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Abstract: The Qinghai-Tibetan Plateau (QTP) is generally considered to be the water source region
for its surrounding lowlands. However, there have only been a few studies that have focused
on quantifying alpine meadow evapotranspiration (ET) and its partitioning, which are important
components of water balance. This paper used the Shuttleworth–Wallace (S–W) model to quantify
soil evaporation (E) and plant transpiration (T) in a degraded alpine meadow (34◦24′ N, 100◦24′ E,
3963 m a.s.l) located at the QTP from September 2006 to December 2008. The results showed that the
annual ET estimated by the S–W model (ETSW) was 511.5 mm (2007) and 499.8 mm (2008), while E
estimated by the model (ESW) was 306.0 mm and 281.7 mm for 2007 and 2008, respectively, which
was 49% and 29% higher than plant transpiration (TSW). Model analysis showed that ET, E, and T
were mainly dominated by net radiation (Rn), while leaf area index (LAI) and soil water content at a
5 cm depth (SWC5cm) were the most important factors influencing ET partitioning. The study results
suggest that meadow degradation may increase water loss through increasing E, and reduce the
water conservation capability of the alpine meadow ecosystem.

Keywords: evapotranspiration partitioning; soil evaporation; leaf area index; Shuttleworth–Wallace
model; eddy covariance

1. Introduction

Hydrological processes of terrestrial ecosystems play an important role in interactions
between the different spheres of the Earth (hydrosphere, biosphere, atmosphere, and
geosphere), which mainly includes precipitation, evapotranspiration (ET), surface runoff,
and drainage. Among them, ET is the main component of water loss from terrestrial
ecosystems to the atmosphere [1,2]. ET is controlled by many environmental and biological
factors; in turn, it affects not only plant growth and development but also the microclimate
of plant communities. In addition, ET plays a major role in regional and global climate
change [3] because it links closely to the latent heat energy, carbon, and water cycles in
terrestrial ecosystems. Therefore, there has been great interest in the study of ET to better
understand the links between ET and other Earth system processes [4].

ET is the combination of transpiration from vegetation (T) and evaporation from
the soil surface (E), where ET partitioning is a subject of ongoing research due to the
complexity of surface energy balance processes and measurements [5–7], and is very
important in predicting the responses of ecosystem water balance to climate and vegetation
coverage changes [8]. The most prevalent approach for measuring ecosystem ET is eddy
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covariance (EC), which is widely used to monitor the water and carbon fluxes of the
terrestrial ecosystem [9–11]. However, EC cannot separate E and T from ET. Up to now,
models are usually employed for partitioning ecosystem ET [12]. The first two-source
model that incorporated E and T to partition ET was proposed by Shuttleworth and Wallace
(S–W model) [13], and the vegetation canopy and soil surface were respectively regarded
as two independent water vapor sources to partition the ET of sparse crops (maize). Since
then, the S–W model has been widely applied to study terrestrial ecosystem ET, E, and
T [14–16] because of its simple and accurate consideration of hydrological processes [17].

The Qinghai-Tibetan Plateau (QTP) has an average altitude over 4000 m above sea
level and covers about 2.5 million km2; it is representative of major alpine regions of the
world [18,19] and plays an important role in regional and global climate and hydrolog-
ical processes [20,21]. The principal vegetation type of the QTP is dominated by alpine
meadow, which is widely distributed on the Qinghai-Tibetan Plateau with an area of about
0.7 million km2. However, the alpine meadow may be more sensitive and vulnerable to
climate changes than low-elevation grassland ecosystems due to its high elevation [21,22].
The Three-River Source Region (TRSR), as the headwaters of the Yangtze, Yellow, and
Mekong Rivers, is located in the central part of the QTP and is called the “water tower of
Asia” [23,24]. TRSR covers an area of about 3.95 × 105 km2, of which more than 70% of the
land is covered by alpine meadows [25]. The TRSR is an important water source region
in Asia and provides fresh water for more than 1.4 billion people [26]. Thus, quantitative
research on ET and its partitioning of the alpine meadow ecosystem in TRSR are crucial not
only for the sustainability of economic growth but also for environmental security. In recent
decades, however, the area of the degraded meadow has been expanding in this region
under the influences of climate change and human activities (e.g., over-grazing) [11,27],
and the degraded grassland area accounts for about 58% of the total usable grassland [28].
Meadow degradation will not only lead to a significant decline in ecosystem productivity
and restrain the sustainable development of animal husbandry, but will also greatly change
the water balance and water conservation capacity of the meadow ecosystem [29,30]. Pre-
vious studies have indicated that meadow degradation changed the energy partitioning
and carbon flux [11,25], and some studies have pointed out that the actual evaporation
increased continually in the whole TRSR [31,32] and eventually led to a decrease in soil
water content [33]. However, there have only been a few studies that have focused on
quantifying degraded alpine meadow ET and its partitioning and revealing their relation
to environmental controls. Therefore, it is necessary to quantify the degraded meadow E
and T and it is very important to study the influence of vegetation change on ET and ET
partitioning of degraded alpine meadow in TRSR.

In this study, the S–W model was used to estimate the E, T, and ET in a degraded
meadow in the TRSR from September 2006 to December 2008, and compared the estimated
ET with measured data from the eddy covariance system. The main objectives of our
study were to: (1) characterize the seasonal pattern and interannual variation in ET, and
quantitatively reveal the variations of E and T during the growing season; (2) examine
the influences of physical and biological environmental variables on ET partitioning; and
(3) evaluate the accuracy of the S–W model at the alpine meadow on the QTP.

2. Materials and Methods
2.1. Study Site Description

The study was conducted in a degraded meadow (34◦24′ N, 100◦24′ E, 3963 m a.s.l)
in Guoluo Prefecture in Qinghai Province, China, which is located at the Three-River
Source Region (TRSR) of the Qinghai-Tibetan Plateau (QTP). The local climate is a typical
plateau continental climate with long cold winters and short cool summers. Based on
the data from 1995 to 2004, the monthly mean air temperature ranges from −12.3 ◦C
(January) to 10.1 ◦C (July), with the annual mean temperature between −1.4–0.7 ◦C; the
annual precipitation ranges between 381 and 551 mm with the mean value of 500 mm,
of which 80% fell in the growing season from May to September; and the mean annual
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sunshine time is above 2500 h, with the annual total solar radiation ranging from 6238
to 6299 MJ·m−2. The degraded meadow is dominated by Aconitum pendulum, Ligularia
virgaurea, Pedicularis kansuensis, Oxytropis ochrantha, Ajania tenuifolia, Polygonum sibiricum,
Euphorbia fischeriana, and Morina chinensis, with a mean vegetation height of less than 5 cm
and a maximum canopy cover of 55% during the growing season. The soil of the study site
is classified as Humic Cambisols [25].

2.2. Observation Method

The open-path eddy covariance system was installed in a flat degraded meadow
at 3 m above the ground, with a fetch of more than 300 m from all directions. A three-
dimensional sonic anemometer (CSAT3, CSI, Logan, UT, USA) was used to measure
turbulence. Variation of water vapor density was measured with the open-path CO2/H2O
analyzer set at 10 Hz (Li-7500, Li-Cor, Lincoln, NE, USA). All the instruments were mounted
on an observation tower of 3 m above the ground. Meanwhile, a micro-meteorological
system was used to measure environmental variables including wind direction and velocity
(014A and 034A-L, CSI, Logan, UT, USA), net radiation (CNR-1, Kipp&Zonen, Delft, The
Netherlands), soil heat flux (HFT-3, CSI, Logan, UT, USA), air temperature and humidity
(HMP45C, CSI, Logan, UT, USA), soil temperature at different depths (105T, CSI, Logan,
UT, USA), precipitation (TE525MM, CSI, Logan, UT, USA), soil water content at different
depths (TDR, CS615, CSI, Logan, UT, USA), and other related data. All data were recorded
by using dataloggers (CR5000 and CR23X, CSI, Logan, UT, USA) at 15-min intervals.
The study period was from 16 September 2006, to 31 December 2008. Data gaps were
filled by linear interpolation using the preceding and following data when the gap was in
the nighttime, daytime gaps were filled by the relationship between solar radiation and
measured H or LE [18,34].

During the growing season, leaf area index (LAI) was determined using a leaf area
meter (LI-3100, Li-Cor) about once a month, where fresh leaves were cut for five quadrats
of 0.25 m × 0.25 m and the averaged LAI for the five quadrats was used in this study. The
seasonal variations of LAI in 2007 and 2008 are shown in Figure 1.
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2.3. Modeling

The S–W model was used to estimate E and T in this study, and the formula is
as follows:

ETsw = Esw + Tsw = CsPMs + CcPMc (1)



Water 2021, 13, 2061 4 of 20

where ETSW, ESW, and TSW are the calculated ET, E, and T by the S–W model and PMs
and PMc are terms used to describe E and T, respectively. Cs and Cc are the soil surface
resistance coefficient and canopy resistance coefficient, respectively.

PMs and PMc are calculated as follows:

PMs =
∆R + (æCpD− ∆ras(R− Rs))/(raa + ras)

∆ + γ(1 + (rss/(raa + ras)))
(2)

PMc =
∆R + (æCpD− ∆racRs)/(raa + rac)

∆ + fl(1 + (rsc/(raa + rac)))
(3)

where ∆ is the slope of the saturation vapor pressure-temperature curve (kPa·◦C−1); ρ is
the air density (kg·m−3); Cp is the specific heat at constant pressure (J·kg−1·K−1); D is the
vapor pressure deficit (kPa); and γ is the psychrometric constant. R and Rs represent the
available energy input above the canopy and the soil surface (W·m−2).

The specific equations for the S–W model can be found in [13,35]. We followed the
methods reported by [16,36] to calculate the soil surface resistance (rss), and an empirical
equation was found as follows:

rss = 13.0725(
θs

θ
)

2.79457
(4)

In Equation (4), θ and θs are the soil water content (m3·m−3) and saturated soil water
content (m3·m−3), respectively.

2.4. Model Evaluation

In this study, the statistical analysis included linear regression, root mean square error
(RMSE), and mean absolute error (MSE). RMSE and MSE are calculated as follows:

RMSE =

√
∑n

i=1 (Ei −Oi)
2

n
(5)

MAE =
1
n

n

∑
i=1
|Ei −Oi| (6)

where Ei is the value estimated by the S–W model; Oi is the observed value; and n is the
number of Ei and/or Oi.

3. Results
3.1. Variation of LAI and Environmental Variables

The leaf area index (LAI) in both years started to increase from May and reached
its annual maximum in July, then decreased rapidly because plants began to senesce in
September (Figure 1). The LAI in 2008 was higher than that in 2007, with the maximum
values of 1.20 (2008) and 0.96 (2007) m2·m−2, respectively.

There were no significant differences in annual variation for each environmental vari-
able for the study period (Figure 2), and the corresponding statistical values in the growing
season (May–September) and non-growing season are listed in Table 1. The annual maxi-
mum value of daily net radiation (Rn) appeared in June with 21.23 and 22.07 MJ·m−2·d−1

for 2007 and 2008, respectively, and reached the minimum value in winter. The annual Rn
in 2007 and 2008 was 2952.11 and 2939.99 MJ·m−2, respectively, and more than 60% was
received during the growing season. The annual variation of soil heat flux (G) followed
the same trend of Rn with higher and lower values recorded during the growing and
non-growing seasons (Figure 2b), respectively, but it fluctuated within a relatively narrow
range from −3.06 to 2.27 MJ·m−2·d−1.

The annual variations of air temperature (Ta) and 5 cm soil temperature (Ts5cm) were
strongly dependent on Rn, however, Ts5cm was obviously higher than Ta throughout the
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whole year although Ta followed the same trend as Ts5cm (Figure 2c). The annual mean of
Ta was 0.2 ◦C and −0.6·◦C, while the value of Ts5cm was 3.9·◦C and 3.1·◦C for 2007 and
2008, respectively.
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Table 1. Comparison of environmental conditions during the growing and non-growing seasons at the study site.

Year Growing Phase Rn
(MJ·m−2·d−1)

G
(MJ·m−2·d−1) Ta (◦C) Ts5cm (◦C) P (mm) SWC5cm

(m3·m−3) D (kPa)

2006 16 Sept.–31 Dec. 4.43 −0.38 −3.8 1.1 56.3 0.15 0.44

2007
Annual 8.09 0.11 0.2 3.9 493.0 0.18 0.58

Growing season 12.24 0.47 7.1 10.2 439.7 0.24 0.67
Non-growing season 5.09 −0.15 −4.8 −0.7 53.3 0.13 0.51

2008
Annual 8.03 −0.05 −0.6 3.1 480.4 0.17 0.51

Growing season 11.71 0.39 6.6 9.4 417.6 0.24 0.64
Non-growing season 5.39 −0.36 −5.7 −1.5 62.8 0.13 0.41

Rn, net radiation; G, soil heat flux; Ta, air temperature; Ts5cm, 5 cm soil temperature; SWC5cm, 5 cm soil water content; D, vapor pres-
sure deficit.

Precipitation occurred mainly during the growing season (Figure 2d), which accounted
for 89% and 87% of annual precipitation in 2007 and 2008, respectively. The mean daily
precipitation was 2.9 mm·d−1 and 2.7 mm·d−1 during the growing season in 2007 and
2008, respectively, while it was only 0.3 mm·d−1 in the non-growing season for both years.
The highest monthly precipitation appeared in June for 2007 and 2008, with the value
of 147.5 mm and 101.7 mm, respectively. There was a significant variation in SWC5cm
during the growing season (Figure 2d), which was strongly influenced by precipitation
events and ET. This increased rapidly after the occurrence of rainfall and decreased due
to E and T when no precipitation occurred. SWC5cm varied with a range of 0.13–0.32 and
0.17–0.32 m3·m−3 during the growing season in 2007 and 2008 with a higher value in June
to August, respectively.

Vapor pressure deficit (D) (calculated between 11:30 and 15:30 Beijing Standard Time
(BST)) varied within a narrow range between from 0.03 to 1.64 kPa for the study period
(Figure 2e). No significant difference was noted for the annual variation trend of D between
2007 and 2008, and overall D exhibited a relatively higher value in May and lower value
in January.

3.2. Annual Variation of ET

Annual change of modeled evapotranspiration (ETSW) approximately followed the
same trend as Rn (Figure 3) and showed a large day to day variation during the growing
season. ETSW started to increase from March and reached its highest annual value around
July, and then decreased to the lowest value around January. The majority of ETSW oc-
curred during the growing season, which was 409.9 mm and 395.3 mm in 2007 and 2008,
accounting for 80% and 79% of annual ETSW, respectively (Table 2).
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Table 2. Evapotranspiration partitioning during the study period.

Year Growing Phase ESW (mm) TSW (mm) ETSW (mm)

2006 16 Sept.–31 Dec. 51.1 24.2 75.3

2007
Annual 306.0 205.5 511.5

Growing season 217.6 192.3 409.9
Non-growing season 88.4 13.2 101.6

2008
Annual 281.7 218.1 499.8

Growing season 188.1 207.2 395.3
Non-growing season 93.6 10.9 104.5

3.3. Evapotranspiration Partitioning

There was an obvious difference between seasonal variations in modeled evaporation
(ESW) and transpiration (TSW) during the study period (Figure 4). ESW increased rapidly
from early March, reached its maximum value of 3.1 mm (2007) and 2.4 mm (2008) in
June, then started to decrease, whereas a relatively lower value was observed in July and
August of the growing season. After that, ESW began to increase again with a second peak
appearing around October, and then decreased rapidly from late October. TSW in both 2007
and 2008 increased from late April when plants started to grow, with the maximum value
in July and/or August when ESW had a relatively lower level. Then, TSW decreased to its
minimum value in late October. The annual amount of ESW and TSW accounted for about
60% and 40% of ETSW in 2007, while the values were 56% and 44% in 2008, respectively.
During the growing season, the amount of ESW and TSW in 2007 (2008) accounted for 53%
(48%) and 47% (52%) of ETSW, respectively, indicating that soil evaporation was higher
than plant transpiration, even though the vegetation was fully developed (for more details
see Table 2).
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S–W model in the degraded meadow for 2006–2008.

To further explore the influence of ESW and TSW on the ETSW, we analyzed the monthly
dynamics of ESW/ETSW of the degraded meadow throughout the study period (Figure 5).
During the period from November to April of the next year, ETSW was accounted for by
the ESW (i.e., ESW/ETSW = 1.0) because the growth of plants stopped. ESW/ETSW gradually
decreased from May with the plant growth and reached its minimum value of 0.35 (in
August 2007 and in July 2008), then ESW/ETSW increased again until November. The
average monthly ESW/ETSW was 0.50 during the growing season.



Water 2021, 13, 2061 8 of 20

Water 2021, 13, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 4. Annual variations in soil evaporation (ESW) and plant transpiration (TSW) estimated by the 
S–W model in the degraded meadow for 2006–2008. 

To further explore the influence of ESW and TSW on the ETSW, we analyzed the monthly 
dynamics of ESW/ETSW of the degraded meadow throughout the study period (Figure 5). 
During the period from November to April of the next year, ETSW was accounted for by 
the ESW (i.e., ESW/ETSW = 1.0) because the growth of plants stopped. ESW/ETSW gradually 
decreased from May with the plant growth and reached its minimum value of 0.35 (in 
August 2007 and in July 2008), then ESW/ETSW increased again until November. The aver-
age monthly ESW/ETSW was 0.50 during the growing season. 

 
Figure 5. Seasonal dynamics of the ratio of monthly soil evaporation to monthly evapotranspiration 
(ESW/ETSW) estimated from the S–W model in degraded meadow for 2006–2008. 

  

Figure 5. Seasonal dynamics of the ratio of monthly soil evaporation to monthly evapotranspiration
(ESW/ETSW) estimated from the S–W model in degraded meadow for 2006–2008.

3.4. Diurnal Variation of ET

Diurnal variations of ESW, TSW, and ETSW of clear days in January and July (used
to represent winter and summer extreme conditions, respectively) for 2007 and 2008 are
shown in Figure 6, where a clear day is defined as that on which the daily transmissivity
was greater than 0.7 [18]. All three variables showed the same variation pattern for the
two years of 2007 and 2008. In January, ETSW began to increase around 09:00 and peaked
between 13:00 and 15:00 with the maximum average value of about 0.02 mm·h−1, then
began to decrease and fell to nearly zero at around 19:00 for both years. In July, however,
ETSW began to increase around 07:00 and reached the maximum at about 14:00, then
decreased to about zero at 21:00. Although the ETSW showed a similar pattern for July and
January, the maximum average value of the former with about 0.6 mm·h−1, which was
much higher than that of the latter. In addition, it was found that daily TSW was higher
than ESW in July in both 2007 and 2008 (especially in 2008). In July, daily ESW with the
value of 1.8 mm in 2007 was higher than that of 1.5 mm in 2008, and the daily ratio of ESW
to TSW (ESW/TSW) was 0.80 in 2007, which was higher than that of 0.58 in 2008, while the
daily ratio of ESW to ETSW (ESW/ETSW) was 0.44 and 0.37 in 2007 and 2008, respectively. In
other words, the contribution of ESW to ETSW in 2007 was higher than that in 2008 in July
of the growing season.



Water 2021, 13, 2061 9 of 20

Water 2021, 13, x FOR PEER REVIEW 9 of 20 
 

 

3.4. Diurnal Variation of ET 
Diurnal variations of ESW, TSW, and ETSW of clear days in January and July (used to 

represent winter and summer extreme conditions, respectively) for 2007 and 2008 are 
shown in Figure 6, where a clear day is defined as that on which the daily transmissivity 
was greater than 0.7 [18]. All three variables showed the same variation pattern for the 
two years of 2007 and 2008. In January, ETSW began to increase around 09:00 and peaked 
between 13:00 and 15:00 with the maximum average value of about 0.02 mm·h−1, then be-
gan to decrease and fell to nearly zero at around 19:00 for both years. In July, however, 
ETSW began to increase around 07:00 and reached the maximum at about 14:00, then de-
creased to about zero at 21:00. Although the ETSW showed a similar pattern for July and 
January, the maximum average value of the former with about 0.6 mm·h−1, which was 
much higher than that of the latter. In addition, it was found that daily TSW was higher 
than ESW in July in both 2007 and 2008 (especially in 2008). In July, daily ESW with the value 
of 1.8 mm in 2007 was higher than that of 1.5 mm in 2008, and the daily ratio of ESW to TSW 
(ESW/TSW) was 0.80 in 2007, which was higher than that of 0.58 in 2008, while the daily ratio 
of ESW to ETSW (ESW/ETSW) was 0.44 and 0.37 in 2007 and 2008, respectively. In other words, 
the contribution of ESW to ETSW in 2007 was higher than that in 2008 in July of the growing 
season. 

 
Figure 6. Diurnal variations of evaporation (ESW), transpiration (TSW), and evapotranspiration (ETSW) estimated by the S–
W model on clear days in (a) Jan 2007, (b) Jan 2008, (c) Jul 2007, and (d) Jul 2008. 

4. Discussion 
Our simulation results indicated that E accounts for a major part of ET due to vege-

tation degradation. For environmental (biotic and abiotic) factors that may affect ET and 
its partitioning, and for the model validation, our research showed the following results: 
1. E/ET in our research site was more sensitive to change in LAI. E/ET decreased rapidly 

with the increase of LAI (paragraph 1 in Section 4.1); 
2. Grassland ecosystems with lower LAI and/or vegetation coverage may lose more wa-

ter through ET (paragraph 2 in Section 4.1). 

Figure 6. Diurnal variations of evaporation (ESW), transpiration (TSW), and evapotranspiration (ETSW) estimated by the
S–W model on clear days in (a) Jan 2007, (b) Jan 2008, (c) Jul 2007, and (d) Jul 2008.

4. Discussion

Our simulation results indicated that E accounts for a major part of ET due to vegeta-
tion degradation. For environmental (biotic and abiotic) factors that may affect ET and its
partitioning, and for the model validation, our research showed the following results:

1. E/ET in our research site was more sensitive to change in LAI. E/ET decreased rapidly
with the increase of LAI (paragraph 1 in Section 4.1);

2. Grassland ecosystems with lower LAI and/or vegetation coverage may lose more
water through ET (paragraph 2 in Section 4.1).

3. Net. radiation had little effect on ET partitioning, but had a great influence on ET, E,
and T (paragraph 2 in Section 4.2).

4. Air temperature had a greater effect on T than on E (paragraph 3 in Section 4.2).
5. Soil water content at a 5 cm depth affected both ET and ET partitioning in this

degraded meadow, especially for the E (paragraph 4 in Section 4.2).
6. Vapor pressure deficit had little effect on both ET and ET partitioning (paragraph 5 in

Section 4.2).
7. Leaf area index is an important factor influencing ET partitioning (paragraph 6 in

Section 4.2).
8. The model results had good agreement with the ET observed by the eddy covariance

system (paragraph 2 in Section 4.3).
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4.1. Effects of Vegetation on Evapotranspiration Partitioning

ET is mainly dependent on vegetation, meteorological conditions, and soil water [37],
and the partitioning of ET into E and T is strongly influenced by changes in vegetation
characteristics during the growing season [38,39]. Leaf area index (LAI) is often used to
quantify terrestrial ecosystem ET as well as ET partitioning; an increase in leaf area will
initially increase ET when the soil water content is high, and this response will weaken
at high LAI [40,41]. In this degraded meadow, the variation pattern of E is quite different
from that of T during the growing season (Figure 4). Seasonal variation of T followed
the same trend of LAI, with the higher values recorded around August at higher LAI
(Figure 1), however, the highest E occurred around June. The result is consistent with
many literature reports [39,42,43]. The analysis of the relationship between LAI and E/ET
during the growing season is illustrated in Figure 7. The E/ET data were LAI-bin averaged
because this data compilation helped to reduce or offset the errors associated with the
measurements [34]. The LAI gaps were linearly interpolated to daily intervals [44]. It
was found that there was a significant negative correlation between E/ET and LAI for
2007 and 2008 (Figure 7) (i.e., the contribution of soil evaporation to evapotranspiration
decreased linearly with the increase in LAI), which is consistent with other alpine meadow
ecosystems reported by [17]. A previous study also reported a similar negative relationship
in multiple ecosystems (e.g., forests, crops, wetlands, shrubs, and grasses) [45]. Several
studies have reported that E/ET initially decreased rapidly with an increase in LAI at the
low vegetative cover (low LAI), while the response of E/ET to LAI decreased gradually
with the increasing LAI, and finally approached a constant value [14,17,43,45]. In the
present study, however, the LAI was very low, even in the peak growing season, with the
maximum value of 1.20 m2·m−2 (July 2008) due to the meadow degradation, therefore,
E/ET was more sensitive to change in LAI. Based on the diurnal variation of ET partitioning
in the peak growing season of July (Figure 6), the daily E/ET in 2007 was obviously higher
than that in 2008 due to the relatively high LAI in 2008 compared with 2007. In addition, E
in the growing season of 2007 was higher than that of 2008 whereas the opposite result was
obtained for T (Table 2), and the regression line between E/ET and LAI for 2007 was above
that for 2008, indicating that the contribution of E to ET in 2007 was higher than that in
2008, which may be due to the lower LAI for 2007 compared with 2008 that resulted in the
increase in ET of this alpine meadow (Table 2).

To further investigate the relationship between vegetation and ET partitioning, we
made a comparison between our results and some of the previously published studies
on grassland ecosystems (Table 3). All of these studies reported a negative relationship
between vegetation conditions and E/ET, which is consistent with our research. However,
it is worth noting that worse vegetation conditions corresponded to higher ET/P (the ratio of
evapotranspiration to precipitation) (Table 3). We suggest that this is due to the degradation
of vegetation thus allowing more energy to reach the soil surface, which leads to increased
E and ET. Furthermore, Gu et al. [9] found a curve relationship between the aboveground
biomass and ET at an alpine meadow ecosystem. That is, ET increased gradually with
the increase in aboveground biomass at first, but decreased thereafter despite the biomass
still increasing.
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4.2. Effects of Environmental Factors on Evapotranspiration Partitioning

Except for the vegetation LAI, solar radiation, temperature, soil moisture, and air
humidity will also have an impact on the partitioning of evapotranspiration [9,10,50,51].
Consequently, to comprehensively understand the control of environmental factors on the
balance between evaporation and transpiration, net radiation (Rn), air temperature (Ta),
5 cm soil water content (SWC5cm), vapor pressure deficit (D) as well as the leaf area index
(LAI) were chosen to analyze the effects of the above factors on the ET and its partitioning
(E/ET and T/ET). In this study, we referred to the method by [42], where each dependent
variable was multiplied by 0.5 and 2.0 in the model, respectively, then the model was rerun
to see how much the output value changed (Figure 8 and Table 4). Here, multiplying by
0.5 and 2.0 is defined as “low level” and “high level”, respectively, and “standard” is the
observed value.

Solar radiation is the most important source of energy for most biological and meteo-
rological processes, and ET, E, and T are dependent mainly on the solar energy available to
vaporize the water [50]. It was found that Rn had little effect on ET partitioning (E/ET and
T/ET) (Figure 8a), but had a great influence on ET, E, and T (Table 4), which is consistent
with previous research results [50]. ET, E, and T were decreased about 66% compared with
the standard when Rn was at a low level and increased about 132% when Rn was doubled
(Table 4). The results suggest that the change of Rn strongly influences ET, E, and T, but
there was almost no influence on E/ET and T/ET in this degraded meadow ecosystem.
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Table 3. Comparison between E/ET, T/ET, ET/P, and vegetation conditions observed in the degraded meadow and values observed in other grassland ecosystems.

Location Study Period E/ET (%) T/ET (%) ET/P (%) Vegetation Type Coverage (%) Maximum LAI
(m2·m−2) References

37◦36′ N, 101◦18′ E, 3250 m a.s.l 2002–2004 - - 56–61 alpine meadow >90 3 [9]
37◦37′ N, 101◦20′ E, 3160 m a.s.l. 2003–2005 40–43 57–60 - alpine meadow 70–80 4 [17]
37◦40′ N, 101◦20′ E, 3293 m a.s.l 2003–2005 36–45 55–64 - alpine meadow 70–80 2.8 [17]
30◦51′ N, 91◦05′ E, 4333 m a.s.l. 2004–2005 56–60 40–44 - alpine meadow-steppe 45–55 1.1 [17]
43◦33′ N, 116◦40′ E, 1252 m a.s.l. 2003–2004 57–61 39–43 - temperate steppe 60–70 1.5 [17]

42◦02′48′ ′ N, 116◦17′01′ ′ E, 1350 m a.s.l 2005–2006 - - 89 typical steppe - 0.47 [46]
43◦33′16′ ′ N, 116◦40′17′ ′ E, 1250 m a.s.l 2005–2006 - - 107 degraded steppe - 0.25 [46]

44◦25′ N, 122◦52′ E, 184 m a.s.l 2003–2008 - - 97–101 degraded grassland <70 - [47]
31.9083◦ N, 110.8395◦ W, 1000 m a.s.l summer 2008 63 37 104 shrubland 24 0.55 [7]
31.7438◦ N, 110.0522◦ W, 1375 m a.s.l summer 2008 56 44 92 shrubland 27 0.66 [7]

43◦40′26.61′ ′ S, 171◦35′27.63′ ′ E, 309 m a.s.l 2011–2012 25 75 78 pasture - 5–6 [48]
31.737◦ N, 109.942◦ W, 1531 m a.s.l 2005–2018 - 35–46 91 grassland - 0.56–1.80 [49]

34◦24′ N, 100◦24′ E, 3963 m a.s.l 2006–2008 48–53 47–52 93–95 degraded alpine meadow 55 1.20 In this
study

E/ET, the ratio of soil evaporation to evapotranspiration; T/ET, the ratio of plant transpiration to evapotranspiration; ET/P, the ratio of evapotranspiration to precipitation.
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Table 4. Effects of net radiation (Rn), air temperature (Ta), 5 cm soil water content (SWC5cm), vapor
pressure deficit (D) and leaf area index (LAI) on ET, E, and T in the growing season of 2007 and 2008
for the degraded meadow.

Input Variables

Percentage of Variation

−50% +100%

ETSW ESW TSW ETSW ESW TSW

Net radiation, Rn (MJ·m−2) −66% −66% −67% +133% +132% +133%
Air temperature, Ta (◦C) −13% −9% −16% +22% +11% +33%
5 cm soil water content,

SWC5cm (m3·m−3) −14% −62% +35% +9% +41% −22%

Leaf area index, LAI (m2·m−2) −3% +38% −45% +4% −46% +54%
Vapor pressure deficit, D (kPa) −<1% −<1% −<1% +<1% +<1% +<1%

Temperature is one of the major factors affecting the rate of ET, E, and T, and
temperature-based models are widely used to estimate ET [51,52]. Our results showed
that E/ET was slightly higher (or lower) than the standard when Ta was at a low level (or
high level), while an opposite change was found for T/ET (Figure 8b). However, Ta had a
positive relationship with ET, E, and T (Table 4), and the effect of Ta on T was greater than
ET and E (Table 4). In this study, the variation of T almost followed the same trend of LAI
and Ta with a higher value in about July (Figures 1, 2c and 4), indicating that T increased
with the increase in LAI and Ta, but E decreased rapidly with the increasing LAI, therefore
the response of T to Ta was more sensitive compared with the E.

Numerous studies have shown that ecosystem ET is closely related to the soil water
content [10,25,47]. Our results indicated that SWC5cm affected both ET and its partitioning
in this degraded meadow, especially for the E (Figure 8d, Table 4). It was observed that
E/ET and T/ET showed the opposite change trend when the SWC5cm was multiplied by 0.5
and 2 (Figure 8d), respectively, in which increasing SWC5cm significantly increased E/ET
and decreased T/ET, and the converse was also true (Figure 8d). Soil water content is
an important factor controlling soil surface resistance, and increasing SWC5cm can reduce
bare soil surface resistance to evaporation, and at the same time, increase the supply of
soil moisture, resulting in an increase of E and E/ET. The previous study pointed out
that transpiration will increase rapidly with the increase in soil water content when water
supply is limited [53], which is inconsistent with our results. However, transpiration is
strongly dependent not only on the soil water content, but also on meteorological and
vegetation conditions. In this alpine meadow, most of the root system was distributed
within the 0 to 10 cm surface layer, and the soil maintained a relatively high-water content
throughout the growing season due to the abundant precipitation (Figure 2d), while a
downward trend of SWC5cm was observed in the peak growing season of July–August due
to the high ET. Therefore, under the condition that other observed variables are included in
the model, our results showed that T and T/ET decreased when only increasing SWC5cm,
and the possible reason is that T is predominantly controlled by Rn and LAI, and at the
same time, affected by the SWC5cm. The model result is consistent with the actual change
in transpiration, and a similar relationship was also observed between the T and SWC5cm
in another study by using micro-lysimeter experiments in an alpine meadow of the TRSR
(article in print).

Vapor pressure deficit (D) is one of the principal weather variables affecting ET because
D affects the evaporation demand of the atmosphere and canopy conductance [9]. Our
results showed that D had a very small effect on both ET and its partitioning (Figure 8c,
Table 4), perhaps because the value of measured D was very low and varied within a
very narrow range from 0.03 to 1.64 kPa in this degraded meadow (Figure 2e), which was
significantly lower than many other grassland values with the maximum D ranging from
about 2 to 5 kPa [4]. Thus, when D was multiplied by 0.5 and 2.0, there was almost no
change in ET as well as its partitioning.
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LAI is one of the important parameters describing vegetation characteristics, which
is widely adopted in ET partitioning [6,39]. The simulation results showed that E/ET
will increase or decrease significantly compared with the “standard” level when LAI is
multiplied by 0.5 or 2.0, while in contrast, an opposite trend was observed for T/ET with
increasing or decreasing LAI (Figure 8e) and it was also noted that there was the same
trend for E and T (Table 4). Our results are consistent with earlier studies that showed the
effects of LAI on ET partitioning [41,45]. However, the effect of LAI on ET was relatively
small because the E pattern was almost the opposite to that of T during the growing season
(Figure 4), so increasing E may be offset by the decreasing T. Usually, increasing LAI can
increase vegetation cover and lead to a decrease in bare soil surface area, then decreases E
and/or increases T, and the reverse is also true.

Overall, LAI and SWC5cm are the main important factors influencing E/ET and/or
T/ET. E and T were primarily controlled by Rn, LAI, and SWC5cm, while the effect of Ta on
T was relatively large compared with E. D had little effect on both ET and ET partitioning.

4.3. Validation of the Shuttleworth–Wallace Model

The eddy covariance (EC) system was conducted in our flat degraded meadow. The
WPL density correction was applied to water vapor flux [54], and the energy balance ratio
(EBR) was calculated using the following equation [55]:

EBR =
∑ (LE + H)

∑ (Rn − G)
(7)

where H, LE, and G are the sensible, latent, and soil heat fluxes. In this study, the term
(LE + H), measured by the EC method, seemed to be underestimated since the average
value of EBR was 0.79 in the study period, which fell in the median region of reported
energy closures, which ranged from 0.55 to 0.99 [55]. LE was converted to ET (mm) by
assuming a value for a conversion factor of 2450 J/g.

In order to verify the performance of the S–W model over the alpine meadow, we
compared the ET estimated by the S–W model (ETSW) to that measured by the EC method
(ETeddy) (Figure 9). Overall, there was a good agreement between ETSW and ETeddy in the
study period, while the ETSW was underestimated compared to the ETeddy from December
to April of the next year (Figure 9). Gong et al. [56] also pointed out that the S–W model
overestimated and/or underestimated ET at different growth stages in comparison with
the results measured by the lysimeter. Therefore, we performed some statistical analyses
between ETSW and ETeddy in the growing and non-growing seasons (Table 5). It was found
that the model performance in the growing season was better than that in the non-growing
season, and the model overestimation of ET occurred in the growing season, while the
underestimation appeared in the non-growing season. The relationships between ETSW
and ETeddy at different growth stages for 2006–2008 were summarized through statistical
analyses (Figure 10 and Table 5). The linear regression slopes (k) ranged from 1.04 to 1.06
and the values of R2 (square of the correlation coefficient) were over 0.91. RMSE and MAE
varied in the range of 0.3–0.6 and 0.2–0.5 mm·d−1, respectively. The possible reason for
this overestimation of ET might be due to the lack of energy balance closure of the eddy
covariance method (EBR = 0.79), and thus the ET was underestimated by the EC method.
Chen et al. [37] reported that the S–W model overestimated ET by comparing it with the
measured data. Wei et al. [57] indicated that the S–W model overestimated ET by 5%
when compared to the measured data, which is similar to our simulation results. On the
whole, the ET was well estimated by the S–W model in this degraded meadow on the
Qinghai-Tibetan Plateau.
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Table 5. Statistical analyses of evapotranspiration estimated by the S–W model (ETSW) and measured
by the eddy covariance (ETeddy) in the different periods.

Year Period k R2 RMSE MAE

2006 16 September–31 December 1.06 0.93 0.3 0.2

2007
Annual 1.05 0.92 0.5 0.4

Growing season 1.13 0.96 0.6 0.5
Non-growing season 0.71 0.76 0.5 0.4

2008
Annual 1.04 0.91 0.6 0.4

Growing season 1.12 0.96 0.6 0.5
Non-growing season 0.72 0.74 0.5 0.4

k, slope (dimensionless); R2, determination coefficient; RMSE, root mean square (mm·d−1); MAE, mean absolute
error (mm·d−1).

5. Conclusions

We estimated evapotranspiration (ET) and its partitioning with the S–W model in a
degraded alpine meadow in the TRSR, and compared the results with data obtained from
eddy covariance. The validation confirmed the good performance of the S–W model for
the prediction of ET and its partitioning in this study. Net radiation is the most important
factor influencing ET while leaf area index (LAI) is a key factor affecting ET partitioning.
Due to the vegetation degradation at our research site, the contribution of soil evaporation
(E) accounted for the main part of ET, and ET was higher with the lower LAI. Our results
suggest that the water lost by ET from the meadow ecosystem increased with the increasing
intensity of vegetation degradation, that is, meadow degradation would increase water
loss through increasing E, leading to reducing the water conservation capacity of the alpine
meadow ecosystem in TRSR.
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