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Abstract: Scientific datasets from global-scale earth science models and remote sensing instruments
are becoming available at greater spatial and temporal resolutions with shorter lag times. Water data
are frequently stored as multidimensional arrays, also called gridded or raster data, and span two
or three spatial dimensions, the time dimension, and other dimensions which vary by the specific
dataset. Water engineers and scientists need these data as inputs for models and generate data in
these formats as results. A myriad of file formats and organizational conventions exist for storing
these array datasets. The variety does not make the data unusable but does add considerable difficulty
in using them because the structure can vary. These storage formats are largely incompatible with
common geographic information system (GIS) software. This introduces additional complexity
in extracting values, analyzing results, and otherwise working with multidimensional data since
they are often spatial data. We present a Python package which provides a central interface for
efficient access to multidimensional water data regardless of the file format. This research builds on
and unifies existing file formats and software rather than suggesting entirely new alternatives. We
present a summary of the code design and validate the results using common water-related datasets
and software.

Keywords: multidimensional data; time series data; raster data; gridded data; grids

1. Introduction
1.1. Background

For many numerical models in the earth sciences, an important part of the input data
is a time series of gridded spatial data representing a phenomenon at sequential time steps.
Water models typically need a time series of values for input variables such as soil moisture,
precipitation, surface runoff, or evapotranspiration; each of which are generated, archived,
and distributed as raster datasets on large spatial or temporal domains [1,2]. Furthermore,
the results of these models often produce additional multidimensional datasets such as
are produced by MODFLOW or SRH-2D models and the United States National Water
Model [3-5]. These raster data, also called gridded data or multidimensional array data,
are data stored in an array structure and represent the variation of a variable with respect
to each of its dimensions. In the case of spatial data, the raster stores the fluctuation of
data across space. Spatiotemporal data vary across both space and time. In addition to
the spatial and temporal dimensions, other data dimensions, such as model realizations or
ensemble numbers in stochastic models, may also be used.

The global scientific community has been trending towards generating and sharing
more of these kinds of datasets. One evidence of this is the expanding global repository
of Earth observation satellite and remote sensing data and numerical model results. The
National Oceanic and Atmospheric Administration (NOAA) alone produces on the order
of tens of terabytes of observation and model results data each day, the majority of which
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are raster data [6]. The repository for the National Aeronautics and Space Administration
(NASA) Landsat dataset measures approximately three petabytes of multidimensional
raster data and grows by approximately 700 GB every day [7].

In the case of vector spatiotemporal data, data represented by a point, line, or poly-
gon, the spatial geometry and the time series observations are recorded separately. There
are many standards for file formats to store the geometry component including the Esri
Shapefile, Geographic JavaScript Object Notation (GeoJSON), and Keyhole Markup Lan-
guage (KML). There is a small number of standards for sharing time series observations
associated with the vector described spatial geometries. One such standard is the Obser-
vations Data Model (ODM) which is an SQL database schema for sharing point data and
metadata [8]. The Consortium of Universities for the Advancement of Hydrologic Sciences
Inc (CUAHSI), the Open Geospatial Consortium (OGC), and the World Meteorological
Organization (WMO) have produced a series of coding packages, web apps, data services
and standards, and other kinds of software which build on the ODM schema and common
standards [8-11].

Multidimensional data, by contrast, are produced and stored in many formats that vary
greatly in purpose, capabilities, functionality, and usability. These include raster formats
traditionally used for image data such as Bitmap (BMP), Portable Network Graphics
(PNG), and Joint Photographic Experts Group (JPEG); raster formats generally used for
multiple “bands” of data, variables sharing the same grid structure, such as Geographic
Tagged Image File Format (GeoTIFF) and Gridded Binary (GRIB); and raster formats used
to store any n-dimensional array such as the Network Common Data Form (NetCDEF),
and Hierarchical Data Format (HDF) [12-15]. None of these formats specifically target
time series of observations which gives rise to variability in how the data are labeled
and organized within these file formats. Various organizations have developed their
own standards to attempt to unify that variety by defining a convention for naming and
organizing variables, metadata, dimensions, and other information in the files. The most
prominent multidimensional dataset standards are the Climate and Forecast Conventions
(CF Conventions) [16].

Research agencies and data producers typically adopt a particular format and organi-
zation convention for generating and disseminating data based on tradition or convenience
in the computing workflow. For instance, the NASA Global Land Data Assimilation
System (GLDAS) and the NOAA National Water Model (NWM) are distributed in the
NetCDF format, while the NOAA Global Forecast System (GFS) and the European Centre
for Medium-Range Weather Forecasting’s (ECMWEF) Hydrology Tiled ECMWEF Scheme for
Surface Exchanges over Land (HTESSEL) land surface model data are distributed in GRIB
format [5,17-19].

A water scientist is often interested in only a spatial and temporal subset from the
complete archive which corresponds to their area of interest. These subsets are defined as
points or multidimensional regions of the multidimensional array space, R". That small
region might be represented by a polygon in the two spatial dimensions, data between a
start and end time along the temporal dimension, an average across the several ensemble
members, and so forth. Variety in data formats, organizational conventions, and adherence
to conventions makes obtaining and extracting subsets from any of these gridded data
file formats more difficult. These are challenging problems which, if not addressed, limit
how useful the data are to water scientists. There are several options for retrieving subsets
from multidimensional datasets including using alternate file formats, using Geographic
Information System (GIS) software or geoprocessing scripts, and using web services. Each
of these solutions has its strengths and weaknesses described in the following subsections.

1.2. New File Formats and Conventions

Several alternate data models, file formats and companion organization conventions
have been suggested. Each attempt to address the difficulty in retrieving data from the
files or to unify how raster data are stored and shared. For example, SciDB is a relational
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database model developed for storing and processing multidimensional array data [20].
Additionally, Zarr is a file format ideal for storing compressed and chunked arrays with
particular benefits for cloud computing environments (https:/ /zarr.readthedocs.io/en/
stable/ (accessed on 4 May 2021)). Each of these alternatives provides an improvement
over the file format that it was intended to replace. While these alternate formats are useful
for the improvements that they offer, current systems continue to generate terabytes of data
every day in a variety of formats. Data consumers would need to download and convert
their data before receiving the benefits of the new format. Downloading and converting
data requires significant time and computing power in addition to computing expertise
in the old and new file formats. As such, these novel data structures and conventions are
primarily beneficial to a specific data producer or user rather than resolving the broader
issue of variability in data formats and this often simply results in one more option.

1.3. GIS Software

The two core technologies for processing geospatial data are the Geospatial Data
Abstraction Library (GDAL), and the PROJ library [21,22]. The GDAL has extensive
support for querying raster files of many formats if they have exactly two dimensions
that conform to a standard coordinate reference system (CRS). However, it has extremely
limited support for rasters with three or more dimensions. The GDAL can operate on
some NetCDF data if the data conform to the Climate and Forecast (CF) conventions [14].
The GDAL also supports reading and writing GRIB and HDF data if the data have certain
encodings and metadata [20]. Common GIS software utilize these libraries and may inherit
some support for these data formats. However, A GIS-based solution will generally be tied
to the desktop installation environment of the software which is not easily transferable to
other computing environments, such as a web application or web server. Additionally, GIS
software may have licensing and cost restrictions related to their use. These two limitations
make GIS-based solutions less than ideal for addressing the original data access problem
since a GIS is rarely the only software required in a scientific computing workflow.

1.4. Web Services

Repositories of gridded datasets often become so large that the sheer volume of data
makes transferring and processing them impractical. One solution to this big data problem
involves the use of a data service. Data services are usually provided by the data generator
and offer the most recent and updated version of the dataset with short lag times. The two
pertinent kinds of data services for addressing the gridded data problem are processing
or querying services and cloud computing platforms. Services are generally quick and
eliminate data transfer overhead. The tradeoff is that the data service usually has a limited
and predetermined set of functions available. Users generally still need programming
experience and knowledge of a wide range of file formats but do not need to solve the
data management problems that make raster data difficult to use. Both options are only
applicable when the dataset’s generator has chosen to develop, deploy, and maintain the
service. As this is not available for all datasets, it is not likely to satisfy all data consumers
and data products.

Data processing services range in complexity from performing fast and simple queries
of datasets to complex geospatial processing operations. Processing services have standards
for formatting requests to the service and for the responses returned. Users send requests to
the service provider which performs the specified operation using their copies of data and
computing resources. When the job is finished, the provider sends the result back to the user.
A common data service for simple queries is the Open-source Project for a Network Data
Access Protocol (OPeNDAP) [23]. OPeNDAP is a RESTful data service that accepts queries
for values from points or bounding boxes and returns the corresponding values in plain
text format [24]. Other relevant examples are the Open Geospatial Consortium (OGC) Web
Processing Service (WPS), the open-source standard for a geospatial web processing service,
and the recently released openEO (open Earth observation) standard developed by a
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European Commission Research and Innovation program. Both the OGC WPS and openEO
define a standard series of commands, known as an Application Programming Interface
(API), which can be adapted to perform a wide range of functions and support solving
many problems. Some researchers have already developed a custom implementation of the
OGC WPS to perform time series analysis with their data [25]. The most prominent data
processing Platform as a Service (PaaS) is Google Earth Engine which offers free or low-cost
access to cloud computing resources and a large catalog of Earth observation datasets [26].

1.5. Proposed Solution

We evaluated these options on six criteria. These criteria include the following: does
the solution (1) require bulk downloads of datasets, use data services, or both, (2) work
on many file formats, (3) work on any public data product, (4) require programming or
developing custom scripts, (5) work in many computing environments (e.g., personal
computers, web servers, web processing services) (6) require subscriptions, licenses, or
other costs. The results are summarized in Table 1. Each of these options partially fills the
need but has limitations. Ideally, the solution to this data access problem would favorably
meet all six of the criteria

Table 1. Evaluation of Solution Paths.

Evaluation Criteria

File Any

Downloads Formats Dataset Scripting Comp. Envs. Cost
New Yes Convert Data Varies High Yes Open Source
® FileFormats & i
=
.9 i
k=t GI.S/ Yes 1\./[1x.ed, Yes Varies Varies Varies
3 Scripts Limited
wn
s .
° ng No 1\./[1x.ed, No Varies No Varies
7 Services Limited
o .
= Desu"ed No Full Yes Low Yes Open Source
Solution

This paper presents the design and development of a new method and its implemen-
tation in a Python package that addresses the practical difficulties in accessing, acquiring,
and using gridded data in the water domain that stem from the lack of standards and the
many competing formats. Specifically, our work promotes better access and processing
capabilities for multidimensional gridded data in a variety of standard file formats with
a focus on use within hydrology and water resources applications. As there are already
many competing file formats, access software, and data conventions, we developed our
method to build on existing technology and unify existing conventions rather than devel-
oping or proposing replacement standards. Our goals for developing this method and
software include:

1. It should be interoperable across existing multidimensional data file formats and
appropriate web service technologies rather than create more variability;
2. It should be free and open source, simple to use, and well documented to promote
ease of access and distribution;
3. It should be able to extract time series from gridded datasets at various spatial
geometries including at a minimum: points, bounding boxes, and polygon shapes; and
4. It should work in common scientific computing environments such as personal
computers, cloud computers, and applicable web apps and services.
The remainder of this paper presents the development of the novel method, results of
code performance tests and case studies, and conclusions and recommendations derived
from the research.
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2. Materials and Methods
2.1. Conceptually Handling N-dimensional Data

Multidimensional datasets can be difficult to understand and conceptualize when
they contain more than three dimensions since visualizing more than three dimensions
is challenging. The difficulty is augmented when the terminology for referencing these
data is not clearly defined and may not be known or understood. We offer the following
definitions consistent with the design of multidimensional data files and conventions such
as the CF Conventions [16,27].

A dimension is a parameter for which data are collected which is independent of all
other parameters (e.g., an independent variable). The most common dimensions for scien-
tific data sets are the three mutually orthogonal spatial directions (e.g., X, Y, Z in cartesian
coordinate space or longitude, latitude, elevation in geographic spatial coordinates), time,
and model ensemble number or realization. Dimensions have names and a size which is
an integer value that determines how many measurement intervals exist along that axis.

A variable is a set of data values which were observed, measured, or generated by a
computational model. The variable is a function of some number of dimensions (e.g., a
dependent variable). The number of dimensions determines the shape of the variable
array. A variable has a measurement for each step across each dimension or axis. Consider
a variable array which is a function of the three spatial dimensions, X, Y and Z. Every
(X,Y) location has measurements at several Z values and every Z value has variable data
across many combinations of (X, Y) coordinates. Examples of variables in multidimensional
datasets include air temperature, precipitation rate, depth to groundwater and pixel color.
A coordinate variable is a special variable which depends on only one dimension and holds
the numerical values along that dimension where data were measured or computed. For
example, a time dimension might have a size of three and the coordinate variable could
contain the values 1 January, 2 January, and 3 January.

Consider a dataset with three dimensions, longitude, latitude, and time. The size
of longitude is 360, the size of latitude is 181, and the size of time is 100. The coordinate
variable for longitude is a one-dimensional array containing the integers from —180 to
179 and the coordinate variable for latitude is a one-dimensional array containing the
integers from —90 to 90. The time coordinate variable is a one-dimensional array of
datetime stamps for the first 100 days of the year 2021 at noon. This dataset could have
a wind speed variable which is a function of longitude, latitude, and time and therefore
has an array shape of (360, 181, 100). The total number of cells in that array is equal to the
product of all the dimension sizes together.

2.2. Development Environment

We developed a new Python package called Grids to provide an efficient and flexible
way to access gridded data in a variety of file formats and meet our objectives. Other
software or coding packages exist which perform similar functions but with less query
options and file format support (for instance, the Integrated Data Viewer (IDV) desktop
software, the gstools python package [28], or the NetCDF Subset Service web server
software [29]). We chose to develop this as a standalone Python package rather than an
addition to existing package because we want Grids to solve the data access problem
generally without being limited by the purposes or development strategies of other python
packages. The approach outlined herein may be suitable for additions to existing packages
or software in the future.

We developed Grids as a Python package because Python is common in scientific
computing and available in a wide range of computing environments. Python is also
feature rich with packages for computing statistics, performing GIS operations, accessing
databases, and creating web apps. We distribute the Grids code as a licensed, open-source
package to make it easier to integrate into scientific computing environments and be used
more widely as compared to a module or plug-in for existing proprietary software such
as GIS programs. Not all geoscientists use the same software and rarely does any single
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software address all a scientist’s needs. By developing Grids as a Python package, we hope
more geoscientists will be able to integrate these capabilities into their work.

2.3. Software Workflow

The workflow to extract a subset of data from a multidimensional, spatiotemporal file
consists of eight general steps:

1.  Programmatically “open” the file for reading.

2. Read and interpret the file metadata including the names of the variables, the names
and order of dimensions, and identifying which dimensions correspond to spatial
and temporal axes.

3. Read the values of the coordinate variable for each dimension used by the variable
of interest.

4.  Identify the cells of the arrays corresponding to the area of interest by comparing the

spatial, temporal, or other coordinate values to the user-specified coordinates.

Read the values of interest from the file in the identified cells.

Read the time values corresponding to the extracted variable values.

Format the extracted data into a tabular structure.

Programmatically “close” the file.

® N

The Grids package implements these steps in a software architecture diagrammed in
Figure 1. The Grids package code accepts a data source and user inputs and returns the
extracted time series in a tabular structure. In steps one and eight, Grids interacts with
the data source, which is the unique file format used for the data. In steps two through
six, Grids uses inputs from the user, such as variable names, spatial locations, and time
ranges, to extract a subset of data from the files. In step seven, Grids outputs the time
series in the tabular Pandas DataFrame structure and returns this object for the user to
process, save, or reformat as necessary [30]. As shown in Figure 1, the eight-step process
for extracting a subset of time series data from a gridded dataset simplifies to the data
source, user provided inputs, a tool which executes the querying for the data source, and
an output.

Data Source

4 )
- - e ) Time Series Subset
—&—1 w From Data Source
= = ——
NetCDF, GRIB, HDF, Web Service
K GeoTIFF files For Raster Data

User Input I
Spatial Area Choice of Time Range
of Interest  Variable to Query

s

Figure 1. Grids Python Package Workflow.

el lelete
CTETT

2.4. Connecting to Data Sources

The workflow to extract time series subsets from a dataset generally begins with
downloading copies of a dataset. Gridded, timeseries datasets are often so large in file
size or updated frequently enough that this step can become difficult and impractical. The
inefficiencies inherent in the downloading process can be minimized by taking advantage
of web services that allow the user to access and retrieve data subsets without downloading
the entire dataset. We chose to begin by targeting the OPeNDAP data service because
it is a mature software and available through many web servers for multidimensional
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datasets [24]. When an OPeNDAP service is available for a dataset, Grids can query the
data service to obtain the values corresponding to the user’s input.

Grids can directly interface with gridded data files stored on a local directory when
web services are not available. To interface with each file format, we used the definitive
open-source Python packages for reading and writing any given file format. They include
NetCDF4, Cfgrib, H5py, and Rasterio which read NetCDF, GRIB, HDF, and GeoTIFF files,
respectively [15,31-34]. Grids abstracts these differences away, allowing a common access
interface to each file format. We designed Grids to provide a single set of functions which
internally use the appropriate Python package for each format.

These Python packages used to read data are a modular component of Grids so
additional packages can be included to expand Grids’ file format support. For instance, we
added support for Pygrib which can read many GRIB files as binary messages. This is useful
when the GRIB data are not properly labeled or organized and cannot be appropriately
read through the Cfgrib package. While Pygrib is not the definitive package for a given
data set, we noted its ability to read more datasets and provide performance improvements
in some cases [35]. This modular design allows for flexibility so end users can specify
which Python package to use as the file reading engine according to their requirements.
Table 2 lists the currently included packages and the file formats they support.

Table 2. Python Packages vs Supported File Formats.

Supported Multidimensional File Formats

NetCDF4 GRIB HDF GeoTIFF
NetCDF4 X
gb Cfgrib X
Es H5py X
g Rasterio X
<
E Xarray X X X
Pygrib X

2.5. Extracting Values by Comparing to Coordinate Values

Grids extracts time series data from n-dimensional data series by reducing them to a
one-dimensional time series with one value per time step. The reduction method depends
on whether the location of interest is a single point or a multidimensional region. If the
location of interest is a single point, or a single array cell, Grids extracts the value contained
in that cell of the array at each time step and returns this series, so no reduction is required.
When the location of interest is many cells within the array, such as a two-dimensional
area, three-dimensional volume, or region in higher dimensional space, the many values
are reduced to a single value by computing a summary statistic value representative of the
many cells. The statistic could be the average, median, maximum, minimum, standard
deviation, or a percentile depending on what makes most sense for the datasets and
use case.

A visual representation of the process to identify subsets of a three-dimensional array
using coordinates is shown in Figure 2. For example, the GFS data product is a four-
dimensional array spanning three spatial dimensions, latitude, longitude, and elevation,
as well as the time dimension. Extracting a time series of values from GFS data requires a
coordinate pair of latitude, longitude, and elevation for a point or two for the maximum
and minimum corners of a bounding box. The bounding box is analogous to a rectangular
prismatic shape in three dimensions with a base defined by the maximum and minimum
latitudes and longitudes with a height defined by the maximum and minimum elevations
(thus a volume). To identify the data within the files to extract, the coordinates (latitude,
longitude, and elevation values) are mapped to the array cell or cells representing that
multidimensional location using the spatial resolution and affine transformation of the
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data; both of which are readily determined via inspection of the coordinate variable values.
For a given point or region (e.g., area for 2D, volume for three or more), Grids extracts the
data in the array cell or cells for each time step and computes the appropriate statistical
reduction (i.e., computing the median or mean). These extracted time and variable values
are then organized in a tabular structure and returned.

3-Dimensional Grid Datum at X=4, Y=9, Z=3

Y

—

Selecting
Data Using
Coordinates

X

Figure 2. Locating Data in a Three-Dimensional Grid with (X, Y, Z) Coordinate Values.

Grids maps a specified volume to the data in the file but may map certain coordinates
to points and others to ranges depending on the resolution of the dimensions. A set of
minimum and maximum coordinates could map to the same cell if the distance between the
minimum and maximum is less than the distance between grid points on that dimension.
In other dimensions, the distance between coordinates may be larger than the resolution
of that dimension. In this case, the queried coordinates are point data in one dimension
while having a range in another. Grids would treat the query as a point, one cell, on the
first dimension and range, multiple cells, requiring a statistical reduction on the other.

Due to the size of the files or for convenience in dissemination, some datasets are
stored in multiple files across a dimension. Such is the case for GLDAS, NWM, GFS, and
HTESSEL. All files contain results for each of the spatial dimensions and ensemble members
but for only one time step. The time dimension is reconstructed by the combination of
each file representing each time step. For these datasets, Grids can handle these datasets by
repeating the querying steps for each file and combining the results from each file into the
same tabular format.

Arrays of several different data dimensions store data in variables described by those
dimensions. A dataset can have many dimensions with not all variables using the same
dimensions or organized in the same order. Consider a multidimensional dataset which
has five dimensions, X, Y, Z, time, and ensemble number. There might be three-dimensional
variables which depend on the three spatial dimensions. One variable in the dataset may
store arrays of information organized according to measurements made in the X-direction,
followed by the y-direction, then the z-direction (i.e., X, Y, Z). Other variables may also be
three dimensional but arrange their measurements according to the Z-dimension, followed
by Xand Y (i.e., Z, X, Y). Grids can query each of these variables.

Multiple variables may share the same dimensions and in the same order which yields
arrays with identical structure or shape. For example, multi-spectral data have many bands
for each cell, some measured and some computed. A simple 2D time-varying raster data
could have temperature, humidity, soil moisture, or other values. If a user is only interested
in soil moisture and temperature from the environmental data set over an area that includes
nine cells (X, Y), Grids would extract data for these two variables at each time step, average
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the values for each variable over the nine cells, then move to the next time step. This results
in a time series with two different variables at each time step.

2.6. Querying Higher Dimensional Data

This procedure using coordinates scales to data of other dimensional sizes if the
number of dimensions of the array is equal to the number of specified coordinates. The
dimensions in datasets of more than three dimensions no longer correspond to an inde-
pendent spatial dimension but can be traversed in the same fashion. Figure 3 presents a
five-dimensional data set, R?, which is a 3D spatial volume with three different realiza-
tions along the ensemble number dimension and three across the time dimension. In this
instance, Grids uses the coordinates provided by the user to determine the proper subset
in five dimensions in the same manner as was described with previous examples. The
coordinate provided by the user is compared to the coordinate variable values stored in
the file to identify the correct subset of the variable’s array. Those values are read from the
multidimensional data file, formatted, and returned to the user.

Time =1 Time =2 Time =3

Ensemble # 3

Ensemble # 2

Ensemble # 1

Figure 3. Five-Dimensional Data.

2.7. Extracting Values within Boundaries Using Masks

In many cases, the subset of interest often does not correspond to a single point or a
rectangular bounding box. Multidimensional spatial areas are often irregular 2D polygons
such as a watershed or administrative boundary, or a 3D prism shape representing a
volume. Each point on and within the polygon can be mapped to a location on the
multidimensional grid following the same procedure as presented in the coordinate lookup
method. However, such a lookup would be cumbersome to program and not as efficient
as scripts using optimized algorithms such as are available in the GDAL for raster spatial
data or NumPy for any n-dimensional array [22,36]. Depending on the resolution of the
spatial dimensions and the size of the polygon of interest, a user might be interested in
1,000s or 1,000,000’s of points in the multidimensional area.

We can optimize queries on irregular polygon areas in spatial datasets by using a mask.
A mask is a rasterized representation of the vector data It is an array with the same CRS as
the variable to be queried. This means that the mask array has the same shape, extents, and
resolution as the arrays within the multidimensional dataset that are being queried. The
values are in the mask array are binary, 1 or 0, or boolean, true or false, indicating whether
the cell should be selected or ignored.
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Polygon
Spatial Data

An example of the steps to create a raster mask for spatial data are shown in Figure 4
assuming a vector representation of the spatial area of interest and 2D spatial gridded data.
The vector area is overlain on a blank array of the same shape and resolution as the data
to be masked. Cells in the mask raster on the right were selected using a geoprocessing
algorithm to compare the amount of area in each cell covered by the vector polygon. Cells
covered more than 50% by the polygon were selected. The mask contains the values 0 or 1,
shown as white and red, respectively in Figure 4. Where the mask has a 1, we retrieve the
data, where it has a 0, we do not.

Overlay Mask

- -

a

Figure 4. Creating a Raster Mask from Vector Data.

The mask array is created in advance of reading each file and then applied to each
two-dimensional array segment as it is retrieved from the file. Though generating the mask
is somewhat computationally expensive, our approach gains some efficiency by caching
and reusing the mask. This means there is a fixed time cost to performing spatial querying
operations regardless of the number of files and time steps. That is comparable to the
fixed cost of identifying the array cell corresponding to queries for a set of coordinates. An
example of applying a single mask to multiple datasets is shown in Figure 5. The mask,
shown on the left of the figure is the same mask generated in Figure 4. The center of the
figure shows two different arrays of data to be masked followed by the resulting cells
selected by the mask to their right.

=

=

Raster Datasets Data Subsets

Figure 5. Appling a Mask to Many Arrays.
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3. Results
3.1. Validation of Time Series Results

We evaluated the performance of the Grids tool with speed tests and case studies in
extracting time series subsets with several datasets. The purpose of the tests is to evaluate
the competency of the methods used in Grids as well as gauge the efficiency of the code.
For these tests, we used long term forecast NWM files from May 2021, GLDAS version
2.1 3-hourly dataset from January to February 2020, and GFS data from January 2021.
Characteristics of these datasets are summarized in Table 3. These data are frequently
applied to water modeling applications such as GLDAS being used to train machine
learning algorithms that predict groundwater levels [37-40]. As they are extensively used
and have different numbers of dimensions, we felt these data were representative of many
kinds of multidimensional data used in water modeling. We used a subset of the variables
in the GFS dataset to keep the file sizes comparable to the NWM and GLDAS data, between
25 and 30 megabytes.

Table 3. Summary of Test Dataset Properties.

Dataset Dimensions File Format
NWM 2—time, stream number NetCDF
GLDAS 3—time, latitude, longitude NetCDF
GFS 4—time, eleve'ltlon, latitude, CRIB
longitude

To check the accuracy of the results retrieved using Grids, we retrieved series from
downloaded copies of the NWM multidimensional dataset (NetCDF) and compared them
to results retrieved using the authoritative NWM web app [41]. The time series shown in
the following plots show the NWM long term forecast generated 4 May 2021 06:00 UTC
for the outlet of the Altamaha River in Darien, Georgia, United States. This forecast is
for the following 30 days and is comprised of 4 ensemble members. Each member is
plotted separately. Figure 6 shows the time series retrieved from the web app for the NWM
provided by NOAA and Figure 7 shows the time series generated with downloaded copies
of the NWM data and extracted using Grids (plots generated with Plotly) [42]. These
figures show that the results from the authoritative web app for the NWM are identical to
those retrieved using Grids.

3.2. Speed Performance on Local Datasets

For the first set of speed tests, we stored the datasets locally on the computer where
the Grids code was executed. We measured the time taken to extract a series of values
based on the file format and the size and type of subset being extracted. The independent
variables to be compared are the file reading engine, and by extension the file type, and the
type of query being performed which is analogous to the amount of data being queried
and processed. We tested these two variables in a full factorial comparison which included
all possible parameter combinations. As Grids currently only supports a limited number
of file reading packages, these trials compare the differences in time between the several
packages as if they were representative of all other packages for reading that format of
data. This is may not be an accurate assumption and could be revisited after additional file
readers are supported by Grids.
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Altamaha River - Darien, Georgia
streamflow for Reach ID: 14352926 (lat: 31.3501, lon: -81.4503)
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Figure 6. NWM Time Series from NOAA Web App.

National Water Model Time Series Using Grids
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Figure 7. NWM Time Series from Local Files and Grids Code.

The kinds of queries executed were point queries, bounding boxes of a 2D spatial
area across each time step, polygon queries using Esri Shapefiles and the masking process,
and computing statistics for the entire 2D spatial array at each time step. The amount of
data to read from disc and additional processing work (i.e., computing statistics for many
cells) increases with each of those queries, in that order. The results are summarized in
Figure 8. The computation time to extract the timeseries is shown with respect to the kind
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of extraction and the Python package used as the file reading engine. Smaller columns
indicate faster read times and therefore more desirable performance.

Time Series Extraction Time Per File

0.7 B pyarib Engine
M cfgrib Engine
0.6 M rasterio Engine
M netcdf4 Engine
xarray Engine
0.5 ¥ ENg
0.4

Time (seconds)

N

0.3
0.
miimll wiinl = I milll

Point Series  Bounding Box Series Polygon Series  Full Array Series

Series Type

Figure 8. Time Series Extraction Time on Local Datasets.

We interpreted these data by comparing the file reading engine with the file formats
supported (Table 2). These data indicate that for our test, the Pygrib engine, which supports
reading only GRIB data, is the fastest, with an averaged time of less than 0.1 second per file
in the series. The Rasterio engine, which reads GeoTIFF data, follows closely behind. The
Cfgrib engine is next with average read times between 0.2 and 0.3 s. NetCDF and HDF
data, as read by the NetCDF4 engine, come next with times ranging between 0.35 and 0.5 s,
respectively. The slowest engine is the Xarray engine with read times of 0.6 s.

The trend in speeds matches the work performed by the engine to interpret the data
and metadata within the files as a programming object in Python. Pygrib does the least
work while Cfgrib, as implemented in Xarray, does the most work to try to match the arrays
of data with a standard data model. Judging solely in terms of reading speed, the GRIB
format performed the best. However, the GeoTIFF or NetCDF formats may be preferable
to data generators or to end users since the GRIB format has other weaknesses such as
loose organization rules as mentioned previously.

3.3. Speed Performance on Remote Data

For the second set of speed tests, we accessed data stored on a remote server. When
retrieving data from a remote server, the time to extract subsets of data can vary significantly
over repeated attempts with the same parameters. Some of the factors which influence
the time include the internet upload and download bandwidth available on the client and
cloud server, the computing load on the cloud location at the time the request is made,
the amount of computing power available to the cloud service, and the amount of user
authentication required. These tests used the Xarray package as the file reading engine
since it has the capability of querying remote data sources. The remaining file reading
packages currently wrapped by the Grids package are not able to read remote data sources,
so the time results reported do not show variance across different file reading engines.

To minimize the variability due to these factors, we created an instance of the Thematic
Realtime Environmental Distributed Data Services Data Server (THREDDS) on a stable
cloud environment on a local network that we controlled [43]. THREDDS is software
that creates web services, including OPeNDAP, for gridded datasets. For these tests, the
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THREDDS instance was only queried by code executing the performance tests and had
ample computing resources and internet bandwidth available. This setup does not fully
take advantage of all available cloud technologies for optimizing computing. Nevertheless,
it approximates ideal conditions for a web server that might be queried with Grids. Table 4
summarizes the results of the speed test. As with the local datasets, the values of this table
indicate total times and smaller values means faster speed and more desirable performance.

Table 4. Average Time Per Data File to Query Remote Datasets Using Xarray.

Query Type Point Bounding Box Shape Stats
Time per file (seconds) 1.146 1.136 1.135 1.087

The approximate time per file queried is slightly above one second and is an average
of 120 trials for each time series. The trials were repeated with several formats of data
and the variance in measurements and average times were nearly identical. This suggests
that the file format on the server had marginal impact on the results which is different
from the results with local data source shown in Figure 8. Any difference in performance
due to file formats is overwhelmed by the time to request and receive data through the
internet. Table 4 shows that the extraction times are nearly uniform across the four kinds
of queries tested. However, users could expect considerable variation in their measured
times to extract values from remote servers in their applications because of the factors that
affect web service performance already described. Additional optimizations or alternate
procedures may be necessary if greater speeds are required for specific use cases.

3.4. GLDAS Web App Case Study

We developed a web app (the GLDAS App) to validate that the Grid tools work
sufficiently fast for use in web environments. We developed The GLDAS App using the
Tethys Platform. Tethys is an extension of the Django Model View Controller framework
built on open-source Python code as well as PostgreSQL databases. Tethys Platform
is intended to “lower the barrier” to creating web apps by providing a command line
interface, template apps, code samples and examples, and documentation which helps
users more quickly develop and deploy web apps [44]. It has been used for multiple
applications that require access to multidimensional data sources which developed custom
querying code and could have benefited from Grids [37,40,45]. We selected the NASA
monthly-averaged GLDAS product as the gridded data for this test since the files have a
small disc size, are easily accessible, and cover a long time period of more than 70 years.
NASA provides an OPeNDaP web service for access to the GLDAS dataset. However, we
did not build the GLDAS App to query that web service since we wanted to demonstrate
that, given any multidimensional dataset, this code executes sufficiently fast to be used in
web environments. This app accesses NetCDEF files stored on the web server. The GLDAS
product spans two spatial dimensions and one time dimension with approximately thirty
variables spanning those three dimensions.

The GLDAS App design consists of a simple interface which shows an interactive map
of the GLDAS data and a server backend which has a copy of the GLDAS NetCDF dataset.
The interface prompts users for the GLDAS variable to query, the time range of values to
query, and the location of interest using an interactive map. This query input is sent to the
server backend which uses that information to build and execute Grids functions to extract
the time series for the requested area and variable and returns a plot of the variable over
time. Figure 9 shows the interface of this app.
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Figure 9. Web App User Interface for GLDAS Data.

We deployed the GLDAS App on web servers in cloud environments on both Amazon
Web Services and Microsoft Azure. On these cloud instances, users were successfully able
to query time series of the GLDAS dataset with the available data range going from a few
months up to, and including, the entire time range (January 1948 through the present).
At the time of the tests, the web server which hosted the app was experiencing near-
ideal conditions similar to the local network THREDDS instance described previously.
Consequently, the measured speeds were comparable to those presented for an ideal web
processing service. Figure 10 shows an example 10-year time series of air temperature
extracted using the web interface to the GLDAS App.

Timeseries Extracted By Web App
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Figure 10. Air Temperature Series Extracted via Web App.
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3.5. WMO Web App Case Study

We developed a second web app for the WMO (the WMO App) to investigate the suit-
ability of using Grids as a general-purpose tool for interacting with gridded data services
rather than reading data files directly. This app accesses the OGC Web Mapping Service
and OPeNDAP data service generated by THREDDS. This app is based on consuming
THREDDS services since THREDDS can provide both mapping and data access services
and it is relatively simple to create an instance of a THREDDS server. We developed
the WMO App to promote broader access to multidimensional raster data common to
national hydrometeorological services. We designed the WMO App to function similar to
the GLDAS App except that the data source is an OPeNDAP data service rather than data
which has been downloaded to the same server that hosts the web app.

We used this app to perform visualization and data retrieval from several datasets
across various THREDDS instances. In these trials, the Grids code was generally successful
at retrieving the time series data for the selected point or area. The trials revealed a few
notable problems rooted in how data are organized. The problems can be addressed if the
dataset is generated or reformatted to have a stronger adherence to existing conventions
and through improving existing data conventions.

One such problem is that the datasets often do not strictly conform to spatial referenc-
ing rules. That is, they do not use a standard CRS. Multidimensional datasets often use
a geographic coordinate system to organize spatial data such as the European Petroleum
Survey Groups (EPSG) 4326 CRS. EPSG 4326 measures longitude from —180 and degrees
to 180 degrees east and west of the prime meridian and measure latitude from —90 to
90 degrees from the equator. Many meteorological datasets, such as the GFS dataset, mea-
sures longitude from 0 to 360 degrees from the prime meridian. While this difference can
be understood by a researcher and map generating software, most vector spatial datasets
do not use this coordinate system. Reprojection tools are not readily available for every
non-standard coordinate system. The poor adherence to organization and metadata con-
ventions in some datasets further complicates programmatically determining the proper
transformation. This irregularity does not make gridded data unusable, but it does inhibit
direct integration with software based on standard geospatial libraries. Each deviation
from standard geospatial conventions makes automatic interpretation and processing of
data more difficult.

4. Discussion

The Grids Python package improves access to multidimensional raster data by pro-
viding simple tools for interacting with data stored in local files in several file formats
or through web services. Grids interfaces with many Python packages to read those file
formats. It is unique because it is applicable to many file formats and is available to many
computing environments through Python package installers such as Pip. Grids achieves
flexibility and efficiency through a design that minimizes required inputs from the user
while being interoperable across data from many sources and formats. We have optimized
Grids to reduce redundant computations and computing time. We presented speed tests
and example web apps that show patterns of how the code performance varies with respect
to the selected file format, the choice of file reading Python package, the way an area
of interest is defined, and whether the data are being retrieved from local files or via a
web service.

We tested Grids on additional datasets besides those presented. The datasets we
used in these tests were exclusively small or medium size files of multidimensional data.
Some data sets present additional challenges. For example, several Earth observation data
products have file sizes reaching many gigabytes per file. These datasets are uniquely
difficult to work with because of their size and require specialized computer infrastructure,
such as is available through Google Earth Engine [26]. While Grids has been used on some
larger datasets, it has not been thoroughly tested and therefore is not recommended as a
specialized tool for handling datasets stored in extremely large files.



Water 2021, 13, 2066

17 of 19

We found that the largest issue when using Grids was data storage conventions. Data
should conform to organizational conventions to facilitate being queried programmatically
and be compatible with web service software. While noncompliance to conventions does
not make data unreadable or unusable, compliance to conventions allows for data to be
easily used and understood by both human users and programs [26]. File formats differ
on how rigidly they enforce data organization and how simply they can be program-
matically queried. GeoTIFF data are the most rigid followed in order by NetCDEF, GRIB,
and HDF. Converging towards a common set of file formats and conventions allows for
tools and methods, such as the Grids Python package, to access any dataset and therefore
lowers barrier to accessing data. Even if the file format does not require it, we suggest
that data generators choose to conform to standards to make wide data dissemination
more accessible.

Further, we recommend that new data should be generated to conform with existing
standards using existing file formats where possible. We recommend using the Climate
and Forecast (CF) conventions and the NetCDF file format because it is already adopted by
web service software, such as OPeNDAP and THREDDS, and NetCDF is a self-describing
format [23,33]. New data should strictly conform to a standard CRS format and store
that metadata appropriately. These practices move data toward being accessible by end
users and their client software while avoiding the problems inherent to weakly defined
data standards.

Data generators should consider offering a web service for visualization and data
querying access where such is practical. This makes data easy to access with data tools such
as Grids and to visualize through mapping engines. Data access and visualization services
simplify the process to use datasets by minimizing or removing the need for scientists to
transfer data in bulk before executing their models. Data consumers should take advantage
of web services when appropriate to simplify their computing workflows.
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