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Abstract: This study presents an exploratory, historically-informed approach to assessing resilience
for critical events that cause demand relocation within a water distribution system (WDS). Consider-
ing WDS as an interdependent socio-technical system, demand relocation is regarded as a critical
factor that can affect resilience similarly to the more commonly analyzed component failures such
as pipe leaks and pump failures. Critical events are modeled as events during which consumer
nodes are evacuated within a perimeter varying in size according to a typical length scale in the
studied network. The required demand drops to zero in the evacuated area, and the equivalent
demand is relocated according to three sheltering schemes. Results are presented for analyzing
the effect of the size of the evacuated area, the feasibility of sheltering schemes, vulnerability of
particular parts of the city as well as the suitability of network nodes to accommodate relocated
demand using a suitable resilience metric. The results provided by this metric are compared with
those drawn from common graph-based metrics. The conclusions are critically discussed under
the consideration of historical knowledge to serve as a basis for future research to refine resilience
assessment of socio-technical systems.

Keywords: water distribution systems; resilience; water demand; critical infrastructure; socio-
technical systems

1. Introduction

Cities and the infrastructure systems that permeate them are historically evolved
socio-technical systems. It is common to regard infrastructures as purely technical system
from an engineering perspective. However, water being a vital resource for human life
and activity there is a connection between the urban population with its demand for
fresh water and the water distribution system (WDS) that supplies it. Together, these
two sub-systems constitute an interdependent socio-technical system. First conceived and
implemented in western European countries in the 19th century due to considerations of
hygiene and sanitation [1,2], WDSs evolved jointly with the society that constructed and
maintained them in their own image. An infrastructure network maps the demands, needs
and economic possibilities of the society which conceives and constructs them. More so:
historians have pointed out that infrastructure systems can carburize power relations. The
scope of action of later generations thus can be limited by the durability of the systems [3].

In spite of their interdependence, the two sub-systems are disparate in nature. In
cities of the industrialized Global North, the topology of WDS is generally static, since
they are typically subterranean. Once built, it is often too expensive to change their shape,
furthering so-called path dependency and cementing their configuration. Nevertheless,
this also implies that they are comparatively safe against external threats. Even after heavy
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bombing in World War II, Berlin water infrastructures for instance remained more or less
intact [4].

By contrast, the social system which populates the WDS may be more volatile and
behave more dynamically. Daily routines of people engaged in labour lead to demand peaks
in the mornings and evenings as well as shifts in demand from residential to commercial or
industrial areas of a city. These temporal and spatial variations of demand are foreseeable
and the WDS may be designed to match the supply to them. However, if a critical event
occurs, large numbers of people may be forced to leave their neighbourhoods and relocate
to different parts of the city (e.g., bomb disposals that require evacuations in Frankfurt
am Main [5], Beirut explosion in 2020 [6], Texas weather crisis [7], or in case of floods,
extreme weather events, natural catastrophes, attacks, chemical leaks). In consequence,
the demand for water moves with them whereas the WDS remains unchanged. How well
the WDS is able to fulfill its functionality as a technical system of satisfying demand for
water in the face of sudden unexpected changes in conditions is a question of resilience.
In the presented work, the effect of the described disparities within the interdependent
socio-technical WDS on water service availability (WSA) are studied and the system’s
resilience is assessed using a suitable metric.

1.1. Research Questions

In order to further detail the research questions, the following section will briefly
introduce the approach of the study and state five concrete questions to which the focus is
narrowed. In Section 2, the modeling approaches are more thoroughly illustrated.

As stated above, the effect of demand relocation in an urban WDS associated with
the displacement of citizens caused by critical events is investigated. In this scenario, an
area of the city is evacuated meaning that demand moves within the network while the
water infrastructure remains intact. Different factors come into play here, such as the size
of the evacuated area as well as how and where relocated citizens seek shelter. As the
evacuated area can occur in any part of the city, vulnerable parts of the network need to
be identified. Furthermore, as relocated demand is accommodated in different parts of
the city varying degrees of suitability may be identified throughout the network. Finally,
different approaches to assessing resilience of WDS entail computationally expensive
or less expensive analysis. The equivalence of these approaches needs to be examined.
Consequently, the following research questions are posed:

(i) What effect does the size of evacuated area have?
(ii) With which sheltering scheme can demand be best fulfilled?
(iii) Which part of the city is most vulnerable?
(iv) Which areas are best suited for accommodating relocated demand?
(v) How do the results of the resilience assessment compare to graph-theoretical re-

silience metrics?

The remainder of the presented work is structured in the following way. After review-
ing the relevant existing work, the system analysis and methodology for the modeling of
the water network and the critical events is outlined. The results of the study are then
presented and discussed.

1.2. Related Work

The concept of resilience has a long and iridescent past, being used in such diverse
fields as psychology, anthropology, sociology, philosophy and environmental sciences [8].
It has been adopted by the United Nations (UN) as a desirable attribute of societies and
communities to “resist, absorb, accommodate to and recover from the effects of a hazard in
a timely and efficient manner” [9]. This concept is not however uncontroversial and under
close scrutiny it has been noted to incorporate elements of contemporary ideology [8].
Holling first applied it for describing complex systems in the context of ecosystems [10].
It was introduced to the discipline of engineering by Hollnagel constituting a new sub-
discipline Resilience Engineering [11,12] albeit one which is closely related to systems
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engineering. The importance of conceiving technical systems as socio-technical systems
when studying resilience in engineering has been stressed [13]. In mechanical engineering,
resilience was identified as a strategy for coping with uncertainty [14]. Altherr et al. give
the following definition of a resilient technical system:

“A resilient technical system guarantees a predetermined minimum of functional
performance even in the event of disturbances or failure of system components,
and a subsequent possibility of recovering at least the setpoint function. Re-
silience can be increased by adjusting the system state via monitoring, respond-
ing, learning and/or anticipating, as well as by systematically designing the
system topology.” [14]

From this, two characteristics of a technical system come to play during a disturbance:
withstanding to a degree which allows to fulfill the minimum functional performance as
well as recovering from the disturbance. In the presented work, the focus is limited to the
former characteristic.

When studying resilience of WDS it is necessary to quantify this ambiguous concept.
There is a wide range of different resilience metrics as four recent reviews of measures
of resilience for infrastructure systems show [15–18]. Core principles of the relevant ap-
proaches will briefly be mentioned here. A common approach to modeling WDSs is to
describe them as mathematical graphs [19]. In consequence, graph-based resilience met-
rics make up a substantial portion of resilience measures. They focus on water network
topology considering the two aspects, redundancy and connectivity [15]. This is a general-
ized approach which refrains from studying specific failure scenarios and considers the
uncertain nature of failures. This approach is in line with common conceptualizations of
resilience as opposed to robustness where a given set of possible failures is used to fortify a
technical system [19–21]. Some examples of this type of metric simply use statistical and
spectral measures in graph theory, e.g., betweenness or closeness centrality spectral gap
and algebraic connectivity [15]. Others take into account water network specific character-
istics, such as pipe friction and the ensuing head loss, and connect these with the above
mentioned measures based on graph theory [19,22]. However, it has been pointed out that
the validity of the assumption that measures of topology can assess resilience has not been
justified [23]. A second group of resilience measures focus on the functional performance
of a system under conditions of failure. When studying the functional performance of a
WDS for resilience assessment, perturbations are often introduced such as pipe failures,
additional demand or pollution [20,24]. In this approach, it is again important to avoid
studying certain predefined failure scenarios so as not to remain in the limits of robustness
analysis. Todini [25] proposes a measure based on the energy surplus in a looped water
distribution network. This has given rise to similar measures with some variations and
adaptations (e.g., [26,27]). While the measures mentioned so far consider the static WDS, a
third approach has been explored which takes into account the dynamic behaviour of the
water network. On approach here is to relate probabilities of recovery of the WDS and of it
remaining in an unsatisfactory state [28,29]. Zhuang et al. [30] chose to evaluate resilience
in terms of the ratio of satisfied water demand to required water demand. For the purpose
of the presented work, this last metric proves the most useful as it directly measures the
functional performance of the studied WDS.

The problem of demand uncertainty in WDS has been the subject of several publica-
tions in the past which focus on demand uncertainty under normal operating conditions
rather than during critical events [31–33]. Lu et al., consider demand for life-supporting
resources including water under an emergency in a game-theoretical equilibrium model
that contains a multi-layer infrastructure network [34]. Their approach provides an inter-
esting insight into interdependencies between the infrastructures as well as of the response
of the citizens but proves too complex for the assessment of resilience of the WDS as a
socio-technical system only. To the best of the authors’ knowledge, so far no study has been
proposed that (i) perceives the WDS as a socio-technical system that may be peturbed solely
by its interdependence with the society populating it rather than component failure, (ii)
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models critical events informed by historical knowledge of relocation of citizens within a
city during such events, (iii) measures resilience of a WDS by assessing minimum functional
performance during operation while maintaining the uncertain nature of critical events,
(iv) relates the results to topological resilience metrics for comparison and validation. The
presented work aims to fill this gap.

2. Materials and Methods

This section describes the methods used to assess the resilience of a benchmark WDS
in order to answer the research questions posed in Section 1.1 and specifies the terminology
used throughout the paper. It starts by providing a general description of modeling WDS
as mathematical graphs and justifies the choice of the selected benchmark WDS. Methods
introduced in Section 2.2 show how the critical events are modeled. Sheltering schemes are
presented in Section 2.3. Section 2.4 shows the resilience metric used to assess the resilience
of the WDS. A further metric evaluating the number of under-serviced nodes as well as a
brief overview of two graph-based metrics are given in Sections 2.5 and 2.6, respectively.

2.1. Modelling WDSs

The WDS is modeled as a planar mathematical graph. The vertices represent junctions,
tanks and reservoirs and will be referred to as nodes. The edges represent pipes and pumps
and will be referred to as links. The WDS is modeled using the Water Network Tool for
Resilience (WNTR), a Python package designed to simulate and analyze resilience of WDSs
that is based on EPANET [35]. In order to analyze the performance of the WDS in critical
events, pressure dependent simulations are run using the EPANET solver (version 2.2)
implemented in WNTR. Pressure dependent simulation accounts for pressure–demand
relationships in the WDS [16] and allows us to express the delivered demand depending
on the pressure while relying on empirical equations, see Section 2.5.

Each node in the WDS graph has a fixed base demand that is multiplied by a demand
multiplier which can vary in time. Demand multipliers allow for applying demand patterns
to the WDS. Base demand and the demand patterns determine the required demand D,
i.e., the demand that the WDS should satisfy in order to perfectly service all nodes. The
available flowrate d is obtained by running the pressure dependent simulations. Water
service availability (WSA) A at time t for node n can then be expressed as a ratio of the
available flowrate and the required demand:

An,t =
dn,t

Dn,t
. (1)

This study uses the C-Town WDS. C-Town is a benchmark WDS with 396 nodes and
444 links. In total, 334 nodes have base demand higher than zero and can be considered
consumer nodes. C-Town is supplied from one reservoir and contains seven water tanks
with a total capacity of 9501 m3, 11 water pumps and average daily required demand of
approximately 15,500 m3 [24]. As such, it represents a local scale WDS modeled with a high
resolution. Considering average daily required demand per capita of 130 liters per day, the
WDS supplies a population of about 120,000 if other than residential use is not considered.

2.2. Modelling Critical Events

In the context of this study, the term critical event describes an event of strong demand
relocation within the WDS as a result of perturbations in the socio-technical system. A
critical event does not cause failures in the WDS directly. Instead, it is characterized by
perturbations that have an influence on the social system, motivating or forcing people to
relocate. In contrast to the term disruptive event, critical events do not have to include a
disruption of services and can include emergency situations such as bomb disposals when
evacuation is necessary even though the infrastructure system is intact. In Germany, such
evacuations happen regularly, especially in cities that were heavily bombed during World
War II such as Frankfurt am Main, and lead to the relocation of tens of thousands of people
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(25,000 in Frankfurt am Main in 2021 [5]). Other examples when people relocate despite
the WDS staying intact have been mentioned in Section 1. Moreover, the term critical event
does not have a strong normative character like the term disruptive event or catastrophic
event. Resulting in altered demand patterns, the perturbation that such significant changes
on the social side of the socio-technical system cause can influence the functioning of the
WDS as a whole.

During the critical event, required demand from nodes in the evacuation area is
relocated onto shelter nodes outside of the evacuation area so that for each time step,
the overall required demand in the WDS under normal operating conditions is equal
to the overall required demand in the WDS with demand relocation during the critical
event. This means that the evacuated population keeps relying on the WDS rather than
using mobile and network-independent solutions. This approach was selected based
on the experiences reported by German Federal agencies since the 1960s when experts
recommended the deployment of mobile and network-independent water supply systems.
These were envisaged to serve in case of a possible Atomic War as well as in case of natural
disasters and network failure. Over time, it became apparent that these substitutes were
extremely cost intensive. In addition, they did not really meet the needs of rapid, demand-
oriented and efficient distribution [36–39]. Our approach of continuing to use the existing
network is the result of these experiences.

Evacuation area can be expressed as a set of nodes within the distance of the evacuation
radius r from the origin of the evacuation area, node o:

E = {n ∈ N : |n o| ≤ r}, (2)

where N is a set of all consumer nodes in the WDS: N = {n ∈ N̂ : Dn > 0} with N̂ being
the set of all nodes in the WDS. Since consumer nodes are of primary focus here, the terms
nodes and consumer nodes will be considered synonymous below.

It is assumed that in each critical event, there is only one evacuation area the origin of
which is any consumer node in the WDS. Higher density of nodes reflects higher densities
of population and thus higher risk of the occurrence of a critical event in the social system.
Moreover, since the density of nodes in the C-Town WDS is relatively homogeneous,
selecting nodes as origins of the evacuation area is a sensible approach. Nodes in the
central parts of the WDS as well as nodes at the edge of the WDS can equally serve as
origins of evacuation areas. While this results in evacuation areas with their origins at the
edge of the WDS having less nodes than if the origin is centrally located, past experiences
show that critical events can occur at the margins of the WDS as well and thus should not
be excluded from the analysis (e.g., the Beirut explosion in 2020 [40]).

The critical events are assumed to start just before the first peak in the required
demand, at time t = 4 h. 48 h are simulated, reflecting real-world experiences that show that
after 2 days, the critical event is either overcome or batch solutions are set up to provide
water supply [6,24].

2.3. Sheltering Schemes

During critical events, the population relocated from the evacuated area must be
accommodated elsewhere. In this study, it is assumed that the population relocates to
shelter areas outside of the evacuation area but within the urban area serviced by the
WDS, relying on the WSA provided by the WDS as discussed in Section 2.2. Relocating the
required demand from the evacuation area is modeled along three sheltering schemes:

• centralized sheltering
In the centralized sheltering scheme, the set of shelter nodes is a singleton consisting
of precisely one node, n, see Figure 1:

Scen = {∃n : n ∈ N \ E} (3)
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The required demand from the evacuation area E is summed for each time step t and
transferred onto a single pre-defined central shelter node from the set of shelter nodes,
c ∈ Scen:

Dc,t = ∑
n∈E

Dn,t. (4)

While in reality, multiple sheltering locations are often dedicated to accommodate
evacuated population, selecting a single shelter node represents the most critical case.
Hence, centralized schemes with more than one shelter node have not been considered
in the scope of this work but might be the subject of future research.

• near-at-hand sheltering
In the near-at-hand sheltering, demand from the evacuated area is distributed onto the
immediate annulus around the evacuation area, with the width 0.5 r (1). Shelter nodes
can then be expressed as a set of nodes Snah:

Snah = {n ∈ N : r < |n o| ≤ 3r/2}. (5)

where N is the set of all consumer nodes and |n o| is the distance between a consumer
node n and the origin of the evacuation area o.
A probability p for each node in Snah is generated using the truncated normal distri-
bution function from the Python package scipy so that

∑
n∈Snah

pn = 1. (6)

The required demand on a shelter node after demand relocation is then

Dn,t = pn ∑
n′∈E

Dn′ ,t for n ∈ Snah. (7)

• diffuse sheltering
During the diffuse sheltering, demand from the evacuated area is distributed onto
the remaining nodes in the city (Figure 1). The set of shelter nodes, Sdif, can thus be
expressed as

Sdif = N \ E (8)

and the required demand is relocated on the shelter nodes with the same strategy as
in the near-at-hand scheme, i.e., using the truncated normal distribution.

(a) (b) (c)

r1

r2

r3

r4

(d)

Figure 1. An overview of sheltering schemes (a–c) and a comparative depiction of the evacuation radii (d). Nodes
in the evacuated area (E) are portrayed in blue, shelter nodes are portrayed in yellow. Consumer nodes (black) are
differentiated from non-consumer nodes (grey). (a) centralized sheltering scheme, (b) near-at-hand sheltering scheme,
(c) diffuse sheltering scheme.
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2.4. Resilience Assessment

In order to answer the research questions posed in the Introduction, sets of simulations
were run using the Epanet simulator implemented in the WNTR package. All three schemes
were simulated with four evacuation radii each. The radii were de-dimensionalized with
relation to the radius of a circumcircle of the area of the WDS, as shown in Table 1.

Table 1. Dimensionless evacuation radii and their magnitude.

Name Magnitude

r1 1/4
r2 1/2
r3 3/4
r4 1

Each consumer node was selected as the origin of the evacuation area. For the
centralized sheltering, each consumer node from the remaining set N \ E was selected as
the shelter node. For the near-at-hand and the diffuse sheltering scheme, 100 and 300 runs
with varying probability distributions were run, ensuring that nodes in the shelter node set
have a sufficient variety of required demand.

For the evaluation, the resilience index proposed by Zhuang et al. [30] is used, which
expresses the relation between the actual flow d and the required demand D for a given
time period T:

ρ =

T
∑

t=0
∑

n∈N
dn,t

T
∑

t=0
∑

n∈N
Dn,t

(9)

Originally, this metric was proposed for evaluating the resilience of a water network
faced with link failures and stochastically defined shifts in demand. For a single evacuation
area characterized by an origin node o and radius r, the value of the resilience index ρ was
obtained as the mean value over all simulations that were performed for that origin node.
In the centralized sheltering scheme, the mean value was obtained from the values of all
shelter node simulations:

ρ(o) =
1

|N \ E(o)| ∑
n∈N\E(o)

ρ
(o)
n , (10)

where N \ E(o) is a set of all nodes that were not in the set of evacuated nodes for the origin
o, E(o), and could thus be selected as shelter nodes.

From the perspective of a shelter node s, an equivalent expression could be obtained:

ρ(s) =
1
|N(s)| ∑

n∈N(s)

ρ
(s)
n , (11)

where N(s) is a set of all nodes that are in a sufficient distance from the shelter node s to
serve as origins of an evacuation area.

For the near-at-hand and diffuse sheltering, the mean was obtained from M simulation
runs, with M = 100 and M = 300, respectively:

ρ(o) =
1
M

M

∑
m=1

ρ
(o)
n (12)
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The mean resilience index for the entire WDS could be expressed as a mean of the
resilience indices for each origin o:

ρ =
1
|N|∑

o∈N
ρ(o) (13)

2.5. Evaluation of Under-Serviced Nodes

Another useful metric is the number of under-serviced nodes (USN). These are con-
sumer nodes outside of the evacuation area that have insufficient pressure and thus cannot
deliver sufficient flowrate in order to satisfy the required demand. In the pressure-driven
simulation in WNTR, actual flow is calculated based on pressure as

d =


0 h ≤ H0

D( h−H0
H f−H0

)1/e H0 ≤ h ≤ H f

D h ≥ H f

(14)

where H0 is the minimum pressure and H f the required pressure [35]. Demand is fully
satisfied (WSA A = 1) if the pressure h is greater than the required pressure H f . If the
pressure lies between H f and H0, demand is partially satisfied (WSA 0 < A < 1), and if
the pressure lies below H0, the available flowrate will be zero (WSA A = 0). In the present
paper, H0 was set to 0 and H f = 15 m. The number of USN at time t for origin node o is
the size of a set of all nodes that were not in the evacuation set E and had a pressure lower
than H f :

η
(o)
sim,t = |Ut| with Ut = {n ∈ N \ E(o) : hn,t < H f } (15)

ηsim,t is obtained from a simulation with relocated demand. In order to determine whether
there was a change in the number of USNs between normal (reference) operating conditions
and operating conditions with relocated demand, a new variable η

(o)
t was introduced to

express the difference between the number of USN resulting from the simulation with
relocated demand, ηsim, and the number of USN of the WDS under normal operating
conditions, ηref:

η
(o)
t = η

(o)
sim,t − η

(o)
ref,t. (16)

A value of η(t) characteristic for the entire WDS could be obtained from the mean
value of η(o)(t) of each origin of the evacuation area, o:

ηt =
1
|N|∑

o∈N
η
(o)
t . (17)

2.6. Basic Graph-Based Resilience Metrics

In addition to the evaluation of the resilience index according to Zhuang [30], two
graph-based metrics that are commonly used for resilience assessment have been evaluated:
betweenness centrality and the shortest path length. To compute these, the WNTR package
relies on methods from the Network X package [41,42].

Betweenness centrality of a node n is the sum of the fraction of all-pairs shortest paths
that pass through n:

cB(n) = ∑
s,t∈N

σ(s, t|n)
σ(s, t)

, (18)

with N being the set of all nodes, σ(s, t) the number of shortest paths between s and t
and σ(s, t|n) the number of shortest paths between s and t that pass through the node n
(other than s and t) [43].

The shortest path length metric computes the shortest hydraulic path length between
the closest source and all other reachable nodes for a weighted graph using the Dijkstra
algorithm implemented in the method single_source_dijkstra from the Network X
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package [44]. The weighing was performed with the head loss ∆H averaged over the time
of the simulation on each link in the WDS simulated under normal operating conditions
(without demand relocation).

3. Results

This section will present and discuss the results of the study with regard to the research
questions posed in Section 1. Accordingly, it will be structured in the same order.

3.1. Effect of Evacuation Radius

In order to answer the first research question, the results for all simulation runs were
aggregated to calculate the mean resilience index ρ for each evacuation radius. The values
are plotted over evacuation radius for all three sheltering schemes as depicted in Figure 2.
Additionally, error bars are added to depict the spread of values of ρ(o) for all nodes in the
network. The size of the error bar is determined by the maximum and minimum values
of ρ(o) for o ∈ N. As illustrated in Section 2, the spread of evacuation radii was chosen to
range from minimal detectable impact to a critical event encompassing the entire network.
The results in Figure 2 showed close to maximum values for resilience index ρ ≈ 1 for
the smallest evacuation radius r1. In all three sheltering schemes it can be observed that
ρ decreased quadratically, with increasing values of r . Closer inspection shows that this
decrease of ρ scaled with the square of the evacuation radius for the centralized sheltering
scheme ρ ∝ −r2. As the nodes that may be evacuated were fairly evenly distributed and
required demands did not vary greatly between nodes this behaviour was consistent with
the expectations. This did not hold true for near-at-hand and diffuse sheltering schemes.
Here, additional influences of differing number of available shelter nodes for different
evacuation radii came into play.

1/4 1/2 3/4 1

0.4

0.6

0.8

1.0

M
E

A
N

R
E

S
IL

IE
N

C
E

IN
D

E
X
ρ

(a)

1/4 1/2 3/4 1

EVACUATION RADIUS r

(b)

1/4 1/2 3/4 1

(c)

Figure 2. Mean and min-max interval resilience index ρ for evacuation radii: (a) centralized sheltering scheme, (b) near-at-
hand sheltering scheme, (c) diffuse sheltering scheme.

Figure 3 shows the mean and standard deviation of USN over time for all evacuation
radii in the case of each sheltering scheme. In all schemes the number of USN varied
with time depending on the required demand in the network. For the centralized scheme,
roughly equal numbers of nodes were under-serviced for evacuation radii r4 and r3, the
mean never exceeding 10 nodes. For the evacuation radius r2, a reduced number of nodes
was under-serviced, though from the onset of the critical event to the end of the run time
there were USNs in the network. Only at times of high required demand in the network
were there USNs for r1. This suggests that especially if the relocated demand reached high
values, a distinct increase in the number of USN could be observed. Nodes other than
the shelter node were thus also under-serviced. It may also be attributable to the fact that
with growing evacuation radius the remaining nodes were similarly affected. Both the
near-at-hand and diffuse sheltering schemes showed much higher numbers of USN with a
maximum of 20, though the deviation from full service was much lower in absolute terms
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as shown in Figure 2. In the near-at-hand sheltering scheme no nodes were under-serviced
for r1 while for r2 only at times of high required demand. For r4 the same amount of nodes
was under-serviced in the diffuse sheltering scheme as in the near-at-hand scheme while for
r3 during times of low required demand, full service was available.
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Figure 3. Mean and standard deviation of number of under-serviced nodes (USN) η for all evacuation radii r: (a) textitcen-
tralized sheltering scheme, (b) near-at-hand sheltering scheme, (c) diffuse sheltering scheme.

3.2. Effect of Sheltering Scheme

Addressing the second research question, the sub-figures in Figures 2 and 3 are now
compared to assess the effectiveness of the three sheltering schemes.

For the lowest value of r, ρ for all three schemes was close to the maximum of 1. As the
radius increased, the resilience index decreased significantly for the centralized sheltering
scheme, the mean reaching the lowest value of 0.735 for r4 while the minimum value
for any node in the network was 0.26 for a critical event with this expanse. The effect
of relocation was already noticeable at evacuation radii r2 and r3. This shows serious
under-servicing of demand in the network. By comparison, the near-at-hand scheme only
showed a marginal decrease of ρ at r3 while at r4 the lowest value was just under 0.95.
Here, mainly the minimum values for any node in the network show that there were areas
in the network where demand relocation could cause reduced service with a reduction of
10% for the origin with the worst effect and ρ = 0.48 at r4. The diffuse sheltering scheme
showed no reduction of ρ for r1 and r2. For evacuation radii r3 and r4, the values of the
centralized and near at hand sheltering schemes overlapped. This can be explained by the
fact that the set of available shelter nodes for these schemes and evacuation radii largely
corresponded to one another.

When regarding the number of under-serviced nodes this phenomenon could also
be detected. As has already been remarked in the previous section, the number of nodes
was smaller in the centralized scheme than in the other two for radii r3 and r4, but greater
for radii r1 and r2. It can be seen that the number exceeds 1 in this scheme for the three
larger radii, implying that not only the shelter node was under-serviced. This means
that centralized sheltering may also reduce water service in other parts of the network,
though only at a limited number of nodes. In the case of the near-at-hand and diffuse
schemes some nodes suffered reduced service which could mean that the accommodating
population at shelter nodes had to reduce their own consumption as a result of sheltering
the relocated population, testing the social cohesion and cooperation in the population.
During past events, the authorities and the public were able to successfully appeal to the
cooperativeness of those not affected [45].
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In summary, from a technological perspective, the diffuse sheltering scheme was
best suited for maintaining water service in the case of a critical event. However, other
considerations played a significant role here such as efficiency for supplying aid from the
authorities’ perspective and the willingness of the population in the sheltering area to
accommodate the citizens from the evacuated area.

3.3. Vulnerable Areas

Figure 4 shows the WDS for all sheltering schemes and all evacuation radii where
the node attribute was the average resilience index ρ(o) for that node when it was the
evacuation origin. The spread of values was between the minimum and maximum values
of ρ(o) and is represented by the error bars in Figure 2. For the centralized sheltering scheme
at r1, low values of ρ(o) could be observed at the centre of each of the two main clusters
of consumer nodes with demand while the edges had higher values of ρ(o). This was
consistent with the fact that when origins lay at edges of the WDS, less demand needed to
be relocated. As the evacuation radius increased the evacuation area was no longer on the
scale of the two clusters and so the areas with low values for the resilience index merged
into one at the core of the entire network. A viable interpretation of this phenomenon is that
it was (i) easier to maintain water service when less demand was relocated and (ii) easier
to service relocated demand in the centre of the city than at the edges. A vivid example of
this are the two small peripheral clusters in the eastern part of the city. When these were
evacuated and the demand relocated to the centre high values of resilience index were
achieved. Regarding the near-at-hand and diffuse sheltering schemes, the differences for
radii r1 and r2 were too insignificant to draw compelling conclusions. Nevertheless, the
cluster of nodes with higher resilience indices in the centre of the network were remarkable.
This may be explained by the fact that to the northeast there was an uninhabited area that
could not accommodate relocated demand forcing it instead south and southwest which
was closer to the main supply line from the reservoir in the network. Furthermore, for r2 in
the near-at-hand sheltering scheme two vulnerable areas could be detected to the north and
west. Here it appears that the shelter area was such that it forced normally well connected
demand to relocate to more remote areas in the network.

As previously noted, for radii r3 and r4 both near-at-hand and diffuse schemes approxi-
mately coincided. This is also reflected in Figure 4. However, for the near-at-hand scheme
at radius r3 there was an area with lower values of ρ(o) at the main line. The interpretation
offered here is that the population on the main line relocated to areas in the periphery
with significantly lower connectivity to tanks or reservoirs. This is further illustrated by
the fact that nodes removed from the centre to the southwest showed lower values of ρ(o)

than towards the north and east. As this area was closer to the supplying reservoir, this
phenomenon shows that when demand was relocated downstream, it was harder to service
than when it was moved upstream, implying a general inequality depending on the proxim-
ity to the reservoir which was generally alleviated by supply tanks distributed throughout
the network. Nonetheless, in the critical events studied here it was still noticeable.

The results shown here for vulnerable areas reflect to a certain degree the methods
utilized here for modeling the critical events. However, disparities between the periph-
ery and centre as well as between upstream and downstream were still recognizable in
the network.
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Figure 4. Mean resilience index ρ(o) for each node serving as the evacuation origin for all analyzed evacuation radii and
sheltering schemes. (a) centralized sheltering (b) near-at-hand sheltering (c) diffuse sheltering
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3.4. Identifying Shelter Nodes

Figure 5 depicts values of the mean resilience index ρ(s) for each node of the WDS if it
was chosen as a shelter node in the centralized sheltering scheme (Figure 1a). The values
were computed using Equation (11). Higher values of ρ(s) suggest the respective node
was better suited to serve as a rescue node. For the evacuation radius r1, big clusters of
shelter nodes with high values of ρ(s) could be observed, despite the values of betweenness
centrality cB being low in the same areas, see Figure 6a. Shelter nodes with low ρ(s) were
usually cul-de-sacs and tended to have higher values of shortest path length ∆H, see
Figure 6b. Especially in the North of the WDS, the value of ρ(s) dropped for a significant
number of nodes when considering the evacuation radius r2. The nodes with the highest
∆H were among the nodes with the lowest ρ(s) in the north of the WDS. In the centre of
the WDS, the proportion of nodes with maximum ρ(s) also decreased, even though ∆H
was comparatively low in this area. For the remaining radii r3 and r4, two clusters of high
ρ(s) could be identified in the south and the west of the WDS. Both of these areas had
a relatively low ∆H, but also a low betweenness centrality cB. To answer the research
question (iv), two clusters could be identified that provided high values of ρ(s) regardless
of the size of the evacuation area. These were best suited to serve as shelter nodes during a
critical event with demand relocation. The suitability of the southern cluster was justified
by its location in the immediate vicinity of the main reservoir of the WDS, equipped with
large diameter pipes to supply the entire system. The western cluster was supplied by
two tanks in the very west and in the middle of the WDS, providing for low values of ∆H.
Moreover, ρ(s) was high for all four cases along the main supply line, which was easily
recognizable as the line with high values of cB in Figure 6a.

r1 = 1/4 r2 = 1/2 r3 = 3/4 r4 = 1

min max

Figure 5. Mean resilience index ρ(s) for each node serving as the shelter node in the centralized sheltering scheme for all
analyzed evacuation radii.
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Figure 6. Results of the graph-based resilience metrics. (a) betweenness centrality, (b) shortest
hydraulic paths length.

4. Discussion

This study has introduced a historically-informed method of assessing resilience for
critical events that cause demand relocation within a WDS. The WDS has thus been consid-
ered to be an interdependent, socio-technical system in which the social and the technical
system interact: the technical system has to maintain its service during a critical event
despite the social system accounting for strong changes in demand distribution. The WDS
has been modeled as a planar graph with consumer nodes representing residential areas
characterized by required demand. The critical event has been modeled as an event during
which population leaves consumer nodes within the evacuation area, where required
demand drops to zero, and subsequent demand relocation according to three sheltering
schemes: (a) centralized sheltering, (b) near-at-hand sheltering, (c) diffuse sheltering.

To answer the research question (i) stated in Section 1.1, four evacuation radii have
been compared. The results in Section 3.1 show that the mean resilience index ρ is inversely
proportional to the square of the evacuation radius, ρ ∝ −r2, i.e., decreases linearly with
growing evacuation area. For the near-at-hand and the diffuse sheltering scheme, a similar
relationship could not be observed. The evacuation radius had a decisive influence on
the number of under-serviced nodes for the near-at-hand and the diffuse sheltering scheme,
where radii r3 and r4 causes significantly more nodes to remain under-serviced than the
radii r1 and r2. When assessing the effect of the sheltering schemes to answer the research
question (ii), it has been demonstrated that the centralized sheltering scheme resulted in
the most serious under-servicing. This was an expected result because the centralized
scheme causes the most drastic change in required demand distribution in the network.
In reality, relocating the evacuated population to a single node is unlikely, and as such, it
is to be interpreted as a worst case. In the near-at-hand and the diffuse sheltering scheme,
the WDS could provide nearly full service for the smaller radii r1 and r2. The number of
under-serviced nodes is significantly higher for the near-at-hand and the diffuse sheltering
scheme. This shows that even if the diffuse sheltering scheme can provide best overall
service, social factors would play an important role in determining the acceptance of this
scheme. With regard to the vulnerability, a strong disparity between the central and the
peripheral nodes has been identified, answering the research question (iii). The peripheral
nodes are less vulnerable by causing the demand to relocate towards the better-serviced
centre of the WDS. To determine suitable shelter nodes and address the research question
(iv), two clusters in the south and the west of the WDS have been identified that deliver
high values of mean resilience index ρ(s), as well as the nodes along the main pipeline. This
is in good agreement with the results delivered by the evaluation of betweenness centrality
(identification of the main pipeline) and the shortest path lengths (identification of the
clusters in the south and west). While each of the graph-based metrics provides insight
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into specific phenomena observed in the simulation results, neither of them is capable to
reproduce the simulation results sufficiently alone (research question (v)).

The presented results show limitations which need to be acknowledged and which will
be presented in the following. A first limitation to the approach is that the system boundary
is restricted to the WDS and the embeddedness of the system in another system on a
larger scale is neglected. Thus, flux of citizens or goods over the system boundary are not
considered. Furthermore, only a very simplified model of the social system is used which
is linked to the WDS. Each sheltering scheme is considered separately where in reality
mixed forms would always appear and dynamic changes in relocation during an ongoing
critical event are also possible, taking on chaotic forms in some cases [46]. Historical
examples show that the population did not always react in the way relief authorities had
planned. The fact that centralized accommodation is offered does not automatically mean
that citizens also use it as planned. Inhabitants of the evacuated area returned to their
homes during the day after spending the night in centralized shelter in order to secure
property, necessitating checks along the perimeter of the evacuated area [47]. Instead
of using accommodation centres (centralized scheme), a huge number of the evacuated
population preferred independent accommodation with family members or friends (diffuse
or near-at-hand scheme), especially if the disturbance lasted longer (e.g., when residential
neighbourhoods are flooded). This can be explained by the lack of comfort and limited
privacy in the emergency shelters. Furthermore, the authorities called for the provision
of private shelters during large-scale situations. As central accommodation for tens of
thousands of people affected, in addition to the actual handling of the critical event, also
means an enormous logistical effort [48]. Other groups, however, which lacked this option,
stayed for long periods in emergency shelters, e.g., [49,50]. It can be concluded from this
that a combination of centralized, near-at-hand and diffuse demand would develop during a
critical event.

While simple stochastic methods are used to relocate demand in the near-at-hand and
diffuse sheltering schemes a more refined model will incorporate socio-economic data,
including income, household size and living spaces as well as other social factors, e.g.,
social ties and cohesion in neighbourhoods, the sense of solidarity and historical experience
if not routine. The latter could be researched in neighbourhoods that are regularly affected
by river floods in cities like Cologne, Passau, Dresden. Incorporating these parameters
will enable us to determine indicators for the spatial mobility of city dwellers in the case
of critical events. While it may appear that some critical events investigated within this
study are too extreme to be realistic it needs to be emphasized that this is in accordance
with the uncertain nature of critical events where none should be excluded, especially since
there is historical precedence for close to entire cities becoming uninhabitable. Different
cities may also respond differently to critical events. As the presented study was carried
out using just one WDS, the results cannot yet be generalized for all networks. It has been
remarked that in some results the method of modeling critical events is reflected. Further
methods for generalized models and subsequent analysis need to be explored to meet this
limitation. Finally, only two graph-based metrics were chosen to compare to the results
of the hydraulic simulations. More detailed methods for evaluating correlations between
graph-based and simulation-based metrics may yield deeper insights which holds true for
the vulnerability assessment of the network. As an exploratory study of interdependence
between WDS and the social system populating it, the presented work shows promising
results that compel future research of this topic.

Future work should further investigate the interdependence of technical with social
systems. When evaluating resilience of technical systems, metrics should be refined to
consider the influence of the social system. Thus, the understanding of a critical event
should be broadened to include factors other than component failure within the considered
technical system. In order to study interdependencies in WDS as socio-technical systems
adequately, validated modeling approaches to modeling social systems, e.g., agent-based
modeling, may be leveraged and coupled with hydraulic models so as to arrive at a socio-
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technical model of WDS. Finally, further research into the scales of critical events and the
dependence of the impact on them may give a deeper understanding of risks WDSs are
faced with.

5. Conclusions

This study has presented an exploratory, historically-informed approach to assessing
resilience for critical events that cause demand relocation within a WDS. The WDS has
been considered to be an interdependent, socio-technical system in which the social and
the technical systems interact. Demand relocation has been considered as a critical factor
that can affect resilience similarly to the more commonly analyzed component failures
such as pipe leaks and pump failures. The WDS has been modeled as a planar graph in
which consumer nodes represent residential areas characterized by required demand. The
critical event has been modeled as an event during which population leaves consumer
nodes within the evacuation area, where required demand drops to zero, and subsequent
demand relocation according to three sheltering schemes. Five research questions have
been addressed, analyzing the effect of the size of the evacuated area, the feasibility of
sheltering schemes, vulnerability of particular parts of the city, the the suitability of nodes
to serve as shelter nodes and last but not least, the comparison of the approach to graph-
based metrics.

It has been shown that the size of the evacuation area has a decisive influence on the
resilience of the city, with the resilience index being inversely proportional to the size of the
evacuation area in the centralized sheltering scheme. The diffuse sheltering scheme has been
identified as the scheme that can provide the highest value of resilience index while also
negatively affecting the number of under-serviced nodes. A noticeable disparity between
the central and the peripheral nodes has been identified when analyzing the vulnerability
of the areas of the city, showing that peripheral nodes are less vulnerable by causing the
demand to relocate towards the better-serviced centre of the WDS. Moreover, it has been
shown that nodes along the supply line as well as in the area of two clusters in the West
and South of the WDS are best suited to serve as shelter nodes, comparing the present
approach to graph-based metrics (betweenness centrality and shortest paths length).

The results have been critically discussed under the consideration of historical knowl-
edge, recognizing possible limitations of the work. The most severe limitation is that in
real-world scenarios, the sheltering schemes generally do not occur in their pure form. This
provides scope for future work that should investigate the interdependence of technical
with social systems further, using more refined models.
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