Figure 2a). An indiscriminate
placement of pilot points invoking the prevalent S-based criterion would further increase
the data density in this tract. Therefore, a study aimed at introducing pilot points in
accordance with the proposed model was considered relevant.

3.1. Data Base

The necessary data of sampled T, historical head fields, recharge, abstraction, and
boundary conditions were gathered from different state and central water resources agen-
cies. Pumping test derived data was available at 15 locations (Figure 1a). Water table data
consists of observations from 91 wells over a period of three years extending from June
2014 to October 2016.This time interval covers three monsoon and two dry seasons. For the
same period, the river stage data from six locations (three on Satluj, two on Beas and one
at the confluence) (Figure 1a) were collected. The study area comprises 29 administrative
blocks (Figure 1a) and block wise groundwater recharge, abstraction, and specific yield
data was derived from published reports [40].

Figure 1. Cont.
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Figure 1. (a) Distribution of T sampling points in study area. (b) Lithological Section. (c) Lithological Profile along the
section presented in (b).
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Figure 2. (a) Fields of S and E. (b) Field of Q.

3.2. Groundwater Flow Model

The groundwater flow model employed in the present illustration is based upon
a numerical solution of the following differential equation governing two-dimensional
horizontal flow in a confined aquifer.

∂

∂x

(
Txx

∂h
∂x

)
+

∂

∂y

(
Tyy

∂h
∂y

)
− W= (Sc)

∂h
∂t

(8)

where, x, y = orthogonal cartesian coordinates along principal permeability directions,
t = time, h = head, Txx, Tyy = transmissivities along x and y directions, SC = storage co-
efficient, and W = sink term. Since there is no evidence of horizontal anisotropy in the
study area, Txx and Tyy were assumed to be identical. This confined flow equation has been
invoked for modeling the unconfined flow assuming the temporal fluctuation of h to be
small enough and the spatial gradients honoring Dupuit-Forchheimer assumptions. The
adopted flow equation was solved to simulate the head fields at advancing discrete times
using IADI based finite difference method. The flow model was externally linked to an
optimizer based upon the SUMT algorithm [42] to facilitate the IP solutions.

Adopting a spatial step size of 1000 m, a finite difference grid comprising 8350 active
nodes and 418 boundary nodes was superposed over the study area. The boundary
conditions at the river boundary nodes were assigned as per the available river stage
data. Neuman boundary condition was assigned along the mountainous boundary. The
necessary flux rate was derived from the prevailing hydraulic gradients. The forcing
function vector (W) was derived from the available recharge and abstraction data. A
SUMT based optimizer discussed in the model validation section was employed for this
illustration exercise.

3.3. Determination of Pilot Point Parameters

Pilot points were added sequentially corresponding to three placement strategies viz.
Q = S; Q = E; and Q = αE + (1 − α)nS serial numbered as 1, 2, and 3, respectively—strategy 3
being the proposed model. As a first step towards this end, the experimental and theoretical
T variograms were developed. Gaussian model was selected as the variogram model with
its parameters (σ2 and L) were estimated as (7.6 × 10−3 and 22.3 km respectively) by
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regressing the discrete point data of the experimental Variogram. These parameter values
were employed to generate the E field.

The second step consisted of generating S and Q fields. It may be recalled that the
hydraulic head fields were available at six discrete times over a period of three years
extending from June 2014 to October 2016. Accordingly, treating hydraulic head field of
June 2014 as the initial condition (Figure 1a), simulation was conducted until the target time
October 2016. The performance measure (SSR) was computed in respect of the observed
and simulated head fields at the target time. Elements of S were generated as discussed
in Section 2.1.2 taking ∆T = 10 m2/day. A value of 0.5 was assigned to the parameter α
assuming the modeling input and the T data to be equally reliable. Further, noting that the
orders of magnitude of E and S are 10−3 and 10−4, respectively, a value of 10 was assigned
to the factor n (refer Equation (7)). Q matrix was generated as per Equation (6) employing
these values.

Third step consisted of placing the pilot points and estimating their T sequentially as
per the three strategies until the desired convergence between the Variogram parameters
is achieved.

3.4. Results

The computed fields of percentile S, E, and Q [=1/2(E + 10S)] are presented in
Figure 2a,b. The convergence of two components (σ2 and L) of θU and θ∗, for the three
strategies, was achieved upon addition of 6, 5, and 5 pilot points, respectively. The con-
vergence details with respect to strategy 3 (proposed model) are presented in Figure 3a,b.
The generated pilot point locations corresponding to the three strategies and the corre-
sponding T fields are presented in Figure 4a,b. It may be seen that while implementing
strategy 2, all pilot points have fallen in the unsampled tracts-far away among themselves
and from sampling locations. However, in strategy 1, the pilot points have fallen in already
densely sampled tracts. In strategy 3 (proposed model), the pilot points have filled up the
unsampled tracts, though not as effectively as strategy 2.

The metrics of improvement of the model calibration and of the interpolation for all
three strategies are presented in Table 1. Strategy 0 therein depicts the baseline i.e., ‘no pilot
point’ state. Metrics of the improvement in the model prediction capability includes the
minimized SSR and its reduction in comparison to the baseline state. The improvement of
the interpolation is indexed by Aeff representing the fractional area over which the kriging
variance undergoes a reduction, and the mean E reduction (E) therein.

Figure 3. Convergence between the two components of θU and θ∗: (a) σ2 and (b) L.



Water 2021, 13, 2082 10 of 13

Figure 4. (a) Strategy wise pilot point placement. (b) T fields resutling from the three pilot point placement strategies.

Table 1. Strategy wise pilot point performance metrics.

Strategy N SSR (m2) ∆SSR (m2) E (×10−3) Aeff (Fraction)

0 0 1931 - - -
1 6 1678 253 0.65 0.28
2 5 1811 120 0.81 0.43
3 5 1713 218 0.74 0.38

4. Discussion

It is interesting to compare the results from strategies 1 and 2. It may be recalled
that the strategy1 (Q = S) depicts the prevalent practice of the pilot point placement. As
already discussed, this strategy focuses primarily on minimizing SSR with no consideration
to containment of the interpolation error E. On the other hand, strategy 2 (Q = E) aims
at minimizing the interpolation error (E) without any thought to minimization of SSR.
As such, implementation of strategy 1 leads to far larger reduction of SSR (253 m2) with
relatively moderate reduction of E (E = 0.65 × 10−3) (Table 1) occurring over a small
fraction (0.28) of the area. Reduction of E is in fact incidental since it is not accounted for in
the placement criterion. It may also be seen that due the lack of focus on the interpolation
aspect, the pilot points have not fallen in the sparse tracts of the sampled data network
leading to clustering of data points (Figure 4a) in the north-eastern region, and defeating
an important objective of providing pilot points in unsampled tracts. Thus, this strategy,
though leading to much-reduced SSR, poses a concern about the interpolation aspects.
This, in turn, may inhibit improvement of the model prediction capability notwithstanding
the robust reduction of SSR.

The results from strategy 2 are just the reverse—leading to relatively large reduction
of E (E = 0.81 × 10−3) over larger fractional area (0.43) with only a minimal and incidental
reduction of SSR (120 m2). Being focused on the interpolation aspect, it has also led to
pilot point points generally filling up the unsampled tracts (Figure 4a). It may be seen that
the pilot points have generally been located in southwest region which has been poorly
represented in the sampled data base (TS). Further, since the pilot points are located in the
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low S region, the reduction in SSR is small. This poses a concern about the compromised
model prediction capability.

The proposed strategy (strategy 3) focuses on both the aspects viz. improvement of
calibration and containment of interpolation errors. Accordingly, it provides compositely
the reduction of SSR and of E. Whereas the reduction of SSR is significant, being close
enough to what is obtained in strategy 1, E reduction and its areal extent is in the proximity
of strategy 2 metrics. Also, the large unsampled tracts get filled up—though not as well as
with strategy 2.

The second PPM parameter viz. number of pilot points has been determined by as-
sessing the convergence between θU and θ∗. Introduction of five pilot points has resulted
in satisfactory convergence. Addition of anymore pilot points may result in over parame-
terization. As discussed earlier, a satisfactory convergence ensures simultaneous fulfilment
of interpolational and the calibration requirements. It is evident from Figure 3a,b that the
variogram sill parameter (σ2) derived from the enhanced T data TU (N = 5) converged to
a higher value than its initial value derived from the sampled T data TS (N = 0). Higher
sill denotes a larger variance in TU than in TS which in-turn indicates that the optimal
T field based upon TU exhibits a larger heterogeneity as compared to the one obtained
from TS. The variogram range parameter (L) attains a larger converged value with TU as
compared to the initial value derived from TS. Larger range indicates that the influence of
a T point in kriging procedure extends to a much larger distance than what is indicated
by TS. The application of the proposed methodology has led to a continuous field that is
hydrogeologically realistic in alluvial aquifers.

The proposed methodology overcomes the shortcomings present in the prevalent
PPM parameterization practices. Further, it permits stage wise updating of the variogram
employing the current set of generated pilot point values along with sampled T data.
The methodology illustrated herein for supplementing sparse T data can also be used to
overcome deficit of other aquifer and vadose zone parameters.

5. Conclusions

1. The prevalent hydraulic head-sensitivity based practice for implementation of the
pilot point methodology is oriented towards the refinement of the flow model calibra-
tion with almost no thought given to the interpolation aspect. This may jeopardize
the model prediction capability apart from failing to populate the un-sampled tracts
by numerically generated pilot points.

2. The proposed parameterization of this methodology provides objective criteria for
placement of the plot points as well determining their number.

3. The proposed methodology ensures, apart from a better reproduction of sampled
hydraulic head fields, filling up of the vacant tracts by the pilot points and hence
better interpolation.

4. The proposed criterion for the number of pilot points ensures that the interpolated
transmissivity field is optimally conducive for the hydraulic head simulations.

5. The application of the proposed methodology has supplemented optimally the sparse
and clustered T data in Satluj-Beas interbasin. The resulting set of T values would
facilitate credible model predictions since they simultaneously permit optimal inter-
polation and calibration. The methodology can be similarly applied to other areas for
overcoming deficit of data of T and other parameters.
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