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Abstract: Encouraged by the necessity to better understand the water use in this woody crop, a 

study was carried out in a commercial drip-irrigated young almond orchard to quantify and moni-

tor the crop evapotranspiration (ETc) and its partitioning into tree canopy transpiration (T) and soil 

evaporation (E), to list and analyze single and dual crop coefficients, and to extract relationships 

between them and the vegetation fractional cover (fc) and remote-sensing-derived vegetation indi-

ces (VIs). A Simplified Two-Source Energy Balance (STSEB) model was applied, and the results were 

compared to ground measurements from a flux tower. This study comprises three consecutive 

growing seasons from 2017 to 2019, corresponding to Years 2 to 4 after planting. Uncertainties lower 

than 50 W m−2 were obtained for all terms of the energy balance equation on an instantaneous scale, 

with average estimation errors of 0.06 mm h−1 and 0.6 mm d−1, for hourly and daily ETc, respectively. 

Water use for our young almond orchard resulted in average mid-season crop coefficient (Kc mid) 

values of 0.30, 0.33, and 0.45 for the 2017, 2018, and 2019 growing seasons, corresponding to fc mean 

values of 0.21, 0.35, and 0.39, respectively. Average daily evapotranspiration for the same periods 

resulted in 1.7, 2.1, and 3.2 mm d−1. The results entail the possibility of predicting the water use of 

any age almond orchards by monitoring its biophysical parameters. 
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1. Introduction 

The global planted area and production of almonds are steadily increasing. Accord-

ing to the Food and Agriculture Organization Corporate Statistical Database (FAOSTAT) 

[1], more than 2 million ha of almond orchards are cultivated worldwide. Spain ranks first 

in planted area with almonds in the world, with more than 650,000 ha, followed by the 

western United States of America (USA) with about 441,000 ha. However, the USA leads 

the production, accounting for 77% of the world crop share in 2019, whereas Spain only 

contributes a 6% of the share [2]. This is due to the low average yields obtained in our 

country as almond trees are mainly grown under rainfed conditions and on marginal soils 

in areas where annual rainfall ranges from 250 to 350 mm [3]. Nevertheless, the surface 

area of irrigated almond orchards has increased considerably in Spain in recent years, 

currently representing about 14% of the harvested almond area. This work focuses on the 

La Mancha region, where evaporative demand is high and rainfall is scarce during the 

summer, coinciding with the highest crop water requirements. In this region, almonds 
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covered about 124,000 ha in 2018, and irrigation is expanding every year in order to in-

crease the profitability of orchards, already representing 16% (almost 20,000 ha) of the 

harvested almond area [3,4]. 

In arid and semi-arid areas with water resources scarcity, population growth and 

increasing water competition with other sectors, such as industrial and urban, improve-

ment of almond water management becomes mandatory. In addition, in a global scenario 

of climate change, this situation seems to be worsening, mainly due to higher tempera-

tures, less annual rainfall and an increasing number of extreme weather events [5]. Under 

this context, in the study area, where water resources (mainly groundwater) are limited 

and at serious risk of overexploitation, it is not possible to apply irrigation regimes that 

cover the potential crop water requirements of almond trees. Therefore, measuring or es-

timating almond crop evapotranspiration (ETc), and deriving its crop coefficients as accu-

rately as possible, becomes a key objective for optimizing the irrigation scheduling of this 

fruit tree. 

ETc is usually calculated or modelled adopting the FAO56 approach [6–8]. This 

method uses the grass reference evapotranspiration (ETo) multiplied by a crop coefficient 

(Kc). Moreover, the FAO56 method also offers the possibility of ETc partitioning, i.e., dis-

tinguishing soil evaporation (E) from crop transpiration (T) by using a dual crop coeffi-

cient approach (ETc = (Kcb + Ke) × ETo), where Kcb is a basal (transpiration) crop coefficient 

and Ke is a soil evaporation coefficient. This simple approach is considered the standard 

by the scientific community for vegetables and field crops (i.e., full and homogeneous 

canopies), but it is especially challenging for fruit trees and vines due to the wide range 

of plant densities, canopy architectures, crop age and varieties, fraction of ground cover, 

management and training classes, etc. Therefore, other methods may be used for estimat-

ing ETc, mainly based on remote sensing techniques [9,10]. 

Over the last two decades, a huge number of articles have been published reporting 

standardized Kc values for almost all cultivated crops and environmental conditions. 

However, studies on accurate ETc measurements and deriving Kc values for young al-

mond orchards are quite scarce [11,12]. Besides, there are new varieties of late and extra-

late flowering, which have not been sufficiently studied and require an adjustment of their 

Kc in order to conduct a more precise irrigation scheduling [13]. 

In FAO66, Goldhamer and Girona [14] reported monthly Kc values for mature al-

mond trees published by different authors [15–17]. Those studies mainly measured al-

mond ETc using a soil water balance approach rather than more precise methods such as 

weighing lysimeters or eddy-covariance (EC) systems. Seasonal ETc and Kc values were 

determined for a high-yielding almond orchard using an EC flux heat system in South 

Australia [18]. Espadafor et al. [11] measured transpiration of young almond trees using 

a large weighing lysimeter in Córdoba (Spain). In the same research facility, López-López 

et al. [19] reported water requirements of mature almond trees combining measurements 

of a weighing lysimeter with sap-flow probes. In an experiment performed only along one 

growing season in southwest Spain, García-Tejero et al. [12] reported local crop coeffi-

cients for young almond trees using four drainage lysimeters. In a study conducted in 

Central Valley (California), Bellvert et al. [9] estimated actual crop evapotranspiration and 

Kc values of an almond orchard during a single crop season. These authors combined a 

simple ETc model with remote sensing techniques. 

Surface energy balance models have been long used to derive ETc values in a wide 

variety of environmental and ecosystem conditions [20–30]. Land surface temperature 

(LST) is a key input in these model schemes, and the thermal characterization of row crops 

becomes a challenge in comparison to more homogeneous canopies such as vegetables 

(e.g., roots and tubers) or field crops (e.g., cereals). Soil evaporation might not be negligi-

ble in this type of crop, and this component must be accounted for in ETc estimates. Two-

source energy balance techniques, together with ground measurements of soil and canopy 

temperatures, have provided good results in different field crops, such as cotton [20,27], 

maize [29,31,32] or vineyard [30]. Orchard-row crops bring additional limitations related 
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to the canopy structure itself and the low canopy cover that increase the significance of 

the inter-row vegetation maintenance in the surface flux patterns. This effect is stressed in 

young orchards.  

In this work, a Simplified version of the Two-Source Energy Balance (STSEB) was 

used, together with field measurements of soil and canopy temperatures, to model the 

surface energy flux balance in a young almond orchard and to partition the ETc into can-

opy and soil components. A separate monitoring of the soil evaporation (E) and canopy 

transpiration (T), together with the total ETc, was established. This allowed for a compre-

hensive analysis of the dual crop coefficients, which is not possible using only weighing 

lysimeters or eddy-covariance measurements.  

The main objectives of this work were to: 

 Evaluate the performance of the STSEB approach, combined to radiometric temper-

ature measurements, in almond orchard using an eddy-covariance system. Ground 

measurements of the surface energy fluxes were used as a basis for the assessment.  

 Derive single and dual crop coefficients of the drip-irrigated young almond orchard 

using STSEB and ETo estimates. 

 Explore relationships between crop coefficients and biophysical variables and vege-

tation indices that can be further applied to almond orchards under a range of grow-

ing stage and environmental conditions. 

2. Materials and Methods 

2.1. Study Site 

The study is based on measurements conducted during three consecutive almond 

growing seasons from 2017 to 2019 at the Technical Institute of Agronomy (ITAP) Re-

search Facility in Albacete (southeast Spain) (39°2′ N, 2°5′ W, 695 m a.s.l) (Figure 1). The 

climate is semi-arid, temperate Mediterranean with dry and warm summers resulting in 

a high evaporative demand. The long-term (30-year) mean annual precipitation is 314 mm 

mostly concentrated during the months of spring and autumn, and average mean, maxi-

mum and minimum air temperatures are 13.8, 24.6 and 4.8 °C, respectively. Weather data 

were recorded for a 30-year period (1987–2016) from an automated agro-meteorological 

station located at the study site. According to the Soil Survey Staff [33], the soil at this site 

is classified as Petrocalcic Calcixerepts, with a loam texture (31.6% sand, 42.4% silt and 

26% clay), with a basic pH (8.4). The soil has a content of organic matter, nitrogen and 

active limestone of 1.55%, 0.09%, and 12.1%, respectively. Soil electrical conductivity (ECe) 

was 0.35 dS m−1, resulting in a slightly saline soil. 

 

Figure 1. Location and overview of the study field with the flux tower position marked with a yel-

low star. Pictures of the experimental set-up with the eddy-covariance instruments mounted on a 
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tripod together with the net radiation sensor and thermal infrared radiometers, from 2016 to 2019 

(left to right). 

2.2. Orchard Description 

Measurements were carried out in a young almond (Prunus dulcis (Mill.) D.A. Webb) 

orchard of about 11 ha planted in 2015 with ‘Lauranne’ grafted onto the GF-677 rootstock. 

Tree spacing was 6 m (within row) and 7 m (inter-row), giving 238 trees ha−1. Drip-irriga-

tion was supplied during the experiment with a single drip line per row with 3.2 L h−1 

emitters spaced every 0.75 m. The field was fertilized at a rate from 95-40-85 kg ha−1 of N, 

P and K to 160-84-140 kg ha−1 of N, P and K in the first and the last experimental season, 

respectively; it was managed according to cultural practices usually carried out in the 

area, to avoid pests and disease effects on crop performance. 

Irrigation in the almond orchard was managed following the common practice in the 

area for accomplishing potential (maximum) yields. Irrigation was scheduled based on 

the soil water balance approach, by estimating ETc (crop water requirements) through the 

FAO56 approach, i.e., as the product of Penman–Monteith ETo [6] by a crop coefficient 

(Kc) [16]. Since the fraction of green ground cover (fc) remained below 70% in our study, 

an empirical reduction coefficient (Kr) was used for computing ETc, i.e., ETc = ETo × Kc × Kr 

[34]. 

Almond tree structure was monitored during the experiment. Frequent in situ meas-

urements of horizontal diameters of the canopy and tree height were taken during the 

three cropping seasons. Moreover, ground nadir digital pictures of five representative 

trees were sampled overhead during the last season. All these ground measurements were 

combined and used to model fc for the three growing seasons (Figure 2). 

 

Figure 2. Evolution of the modeled vegetation fractional cover, fc, during the 2017–2019 experi-

ments (lines) superposed to the field measurements (marks). 

2.3. Eddy-Covariance and Meteorological Instrumentation 

An eddy-covariance system was used in this work for the assessment of the ETc de-

rived values from the STSEB model. The flux tower was assembled in a central location of 

the field at the beginning of the 2016 growing season, although instrumentation was not 

completed until 2017 (Figure 1). The flux tower was provided with a net radiation sensor 

(NR-Lite, Kipp & Zonen, Delft, The Netherlands), and a set of 2–4 heat flux plates 

(HFP01SC, Hukseflux, Delft, the Netherlands) buried at 8 cm depth, at both side of the 

row. Soil temperature was measured by thermocouples (TCAV, Type E, Campbell Sci. 

Inst., Logan, UT, USA) at 2 and 4 cm depth, and soil moisture was measured by volumetric 

moisture sensors (CS650, Campbell Sci. Inst., Logan, UT, USA) to account for the heat 
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storage in the soil layer above the plates. All these data were stored in 15 min averages 

using a datalogger (CR1000, Campbell Sci. Inst., Logan, UT, USA) and then processed to 

derive hourly fluxes.  

The turbulent fluxes were measured by an eddy-covariance (EC) system mounted on 

the tripod (Figure 1) and were oriented to the dominant winds coming from the west. It 

consisted of a sonic anemometer (CSAT-3, Campbell Sci. Inst., Logan, UT, USA) and an 

open-path infrared gas analyzer (LI-7500, LI-COR Inc., Lincoln, NE, USA). The EC instru-

ments were originally emplaced at a height of 4 m in this experiment to avoid contribution 

of surrounding areas beyond the almond field boundaries. A footprint analysis was con-

ducted to support this configuration. This position was raised up to 5 m for the 2019 sea-

son to keep a minimum distance of 1.5 m with the canopy top.  

The study period ranged from 16 June to 16 October (4 months) in 2017, 3 May to 18 

October (5.5 months) in 2018, and 15 April to 21 September (5 months) in 2019. The dataset 

covered the full Stage III phenological phase (increase in weight of seed) for the 3 years, 

and a good portion of Stage II (growth of embryo) and Stage IV (post-harvest). A total of 

>400 days were considered within these periods once a few days had been discarded due 

to bad weather conditions and experimental failures.  

Meteorological data during the 3-year experiment were measured with a weather 

station located in the Research Facility near the almond orchard. All instruments were set 

up at a height between 1.5 and 2.0 m above the ground surface, and weather data were 

registered in 15 min, hourly and daily time steps. The variables measured were as follows: 

incoming and surface-reflected short-wave radiation (model CM14, Kipp & Zonen, Delft, 

Holland), incoming and outgoing long-wave radiation (model CG2, Kipp & Zonen, Delft, 

Holland), air temperature/relative humidity (model MP100, Campbell Scientific Instru-

ment, Logan, UT, USA), wind speed (model A100R, Vector Instruments Ltd., Rhyl, UK), 

wind direction (model W200P, Vector Instruments Ltd., Rhyl, UK) and rainfall (model 

ARG100, Campbell Scientific Instrument, Logan, UT, USA). All meteorological data were 

recorded with two CR10X data loggers (Campbell Scientific Instrument, Logan, UT, USA). 

Daily ETo was computed with the FAO56 Penman–Monteith equation [6]. López-Urrea et 

al. [35] and Trigo et al. [36] carried out previous studies in the experimental site reporting 

the good performance of this method. The single crop coefficient (Kc) for young almond 

trees was obtained as the ratio of the ETc determinations to the calculated ETo values, 

whereas the dual Kc was calculated as the ratios of T and E estimations using the STSEB 

approach to ETo, i.e., Kcb = T/ETo and Ke = E/ETo. 

2.4. Footprint Analysis and Adjustment of Turbulent Fluxes 

The relatively small size of the studied almond orchard field is a challenge since the 

footprint area contributing to the turbulent flux measurements must remain within the 

parcel limits, while a certain position over the canopy top is recommended to capture all 

eddies. Based on a successful previous experience in a close vineyard using the same EC 

system, we decided to set the EC instruments initially at a height of 4 m above ground 

level for the 2017–2018 experimental campaigns and raised up to 5 m for the 2019 season. 

The footprint analysis [37] showed that 90% of cumulative normalized flux measurements 

were obtained within average upwind distances of 178 ± 23 m, 125 ± 42 m and 63 ± 5 m in 

2017, 2018 and 2019, respectively. Figure 3 plots the average footprint for the different 

wind directions. Note that the footprint fits within the field boundary in 2018 and 2019, 

whereas 25% of the dataset outlies this limit in 2017 due to the short canopy height of the 

almond trees. This fraction of the dataset can be discarded, although no significant 

changes in the analysis were observed, which indicates that the influence of the surround-

ing areas was minor in our case. 

To guarantee the highest quality in the turbulent flux measurements, energy balance 

closure was also checked and forced by using the residual technique [38].  
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Figure 3. Polar plots showing the average footprint for the different wind directions. Plots are centered at the location of 

the flux tower and overlaid to an aerial view of the study site. 

2.5. The STSEB Approach Combined with Ground Radiometric Thermal Measurements 

Two-Source Energy Balance modeling of crop evapotranspiration (ETc), and its soil 

evaporation (E) and canopy transpiration (T) contributions, is conceived as a conversion 

from the total latent heat flux, LE, and its soil and canopy components LEs and LEc, re-

spectively, dividing by the latent heat of vaporization of water, λ (J kg−1). The latent heat 

flux is a turbulent flux that can be estimated as a residual from the surface energy balance 

equation (Equation (1)) once known the other terms: 

R� = H + LE + G (1)

where Rn is the net radiation flux (W m−2), H is the sensible heat flux (W m−2), and G is the 

soil heat flux (W m−2). 

Based on the parallel approach introduced by [21], a Simplified version of the Two-

Source Energy Balance (STSEB) model was initially proposed by [29]. This model allows 

one to estimate the surface energy fluxes using radiometric temperatures of the canopy 

(Tc) and soil (Ts) components as the key input in the different terms of the energy balance 

equation. Following the STSEB approach, the addition between the soil (Hs) and canopy 

(Hc) contributions, to the total sensible heat flux, are weighted by their respective cover 

fraction as follows: 

H = f�H� + (1 − f�)H� (2)

In Equation (2), Hs and Hc are expressed as: 

H� = ρC�
�����

��
�   (3)

H� = ρC�

T� − T�

r�
� + r�

�
 (4)

where ρCp is the volumetric heat capacity of air (J K−1m−3), Ta is the air temperature at a 

reference height (K), ��
� is the aerodynamic resistance (s m−1) to heat transfer between the 

canopy and the reference height at which the atmospheric data are measured (m), ��
� is 

the aerodynamic resistance (s m−1) to heat transfer between the point ���+d (���: canopy 

roughness length for momentum, d: displacement height) and the reference height (m), 

��
� is the aerodynamic resistance (s m−1) to heat flow in the boundary layer immediately 

above the soil surface. For details on the expressions to estimate these aerodynamic re-

sistances, see [29]. 

The STSEB approach conceives the partitioning of the net radiation flux, Rn, between 

the soil and canopy as follows: 

R� = f�R�� + (1 − f�)R�� (5)

where Rnc and Rns are the contributions of the canopy and soil, respectively, to the total 

net radiation flux. A balance is established between the longwave and the short-wave ra-

diation separately for each component: 

R�� = (1 − α�)S + ε�L��� − ε�σT�
� (6)
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R�� = (1 − α�)S + ε�L��� − ε�σT�
� (7)

where S is the solar global radiation (W m−2), αs and αc are soil and canopy albedos, re-

spectively, σ is the Stefan–Boltzmann constant, and Lsky is the incident long-wave radia-

tion (W m−2). 

Although different algorithms can be found in the literature to estimate the soil heat 

flux, G, in this work, daytime G was obtained as a fraction (CG) of the soil contribution to 

the net radiation: 

G = C�(1 − f�)R�� (8)

with a value of CG = 0.35 used in this work [39]. As suggested by [40], a different value of 

CG = 0.9 was used at nighttime since the ratio G/Rn at night is different under sparse crop 

conditions.  

According to the STSEB framework, the component fluxes to the total latent heat flux 

can be derived as: 

LE� = R�� − H� (9)

LE� = R�� − H� −
G

(1 − f�)
 (10)

and they finally combine as follows to obtain total LE:  

LE = f�LE� + (1 − f�)LE� (11)

A set of 3 thermal InfraRed Thermometers (IRT) (SI-121, Apogee Instruments, Inc., 

Logan, UT, USA) were installed in the flux tower for the continuous thermal monitoring 

of almond tree canopy and soil. Two of the IRTs were assembled pointing downwards 

with an angle of 45°, one to the tree canopy top and the other to the inter-row soil. The 

experimental setup (location and assembling height) was designed to guarantee a repre-

sentative monitoring of each target, accounting for the 18° field of view of the IRTs. At-

mospheric correction of both soil and canopy temperatures was conducted using the 

downwelling sky radiance measurements by a third IRT pointing upwards. Emissivity 

values of soil and tree canopy were measured through the temperature-emissivity sepa-

ration method (TES) [41], using a CIMEL CE-312-2 multispectral thermal radiometer 

(Cimel Electronique, Paris, France). As an example, plots in Figure 4 illustrate the evolu-

tion of the 15 min corrected radiometric temperatures for the month of July. Note that 

canopy temperature matches the evolution of air temperature as an indicator of the good 

water conditions of the almond orchard during the experiment. There is a fast response in 

the diurnal evolution of radiometric temperatures with instantaneous changes in the 

weather conditions produced by clouds, for instances. As a consequence, continuous IRT 

measurements can better capture the diurnal evolution of the surface energy fluxes, and 

then improve the daily estimates, as well as accumulated values, of ETc compared to single 

instantaneous radiometric temperature registers [22,27,29,30]. However, this is, of course, 

not always possible, and different approaches have been published in the literature to 

derive daily ETc values from instantaneous thermal inputs [23–26]. 

Soil and canopy albedo values were extracted from incoming and upwelling solar 

radiation measurements by a four-component net radiation sensor (NR01, Hukseflux, 

Delft, The Netherlands) installed in a nearby almond orchard (not shown in this paper) 

with very similar biophysical features. 

The model performance evaluation was conducted by using the statistical parame-

ters of the linear regressions (slope, intercept and r2), the root mean square error (RMSE), 

and the mean bias error (Bias) [42]. 
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Figure 4. Evolution of soil and canopy radiometric temperatures, Ts and Tc, respectively, together 

with the air temperature, Ta, for the month of July in the 2017–2019 growing seasons. 

2.6. Satellite-Based ETc Approaches Supported on VI-Kc Relationships 

The basal crop coefficient, Kcb, can be implemented from remote sensing in the soil 

water balance based on the FAO56 model to compute ETc on a daily scale at farm level 

[43]. This is a tailored procedure to monitor ETc on a plot scale, due to the large coverage 

of remote sensing temporal series such as Sentinel from Copernicus and Landsat pro-

grams, providing Kcb values obtained from vegetation indices such as the Normalized 

Difference Vegetation Index (NDVI) [44]. Data from the temporal series of NDVI covering 

the three years of the experiment, from 2017 to 2019, were accessible from the WebGIS 

platform (www.spiderwebgis.org, accessed on 24 June 2021) at a pixel size of 10 m, aver-

aging a sample of 5 × 5 pixels to avoid georeferencing errors in the location of the eddy-
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covariance station and field thermal measurements, but being representative of the foot-

print area of the flux tower. 

Different relationships Kcb-NDVI have been reported in the literature [9,44,45], and 

the discussion about the accuracy of applying a general equation or a specific model crop-

adapted is still open. Campos et al. [46] retrieved the following relationship for vineyard 

in the study area, Kcb = 1.44 × NDVI − 0.10. This approach has been applied in recent years 

with acceptable accuracy in the determination of ETc for natural vegetation and crops with 

different architecture, including orchards [43,47].  

3. Results and Discussion 

3.1. Weather Conditions and Reference Evapotranspiration 

Table 1 shows a summary of monthly meteorological parameters at an experimental 

site during the 2017, 2018 and 2019 almond growing seasons and compares mean air tem-

perature and rainfall data with long-term averages (in brackets). In general terms, the 

three growing seasons were representative of the 30-year means meteorological condi-

tions in the southeast of Spain. However, records from the weather station mentioned 

above showed that the mean rainfall in the March through November growing season for 

the last 30 years is 246 mm. This results in 103 mm more than the 2017 growing season, 

and 155 and 25 mm less than the 2018 and 2019 seasons, respectively. Cumulative precip-

itation ranged from 143 in 2017 to 401 mm in 2018, mainly concentrated in spring and fall. 

Air temperature ranged between 8.2 and 24.7 °C, highlighting that the month of June was 

around 3 °C warmer in 2017 compared to 2018 and 2019. The daily wind speeds and solar 

(shortwave) radiation were typical values for the experiment site. Monthly averages of 

wind speed at 2 m of height ranged between 1.7 and 5.4 m s−1 and solar radiation between 

8.1 and 29.2 MJ m−2 d−1. 

Table 1. Almond growing season monthly meteorological means or totals for the experimental pe-

riod (2017–2019), and 30-year means of Ta mean and rainfall in brackets. 

 Ta mean RHmin u2 S Rainfall * ETo  

 (°C) (%) (m s−1) (MJ m−2 d−1) (mm) (mm d−1) 

2017       

March 9.5 (9.3) 40.1 3.1 18.1 60.0 (26.6) 2.8 

April 12.2 (11.6) 34.2 2.7 22.3 22.3 (39.3) 3.8 

May 16.7 (15.6) 28.6 2.7 26.1 8.9 (40.8) 5.3 

June 22.9 (21.0) 20.7 2.9 29.0 0.0 (24.4) 6.4 

July 24.2 (24.6) 19.5 2.4 27.7 25.4 (7.0) 7.0 

August 23.7 (24.2) 25.5 2.5 23.3 6.1 (9.7) 5.8 

September 19.3 (19.2) 24.4 2.4 20.7 1.2 (32.4) 4.8 

October 15.6 (14.3) 32.7 1.7 14.7 8.4 (32.6) 2.6 

November 8.2 (8.6) 33.6 2.1 10.5 10.7 (32.8) 1.5 

2018       

March 8.2 (9.3) 47.9 5.4 15.2 63.5 (26.6) 2.5 

April 11.5 (11.6) 40.0 3.7 19.7 19.9 (39.3) 3.4 

May 14.6 (15.6) 35.6 2.4 24.7 64.0 (40.8) 4.3 

June 19.6 (21.0) 33.2 2.4 25.3 46.4 (24.4) 5.3 

July 24.1 (24.6) 16.1 2.5 28.7 0.0 (7.0) 7.3 

August 24.4 (24.2) 24.7 2.6 24.0 15.3 (9.7) 6.3 

September 20.3 (19.2) 37.7 2.0 18.7 99.3 (32.4) 3.9 

October 13.4 (14.3) 42.9 2.4 13.3 23.3 (32.6) 2.5 

November 9.1 (8.6) 63.2 3.1 8.1 69.2 (32.8) 1.2 

2019       

March 9.3 (9.3) 29.9 2.6 18.8 18.0 (26.6) 3.0 
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April 10.5 (11.6) 44.8 3.5 18.5 123.7 (39.3) 3.0 

May 16.0 (15.6) 29.1 2.7 26.4 16.3 (40.8) 4.9 

June 20.5 (21.0) 20.4 2.8 29.2 0.0 (24.4) 6.7 

July 24.7 (24.6) 20.6 2.8 27.5 0.0 (7.0) 7.4 

August 23.7 (24.2) 21.6 2.2 24.5 17.5 (9.7) 6.2 

September 19.6 (19.2) 37.5 2.6 17.4 38.3 (32.4) 4.0 

October 15.0 (14.3) 38.8 2.4 13.9 18.9 (32.6) 3.1 

November 9.2 (8.6) 56.4 5.0 8.8 38.5 (32.8) 1.8 

Ta mean is mean air temperature, RHmin is minimum relative humidity, u2 is 2 m wind speed over a 

grass reference crop, S is global solar radiation, * is total monthly precipitation, ETo is the FAO56 

PM daily reference evapotranspiration. 

3.2. Energy Balance Closure 

Prior to the assessment of the latent heat flux outputs through the STSEB, by com-

parison to eddy-covariance measurements, the lack of closure in the surface energy bal-

ance from the gathered flux data was evaluated. Hourly values of all fluxes were calcu-

lated by averaging stored 15 min data. Figure 5 shows the linear regression between the 

sum of turbulent fluxes (H + LE) and the available energy (Rn-G). Similar results were 

obtained for the three seasons, with a lack of closure around 20%. These results are in 

agreement with imbalance values traditionally reported in a variety of croplands and cli-

mates [48]. In one of the very few analyses of energy balance closure on almond orchard 

plantations, Stevens et al. [18] reported a closure of 0.87 from half-hourly eddy-covariance 

flux data in a mature almond orchard in South Australia. 

This analysis of the energy balance closure supports the experimental setup, and par-

ticularly the mounting height for the EC instrumentation. Literature is not conclusive 

about the method to be followed for facing the imbalance [38]. The residual (RE) technique 

was selected in this work, assuming correct H measures and the underestimation of LE, 

based on previous results in similar irrigated croplands under advection [30,49]. 

 

Figure 5. Hourly values of turbulent fluxes (H + LE) versus available energy (Rn–G) for the 2017–

2019 experimental campaigns. Linear regression parameters for the full dataset, and observation 

data (N) for each season, are inserted. 

3.3. Assessment of the STSEB Model 

Once corrected from atmospheric and emissivity effects, soil and canopy tempera-

tures were used as inputs in the set of Equations (1)–(11), together with meteorological 
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data from the weather station and the ancillary biophysical parameters monitored during 

the experiment. Near 8000 hourly observations were available for the assessment of the 

STSEB model outputs. 

Plots in Figure 6 show the comparison between modeled and observed hourly fluxes, 

and the main statistical results of these linear regressions are listed in Table 2. Uncertainty 

values ranging from ±30 to 40 W m−2 were obtained for modeled Rn, G and H fluxes, and 

between ±40 and 50 W m−2 for LE. No significant differences were observed in the perfor-

mance of the model for the 3 years in terms of Rn or G. However, a slight overestimation 

of H, and a consequent underestimation of LE, was obtained for the 2017 and 2018 sea-

sons. This was not the case for the 2019 data, when an RMSE = ±40 W m−2 with a negligible 

bias was observed. The reason could be the rise in the EC instrumentation for the 2019 

experiment, together with the decrease in the footprint mentioned above (see Figure 3). In 

terms of hourly ETc, negligible bias was observed in 2019, whereas the underestimation 

for 2017 and 2018 resulted in 0.03 mm h−1. A common RMSE = 0.06 mm h−1 was obtained 

for the 3-year dataset.  

These results are in agreement with previous evaluations of the STSEB approach in 

maize [29] or vineyard [30], and give confidence to the model outputs of ETc, as repre-

sentative and feasible estimates of the actual crop evapotranspiration for the drip-irri-

gated young almond orchard, as well as its partition into soil evaporation and canopy 

transpiration. 
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Figure 6. Linear regressions between the hourly averaged surface energy fluxes estimated by the STSEB model versus 

their corresponding ground measured values: net radiation (Rn), soil heat flux (G), sensible heat flux (H), and latent heat 

flux (LE). Residual technique was applied to force the EB closure. 

Table 2. Statistics of the linear regressions between modeled and observed hourly values of the 

surface energy fluxes: net radiation (Rn), soil heat flux (G), sensible heat flux (H) and latent heat flux 

(LE). 

Year (N)  Slope 
Intercept 

(W m−2) 
r2 

Bias 

(W m−2) 

RMSE * 

(W m−2) 

2017 

(2526) 

Rn 1.03 −7 0.975 −4 34 

G 1.03 14 0.834 15 31 

H 0.87 20 0.892 13 29 

LE 0.82 −10 0.828 −22 44 

2018 

(3675) 

Rn 0.98 5 0.975 2 36 

G 0.80 15 0.815 14 32 

H 0.99 24 0.872 24 37 

LE 0.79 −7 0.871 −23 48 

2019 

(1568) 

Rn 0.98 16 0.982 13 35 

G 1.12 15 0.890 16 25 

H 0.83 7 0.827 1 31 

LE 0.88 14 0.915 3 40 

* Error values are shown with two significant figures in order to allow for further analysis and 

comparisons. 

r2: coefficient of determination. 

Biased estimator: Bias = ∑ (Pi − Oi)/n�
���  

Root mean square difference: RMSE = [∑ (Pi − Oi)�/n�
��� ]�/� 

Where Pi and Oi are the predicted and observed values, respectively. 
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Daily values of ETc were obtained by adding the hourly data. Figure 7 now shows 

the linear regression between ETc values computed from the STSEB model and observed 

(measured) with the EC system, for near 400 days in total. The main statistical results are 

included in Table 3. An overall good agreement was obtained between the STSEB outputs 

and observed ETc measurements, with an average uncertainty below ±1.0 mm d−1. In a 

detailed analysis per year, underestimation values of 0.5 and 0.7 mm d−1 were observed 

for the 2017 and 2018 campaigns, respectively, being mainly responsible for the ±0.6 and 

±0.9 mm d−1, respectively. This systematic deviation disappears for the 2019 data, with an 

average error of ±0.4 mm d−1. This behavior was previously observed for instantaneous 

values of LE on an hourly scale and might be a consequence of the improvement in the 

experimental deployment for this 2019 season, as mentioned above. Moreover, both the 

sonic anemometer and the gas analyzer were recalibrated at the beginning of the 2019 

campaign, and this might have a positive effect on the ground EC measurements. 

Uncertainty values ranging from ±0.4 to ±1.1 mm d−1 have been reported in the liter-

ature, in modeled ETc using two-source energy balance approaches combined to local ra-

diometric temperatures, when comparing to lysimeter or eddy-covariance measurements, 

in a variety of crops (Table 4).  

As far as the authors are concerned, the assessment of this technique applied to al-

mond orchards has not been explored before using ground measurements of radiometric 

temperature components. Some recent works focused on the estimation of ETc in almond 

orchards using remote sensing approaches and satellite or flight images. Bellvert et al. [9] 

reported an RMSE value of 0.74 mm d−1 using the combination of an ET-based model and 

thermal-based plant water status indicators applied to Landsat-8 and airborne imagery. 

These authors tested their results against eddy-covariance data. Also based on Landsat-8 

images, Ref. [50] evaluated the performance of three remote-sensing-based ET models us-

ing ground data derived using surface renewal technique as a basis. RMSE values ranging 

from 0.9 mm d−1 to 1.6 mm d−1 were reported by these authors, with r2 ranging from 0.74 

to 0.82. 

 

Figure 7. Comparison of modeled daily ETc with ground measurements from corrected eddy-covar-

iance measured values, for the 2017–2019 experimental campaigns. Residual technique was applied 

to force the EB closure. 
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Table 3. Statistical analysis of the comparisons shown in Figure 7. Results corresponding to the 

comparison with direct EC measurements (not corrected) are shown in brackets. 

 N Slope 
Intercept 

(mm d−1) 
r2 

Bias 

(mm d−1) 

RMSE 

(mm d−1) 

2017 154 0.75 (0.50) −0.07 (0.3) 0.829 (0.500) −0.5 (−0.5) 0.6 (0.9) 

2018 161 0.71 (0.62) 0.02 (0.3) 0.775 (0.581) −0.7 (−0.6) 0.9 (1.0) 

2019 80 0.89 (0.69) 0.4 (0.6) 0.840 (0.725) 0.08 (−0.3) 0.4 (0.7) 

Table 4. Summary of the statistics for some assessments of the two-source energy balance scheme combined with radio-

metric surface temperatures, reported in the literature over different croplands, using eddy-covariance (LE) or weighing 

lysimeter measurements (Hourly and Daily ETc) as a basis. 

 Model Crop N Days 
LEi 

(W m−2) 

Hourly ETc 

(mm h−1) 

Daily ETc 

(mm d−1) 

    Bias  RMSE Bias  RMSE Bias  RMSE  

Kustas et al. [22] TSEB Cotton 5 5 47 - - - - 

Sánchez et al. [29] STSEB Maize 50 −6 51 - - - - 

Sánchez et al. [51] STSEB Sorghum 73 - - −0.004 0.14 −0.3 1.0 

Colaizzi et al. [27] TSEB Cotton 170 5/−3 67/86 - - 0.2/−0.1 0.6/1.1 

Sánchez et al. [52] STSEB 
Sunflower 61 - - 0.03 0.16 0.05 1.0 

Canola 90 - - 0.04 0.20 0.18 1.1 

Sánchez et al. [53] STSEB Wheat 138 - - −0.010 0.11 −0.18 0.8 

Song et al. [31] TSEB 
Maize 98 12/41 50/59 - - 0.2/−0.6 0.4/0.7 

Cotton 28 −33/21 95/166 - - - - 

Sánchez et al. [30] STSEB Vineyard 288 −10 53 - - –0.04 0.6 

3.4. Crop Evapotranspiration Estimates 

Figure 8 shows the evolution of STSEB-modeled daily ETc, together with its separated 

components E and T for the 3-year dataset. Values of registered ETo, as well as irrigation 

plus rainfall amounts, are superposed to the plots for a better understanding of the ETc, T 

and E behavior. Note that some days/periods must be excluded from a further analysis of 

the crop coefficients due to the adverse weather conditions affecting the Kcb and Kc trends. 

This is the case for April and September 2019, as well as mid-May to Mid-June and Sep-

tember 2018. 
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Figure 8. Evolution of daily crop evapotranspiration, ETc, evaporation, E, and transpiration, T, for 

the 2017–2019 growing seasons. Reference crop evapotranspiration, ETo, together with irrigation 

and rainfall water amounts, is also plotted. ETc_EC corresponds to corrected (RE) eddy-covariance 

measurements. 

Within the first three years after planting (2017 and 2018 campaigns), ETc values 

rarely overtook the 2 mm d−1 consequence of the low canopy cover of the very young 

almond trees (maximum fc values of about 21% and 35% for 2017 and 2018, respectively). 

Only after some rain or remarkable irrigation did ETc rise above this limit set by the high 

evaporation contribution (see Figure 8). For these two seasons, ETc increased after flower-

ing caused by the leaf growth facilitated by the helpful spring and early summer temper-

atures, and rising ETo values. Peak ETc was reached along July and August, coinciding 

with the end of Stage III (dry matter accumulation in the kernel) [14] (see Table 5). Four 

growing seasons after planting, for the 2019 campaign, canopy density and fraction of 

ground cover have increased (maximum fc value of 42%). As a consequence, ETc values 

are regularly over 3.0 mm d−1 in Stage III. A similar trend is observed in terms of isolated 

canopy transpiration, for which the effect of rainfalls diminishes, and a better relationship 

with biophysical parameters is then expected.  
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Table 5. Monthly mean values of crop evapotranspiration (ETc), canopy tree transpiration (T), soil 

evaporation (E), and crop coefficients (Kc, Kcb, and Ke) for the 3 almond growing seasons of the ex-

periment. The number of days (values) used per month (N) is also listed. 

 N ETc T E Kc Kcb Ke 

  (mm d−1) (mm d−1) (mm d−1)    

2017        

May - - - - - - - 

June 15 1.18 0.66 0.53 0.17 0.09 0.07 

July 29 2.01 1.10 0.92 0.28 0.15 0.12 

August 20 1.96 1.32 0.64 0.32 0.22 0.10 

September 28 1.27 1.01 0.26 0.27 0.21 0.05 

October 14 0.77 0.68 0.09 0.24 0.21 0.03 

2018        

May 22 0.53 0.49 0.04 0.14 0.11 0.02 

June 20 1.51 1.25 0.26 0.25 0.20 0.05 

July 30 1.87 1.85 0.02 0.26 0.25 0.00 

August 17 2.33 2.01 0.33 0.40 0.35 0.06 

September - - - - - - - 

October - - - - - - - 

2019        

May 25 2.5 1.44 1.07 0.5 0.29 0.21 

June 29 2.82 2.00 0.82 0.42 0.3 0.12 

July 30 3.03 2.48 0.55 0.41 0.34 0.08 

August 19 3.33 2.54 0.78 0.48 0.37 0.12 

September - - - - - - - 

October - - - - - - - 

Table 5 summarizes the monthly mean values for the three growing seasons. Evapo-

ration is highly dependent on rainfall, with mean values generally lower than 0.6 mm d−1 

when no rain is registered. Transpiration is less sensitive to rainfall, and mean values in-

crease is linked to the canopy cover gain from the 2017 to 2019 seasons. The maximum 

mean values reached are 1.3, 2.0, and 2.5 for August 2017, 2018, and 2019, respectively.  

Seasonal water use could not be accurately determined in this experiment since the 

study periods did not cover the full growing season (March–October). However, accumu-

lated values were estimated for the available datasets. As an example, the plot in Figure 9 

shows the evolution of the accumulated ETc, together with separated T and E, for the 2018 

season. A total ETc of 321 mm was obtained, with 26% (82 mm) corresponding to soil 

evaporation and 74% (239 mm) to canopy transpiration. A mean value of ETc = 1.9 mm d−1 

resulted for the study period in 2018. Accumulated irrigation plus rainfall summed 374 

mm, which is a 16% over total ETc. For the same period, accumulated ETo resulted 874 

mm, which means a ratio ETc/ETo = 0.37 for the 2018 season. This average ratio was in-

creasing from 0.22 in 2017 to 0.61 in 2019, mainly because tree canopies expanded from 

10% to 42% of vegetation fractional cover during the experimental period. A similar trend 

was observed for the mean value of ETc, rising from 1.5 mm d−1 in 2017 up to 3.4 mm d−1 

in 2019.  
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Figure 9. Evolution of accumulated values of modeled ETc, T, and E for the 2018 growing season. Accumulated ETo and 

irrigation + rainfall are also superposed. 

The seasonal water use of an almond orchard depends on the fraction of canopy 

cover and the evaporative demand. There is a lack of studies focused on measuring water 

requirements of young almond trees. Stevens et al. [18] reported a seasonal ETc of 1430 

mm for a high-yielding mature almond orchard (cv. Nonpareil) in South Australia. In an 

experiment carried out in Córdoba (Spain), Ref. [11] used weighing lysimeter and sap flow 

measurements to determine the water use of a young almond orchard (cv. Guara). Maxi-

mum transpiration values were reached mid-July and maximum transpiration coefficient 

values increased every year as canopy cover expanded. Goldhamer and Fereres [54] re-

ported seasonal mature almond trees’ (cvs. Nonpareil and Monterey) ETc ranging be-

tween 1100 and 1350 mm in a long-term field study conducted in western Kern County, 

California. Bellvert et al. [9] conducted an experiment aiming at estimating seasonal ETc 

and crop coefficients for an 18-year-old almond orchard (cv. Nonpareil) located in Central 

Valley (California). These authors reported ETc increasing sharply from early March to 

mid-July, when maximum values of 8.5 mm d−1 were achieved, and then dropping until 

the end of the season.– 

3.5. Crop Coefficients for Young Almond Trees 

Figure 10 plots the curves of Kc, calculated as the ratio of the modeled ETc/ETo, to-

gether with the dual crop coefficients Ke and Kcb, calculated as the ratios E/ETo and T/ETo, 

respectively. To avoid the scatter produced by irrigation events, crop coefficient values 

are presented as 5-day averages [53]. Time frames of 2 days after every rain event with >5 

mm were discarded from this analysis to avoid disruption into the crop coefficient trends. 

As mentioned above, Ke values around or lower than 0.10 were maintained, except 

for those humid periods with a significant rain amount. This is for instances such as the 

case of mid-May to mid-June and September 2018, or the first weeks in May and last weeks 

in August 2019. Although humid and rainy weather conditions affect this analysis, the 

overall trend is that Kcb values increase from May, peak by the end of August, and start 

dropping entering September. Moreover, June–July were identified as the hottest and dri-

est months, with the highest evaporative demand, for the three growing seasons, whereas 

the maximum average values of Kc and Kcb were reached in August. Table 5 includes the 

monthly mean values of these crop coefficients for the full dataset. To better illustrate this 

trend in the crop coefficients, Figure 11 plots a separate analysis per year. 

Average mid-season Kcb, Kcb mid, resulted in 0.19, 0.30, and 0.36, for the 2017, 2018, and 

2019 seasons, respectively, whereas mid-season Kc values, Kc_mid, of 0.30, 0.33, and 0.45 
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were obtained for the 2017–2019 experiments, respectively. Differences in Kc values be-

tween years for the same period are directly related to data availability and the main fac-

tors affecting crop coefficients relative to different almond growth stages. When fc values 

are low, the variability of Kc is mainly linked to soil evaporation (differences explained 

below). For instance, mean Kc in July of 2017 and 2018 resulted 0.28 and 0.26, respectively. 

A higher value in then obtained in 2017, although fc is significantly lower than in 2018. 

This is explained by a much higher value of Ke in 2017 compared to that in 2018. As grow-

ing season progressed, the canopy cover expanded, becoming the main factor affecting Kc 

values. Obviously, this is more evident in the Kcb values (tree transpiration component), 

which increased throughout the crop cycle (May–August) and every year (from 2 to 4 

years of trees age) as fc values became higher. 
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Figure 10. Evolution of the crop coefficients estimated from the modeled ETc (Kc), T (Kcb), and E (Ke) for the 2017–2019 

growing seasons. NDVI values are also superposed. All data correspond to 5-day averages. Dates affected by rain events 

>5 mm were discarded from this analysis. 

 

Figure 11. Monthly mean values of the crop coefficients (Kc, Ke, and Kcb) for the 2017–2019 growing seasons. Error bars 

correspond to the standard deviation of the monthly averages. 

Differences in Ke values between years observed in Figure 11 and Table 5 are ex-

plained as follows. As fc increases from 2017 to 2019, a reduction in the contribution of the 

soil to the total ETc, and then a decrease in average Ke values, are expected as long as both 

environmental conditions and irrigation scheduling remain similar. However, the oppo-

site trend is observed in Figure 11 when comparing 2018 and 2019, highlighting that irri-

gation scheduling plays a key role at this Ke behavior. As mentioned above, 2018 was a 

rainy year (over the average), with a rainfall amount about 100 mm higher than 2017 or 

2019 for the same May–August period. For this reason, irrigation water supply in 2019 

almost doubled that in 2018, for the same period (see plots in Figure 8), and soil evapora-

tion became larger. Moreover, a few precipitation events occurred by the end of April in 

2019 with a significant rainfall accumulation over 120 mm. This has an impact on the large 

Ke values observed in Figure 10 for the first weeks in May, as well as the corresponding 

monthly average in Figure 11 and Table 5. Note that the Kc trend in 2019 also accounts for 

this distinctive feature. It must be restated that those days with rainfall events were ex-

cluded from this analysis. 

The error bars included in Figure 11 provide an insight into the statistical significance 

of the monthly averages shown. Accounting for these uncertainties, Ke values could be set 

to zero in 2018 (except August), as well as the period September–October in 2017. Uncer-

tainties in mean Kcb are lower, highlighting a higher precision in the modeled transpiration 

component. 
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Some studies have reported E values accounting for 24% of ETc in drip-irrigated ma-

ture almond orchards during the growing season [55]. This ratio depends on how the ir-

rigation systems are used and managed (i.e., the frequency of irrigation events and irriga-

tion depth applied). Using a micro-sprinkler system, [9] estimated an average of 16%. 

To our knowledge, there is a lack of studies focused on producing crop coefficients 

for young almond trees. In the experiment by [11], maximum transpiration values were 

reached mid-July and maximum transpiration coefficient values were observed to in-

crease every year as canopy cover expanded. The maximum Kcb of 0.5 and 0.6 was reached 

when trees were three and four years old and maximum fc values were 35 and 50%, re-

spectively. These values are in agreement with our findings, since a maximum Kcb close 

to 0.4 is also obtained for our 4-year-old almond trees in 2019. This small difference could 

be explained by a lower fc value in our study (Figure 2). Although these authors did not 

show Kc values, they assumed that soil evaporation can range between 10 and 15% of ETc, 

resulting in maximum Kc values of 0.57 and 0.69, which is also in agreement with the 

maximum Kc values obtained in our study. Later, in the same lysimeter facility, López-

López et al. [19] reported average mid-season Kcb values of 0.55, 0.68 and 0.91 in three 

seasons (6–9 years after planting), with maximum fc values ranging from 0.55 to 0.59. 

These authors proposed a Kcb between 0.9 and 1.05 for fully mature almond orchards, with 

a fc of 0.75.  

Another of the scarce studies on young almond trees was conducted by [12] in a four-

year-old almonds orchard in southwest Spain. ETc was measured using four drainage ly-

simeters. Almonds located in these lysimeters were irrigated at 130% of a theoretical ETc. 

The Kc values changed from 0.4 at the beginning of the irrigation period to a maximum of 

1.1 during the maximum evaporative demand period. These values are significantly 

higher than those obtained in the present paper. Unfortunately, these results are based on 

only one season of data and they did not show fc values. 

Other studies have reported mid-season Kc values for fully mature almond orchards 

with high fc values (>70%). In this regard, [14] showed the monthly Kc values reported by 

Girona (2006) (technical report in Spanish) based on the soil water balance approach. Gi-

rona reported maximum Kc values of 1.05 in August. Stevens et al. [18] reported a maxi-

mum Kc of 1.1 for a high-yielding almond orchard (cv. Nonpareil) in South Australia. 

Bellvert et al. [9] reported maximum values of Kc of 1.3 at full development, after each 

irrigation event, with nominal values ranging from 0.9 to 1.1. Obviously, these Kc mid values 

are higher to those obtained in our study since they correspond to mature trees with fc 

values greater than 70%. 

Recently, a review article has been published by [10] aiming at updating single and 

dual crop coefficients for fruit trees and vines. These authors reported indicative standard 

values of mid-season Kc and Kcb of 0.45 and 0.40, respectively, with a range of ±10% for 

almond trees with low density and an fc value of 30–40%. Both Kc mid and Kcb mid values are 

in agreement with those obtained in our study when trees were 4 years old. 

3.6. Relationships between Crop Coefficients and Biophysical Variables 

Plots in Figure 10 superpose the evolution of the NDVI extracted from the temporal 

series of the satellite images from the constellation Sentinel-2A/B + Landsat 8 (Spi-

derWebGis©) during the 2017–2019 growing seasons. Values correspond to an average of 

5 × 5 pixels. NDVI captures the almond orchard growth and describes the crop develop-

ment for the study periods in 2017 and 2018. However, for the 2019 season, a descending 

trend in the NDVI is observed during May–June, while the Kcb remains unaltered in a flat 

constant value of 0.30. The reason was the green weeds covering the inter-row soil in the 

parcel that had not been removed at the beginning of this season, and that were contrib-

uting to increase the reflectance response in the near infrared leading an increase in the 

pixel NDVI, masking the real behavior of the almond tree canopy. This shows the limita-

tion of vegetation indices such as NDVI to monitor the crop growing when dealing with 

fruit orchards when weeds are not correctly managed. 
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Figure 12 shows the linear fit between the crop coefficients and the NDVI for the 

complete dataset. When data from the three growing seasons are treated together, a good 

correlation is obtained between Kcb and NDVI, with a determination coefficient of r2 = 

0.775. However, although spring dates affected by the non-removed ground green weeds 

were excluded from this linear regression, a larger scatter is observed for the relation Kc-

NDVI, with a value of r2 = 0.441.  

Most of the studies that review the linear and polynomial relationships to determine 

Kcb from NDVI and other vegetation indices [44,45] show a variety of functions for herba-

ceous crops, but few can be found about almond trees and other orchards [56,57]. This is 

due to the difficulty of measuring the transpiration of this complex cover that is partially 

covered, frequently under water-stress, and with part of the soil exposed to evaporation. 

The results provided in our almond orchard from a previous local calibrated relationship 

for vineyard [46] show a value of Kcb mid = 0.37 for the year 2019 compared to the 0.36 in 

this work. Note that the remote sensing data in both experiments were processed in the 

same way, so they are comparable (atmospheric correction, observing and illumination 

geometry and pixel size), and similar setup and processing of data from flux towers were 

conducted. The differences observed are likely due to crop phenology and management. 

The initial crop stage in almond is flowering with none to very low transpiration in con-

trast to other crops such as vines for which it is initiated with emerging leaves. These 

models can be compared with caution to other approaches using intermediate biophysical 

variables such as intercepted radiation to estimate Kcb from NDVI [9], due to important 

differences in crop management with some green cover below almonds at initial crop de-

velopment and higher values of the basal crop coefficient. Nevertheless, by applying the 

model developed by [9] to this experiment, a value of 0.38 resulted for the middle stage.  

Some authors suggest the fraction of ground covered by vegetation (fc) as a better 

estimator of the Kcb coefficient [58]. Plots in Figure 12 also depict the Kcb versus fc values 

registered during the 3-year dataset. A better fitting is now obtained, with a lower scatter 

and a higher correlation coefficient over 0.90. However, a poorer dependence is observed 

between Kc and fc (see Figure 12), with a value of r2 = 0.618 (once the dates affected by 

weeds were excluded). This was expected since the vegetation fractional cover is a bio-

physical parameter referring only to the tree canopy, and then not accounting for the soil, 

whereas Kc includes the soil evaporation component through Ke. 

Although crop transpiration responds physiologically to the daily fraction of photo-

synthetically active radiation intercepted by the canopy (fIRd), this variable is well corre-

lated to fc. Espadafor et al. [11] found a good relationship between transpiration and fc, 

with a ratio of 1.2, very similar to the 1.0 obtained in the present work. However, these 

authors advised that this ratio should not be considered fixed. Using the fIRd, [11] extrap-

olated a value of Kcb around 1.0 to mature orchard conditions.  

The validity of these equations for mature almond orchard trees will be assessed in 

future works, using data gathered in further experimental campaigns. The operational 

application and robustness of this VI-Kcb approach for different varieties and under dif-

ferent environmental conditions will be also explored. Further measurements of fIPAR will 

allow a for comprehensive analysis of the transpiration response to this parameter and its 

connection to fc and NDVI in almond orchards. 
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Figure 12. Crop coefficients versus fc (up) and NDVI (down) values. Left plots show the single crop coefficient, Kc, whereas 
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guaranties the prediction of water use for any age almond orchard at least under the con-

ditions of the present study, although this should be further explored.  

Finally, this work serves to warn about the use of vegetation indices such as NDVI in 

remote-sensing-based ETc modeling when dealing with fruit orchards since the presence 

of weeds may disrupt their relation to the crop coefficients. Nevertheless, a good correla-

tion was observed in this experiment between crop coefficients and NDVI when surface 

weeds were correctly managed. 

The results in this work are of particular interest in semi-arid areas under water scar-

city. Note that our study site is located in a semi-arid area of southeastern Spain, where 

the land occupancy of almond orchards is experiencing rapid growth, encouraged by the 

necessity for an adaptation to the water shortage scenarios predicted in the framework of 

climate change. The findings in this work contribute to enrich our knowledge on young 

almond orchards under a drip-irrigation management and will benefit further research 

on water use efficiency and water productivity. 
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