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Abstract: We present a new method to evaluate the hydraulic jump characteristics in a horizontal
rectangular channel with a positive step. We considered the flow curvature effect and the free
surface’s small rise at the A-type hydraulic jump’s end. First, we present a novel method to give
jump length estimation based on the similarity of the jump and the turbulent wall-jet, considering
the pressure gradient. Then, considering the jump as a curvilinear flow and using a one-dimensional
momentum equation, we present an accurate expression for the conjugate flow depth regarding
the initial Froude number and step height. Finally, we compute the jump’s energy dissipation rate.
Compared to the theoretical models for conjugate flow depth in a hydraulic jump, the proposed
equation in this study fit the experimental data better, even for high steps and large initial Froude
numbers. However, for low Froude numbers (F1 < 5), the equation was less accurate in estimating
the jump length. Regarding the jump’s energy dissipation rate, the results agreed well with the
experimental data from previous investigations. However, it is noted that the increased energy
dissipation rate dwindled in larger Froude numbers.

Keywords: hydraulic jump; positive step; jump length; conjugate flow depth; flow curvature; wall jet

1. Introduction

Hydraulic jump has been widely used as an energy dissipater in stilling basin design.
A more efficient stilling basin can be designed if the sequent depth is lower, jump length
is shorter, and energy loss in the jump is higher than that in the classical jump [1]. Using
structures such as sills, steps, etc., these objectives can be achieved. In addition, steps
are used to control the hydraulic jump’s position. According to Hager and Bretz [2], in
a hydraulic jump, if the whole jump length occurs upstream of a positive step and ends
at the step brink, it is classified as an A-type hydraulic jump (Figure 1). While numerous
investigations have been conducted on jumps at negative steps, few have been conducted
on jumps at positive steps. However, Einwachter [3] simplified the momentum equation to
a non-dimensional form as:

F2
1 =

Y
{
(Y + S)2 − 1

}
2(Y− 1)

(1)

in which:

F2
1 =

q2

gh3
1

; Y =
h3

h1
; S =

s
h1

(2)

where F1 is the initial Froude number; q is the unit discharge; g is the gravitational accelera-
tion; h1 is the flow depth just before the jump; Y is the conjugate flow depth; h3 is the tail
water depth; S is the relative step height; and s is the step height (Figure 1).
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where ΔE is the energy dissipation between sections 1 and 3; E1 = h1 + q2/(2gh12); and Lj is 

the jump length. 

Hager and Bretz [2] conducted an experimental study and identified four flow re-

gimes at a positive step. They also confirmed previous analytical models. Furthermore, 

Quraishi and Al-Brahim [6] studied jumps at positive steps in sloping channels. They pre-

sented a modified Froude number by which to estimate the conjugate flow depth. In an-

other study, Husain et al. [7] extracted empirical equations to estimate the conjugate flow 

depth and jump length for any jump type at a positive step. Later, Negm [8] presented a 

different modified Froude number form for jumps at positive steps, in which channel 

slope and step height effects are inserted separately. Although most suggested solutions 

for the flow characteristics of a hydraulic jump with a positive step have good accuracy 

levels, there is still a great complexity: none have an uncomplicated structure or a closed-

form representation to deal with the non-hydrostatic pressure distribution. 

Figure 1. Sketch of an A-type hydraulic jump at a positive step.

Later, Forster and Skrinde [4] modified Einwachter’s analytical model as:

F2
1 =

3Y(Y + S)2

8(Y + S)
(3)

Hager and Sinniger [5] extended the theoretical model and extracted expressions for
flow characteristics as:

F2
1 =

Y
{
(Y + S)2 + S2 − 1

}
2(Y− 1)

(4)

∆E
E1

=

(
1−
√

2
F1

)
, F1 > 1.5 (5)

Lj = 6
(

h3 +
6s
5

)
(6)

where ∆E is the energy dissipation between sections 1 and 3; E1 = h1 + q2/(2gh1
2); and Lj is

the jump length.
Hager and Bretz [2] conducted an experimental study and identified four flow regimes

at a positive step. They also confirmed previous analytical models. Furthermore, Quraishi
and Al-Brahim [6] studied jumps at positive steps in sloping channels. They presented a
modified Froude number by which to estimate the conjugate flow depth. In another study,
Husain et al. [7] extracted empirical equations to estimate the conjugate flow depth and
jump length for any jump type at a positive step. Later, Negm [8] presented a different
modified Froude number form for jumps at positive steps, in which channel slope and
step height effects are inserted separately. Although most suggested solutions for the
flow characteristics of a hydraulic jump with a positive step have good accuracy levels,
there is still a great complexity: none have an uncomplicated structure or a closed-form
representation to deal with the non-hydrostatic pressure distribution.

Therefore, we modified the method presented by Hager and Sinniger [5] to present a
more accurate closed-form approximation for the conjugate flow depth. The heart of the
present approximation relies on a quantity that can represent the non-hydrostatic pressure
at the step section, along with the small rise of the jump free surface at the step brink.

2. Proposed Model
2.1. Jump Length

The first challenge is to estimate the A-type hydraulic jump’s length at a positive step.
A hydraulic jump downstream of a sluice gate can be modeled as a turbulent wall-jet. The
proposed method aims to consider the pressure gradient as an effective parameter to reach
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a new decay equation form. We also applied appropriate velocity distribution and growth
rate for the wall jet. For this purpose, similar to Rajaratnam’s dimensional analysis [9], we
could assume:

um = f
(

M1, ρ, x,
dp
dx

)
(7)

where M is the momentum flux and dp/dx is the pressure gradient. Applying dimensional
analysis and using Rajaratnam’s [10] experimental data, we obtain the maximum velocity
decay equation as:

um

v1
= −0.91

(√
x
h1

g
2v2

1

h2
3 − h2

1
Lj

)
+

2.55√
x/h1

(8)

where um is the maximum velocity of the jet at any section (x) and Lj is the jump length.
The first term on the right-hand-side of Equation (8) indicates the pressure gradient effect.
Figure 2 compares Equation (8) with previous classical hydraulic jump experiments for
different initial Froude numbers. The curve has a sharp fall followed by a milder fall; the
closer to the jump’s beginning, the faster the velocity decay. Equation (8)’s prediction does
not differ for various initial Froude numbers, nor the data.
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Figure 2. Maximum velocity decay for the hydraulic jump.

More result divergence is detected with Rouse et al.’s [11] data. Holistically, Equation (8)
seems to be adequately accurate to estimate the jump’s maximum velocity decay. For the
no pressure gradient case (the classical wall-jet), Equation (8) reads as:

um

v1
=

2.55√
x/h1

(9)

As expected, Equation (9) lies above Equation (8), indicating a slower decay rate for
the classical wall-jet. Now, an appropriate velocity distribution for the jump is required.
Among numerous expressions for the jump’s velocity distribution, Ohtso et al. [12] assumed
the initial flow condition as a partially developed flow and presented the hydraulic jump’s
velocity distribution as:

u
um

= Exp

{
−1

2

[
1.765

(
y− δ

b

)]2
}

(10)
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where b is the flow depth from the bottom, where the flow velocity is um/2, and δ is the
maximum velocity depth. In order to apply Equation (10), expressions for b and δ should
be determined. Various expressions have been suggested, but only a few consider partially
developed inflow conditions. The two most accurate are the relations given by Chanson
and Brattberg [13], as δ/b = 0.25 and b = 0.11x + 1.39h1. Combining Equations (8) and (10)
results in:

v1

v3
Exp

[
−1

2

(
1.765

[
y− δ

b

])2
](
−0.91

(√
x
h1

g
2v2

1

h2
3 − h2

1
Lj

)
+

2.55√
x/h1

)
= 1 (11)

Replacing y = h3, at which x = Lj, and after few manipulations, the final equation for
the jump length in a dimensionless form is presented as:

Exp

−1.56

[
(h3/h1)

[
1− 0.03

(
Lj/h3

)]
− 0.85

1.39 + 0.11(h3/h1)
(

Lj/h3
) ]2

(h3

h1

/ Lj

h3

)1/2
[
−0.46

F2
1

((
h3

h1

)2
− 1

)
+ 2.55

]
= 1 (12)

where h3/h1 can be defined by the Belanger equation.
A comparison of Equation (12)’s predictions with the experimental results from Woy-

cicki [14], Einwachter [3], Hager and Sinniger [5], and Chow [15] is shown in Figure 3.
Compared to the curves of Hager and Sinniger [5], and Chow [15], Equation (12) indicates a
more rational trend, in which the jump length estimation is closer to the data at lower initial
Froude numbers. In fact, Equation (12) shows a similar trend to the experimental data,
which is more discernable for higher steps. However, for low Froude numbers (F1 < 5),
Equation (12) was unable to estimate the jump length, as were the previous estimations.
Moreover, larger step heights resulted in more data convergence, whereas little deviation
was seen for different step heights at large Froude numbers. The small overestimation of
Equation (12) could be justified as the consequence of the wall jet’s velocity distribution
assumption. The step’s presence stagnates the approaching velocity, and thus changes the
velocity distribution. Furthermore, since few experimental studies have been conducted
on jump length at a positive step, more research is necessary to more accurately examine
the subject.

2.2. Conjugate Flow Depth

The necessary parameters for the A-type hydraulic jump at a positive step are shown
in Figure 1, where h2 is the flow depth just before the step. A small flow rise, h′, is noticeable
just at the step. To predict the hydraulic jump’s conjugate flow depth with a positive step,
we applied a momentum equation in the horizontal direction. We assumed the momentum
correction factor to be unity, and neglected the frictional force. We also assumed a linear
variation in bed pressure over the roller length. The velocity distribution was uniform, and
we considered the flow one-dimensional in the longitudinal direction. Using the control
volume shown in Figure 1, the 1-D momentum equation for the unit discharge (q) results in:

Fp1 − Fp3 − Fps − Fc = ρq(v3 − v1) (13)

where Fp is the pressure force; v is the average velocity; Fc indicates the flow curvature
effect; ρ is the mass density; and indices 1, 2, 3 and s refer to sections (1), (2), (3), and at the
step, respectively.
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The small jump profile rise at section (2), h′, is justified by the stagnation effect at
the end of the hydraulic jump roller, where the whole kinetic energy transforms into the
potential energy.

Another justification for the rise is based on the free surface profile. In a horizontal
channel, normal flow depth is infinite, and the free surface profile tends to reach the normal
depth downstream. As a result, the flow loses its specific energy at section (2), which is

expressed as E = h2 +
v2

2
2g . Combined, these set up the primary motivations to look for a

closed-form solution for h′ as:

h′ =
v2

2
2g

(14)

The next challenge is to determine the Fc. It is evident that concave streamlines charac-
terize the flow over the step. Chow [15] assumed that a curvilinear flow is accompanied by
centrifugal forces normal to the flow direction. The pressure distribution deviates from the
hydrostatic distribution and a non-linear form is assumed. This deviation, at any height,
can be considered as γc, where c is defined as:

c =
v2h
gR

(15)

and the extra force imposed on the step is:

Fc = γs
v2

2h2

gR
(16)

where R is the curvature radius.
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Now, we present an appropriate expression for R, whose determination depends on
the streamline profile. Figure 4 shows the jump surface (convex curve) profile. The jump
starts at the origin and ends at the point (Lj, h2). The concave curve indicates the closest
streamline to the surface, and backward flow exists between the two curves. It seems
rational to consider the curves as symmetrical, and that y = (h2/Lj)x is the line of symmetry.
From the geometric point of view, the corresponding points in a symmetrical curve have
the same curvature radius. The curvature radius of the point (Lj, h2), as the streamline’s
endpoint, equals the surface profile endpoint’s curvature radius.

Water 2021, 13, 2005 6 of 11 
 

 

ℎ′ =
𝑣2
2

2𝑔
 (14) 

The next challenge is to determine the Fc. It is evident that concave streamlines char-

acterize the flow over the step. Chow [15] assumed that a curvilinear flow is accompanied 

by centrifugal forces normal to the flow direction. The pressure distribution deviates from 

the hydrostatic distribution and a non-linear form is assumed. This deviation, at any 

height, can be considered as γc, where c is defined as: 

𝑐 =
𝑣2ℎ

𝑔𝑅
 (15) 

and the extra force imposed on the step is: 

𝐹𝑐 = 𝛾𝑠
𝑣2
2ℎ2
𝑔𝑅

 (16) 

where R is the curvature radius. 

Now, we present an appropriate expression for R, whose determination depends on 

the streamline profile. Figure 4 shows the jump surface (convex curve) profile. The jump 

starts at the origin and ends at the point (Lj, h2). The concave curve indicates the closest 

streamline to the surface, and backward flow exists between the two curves. It seems ra-

tional to consider the curves as symmetrical, and that y = (h2/Lj)x is the line of symmetry. 

From the geometric point of view, the corresponding points in a symmetrical curve have 

the same curvature radius. The curvature radius of the point (Lj, h2), as the streamline’s 

endpoint, equals the surface profile endpoint’s curvature radius. 

 

Figure 4. Jump surface profile symmetry and the upper streamline. 

Hence, we could use a jump surface profile equation, and determine the curvature 

radius at the endpoint, and take that into account as the streamline’s curvature radius at 

the same point. For this purpose, we could use the jump surface profile equation given by 

Gupta [16] as: 

1 −
𝑦

ℎ2 − ℎ1
= (

ℎ2 − ℎ1
𝐿𝑗

)

2

(
𝐿𝑗

ℎ2 − ℎ1
−

𝑥

ℎ2 − ℎ1
)
2

 (17) 

in which x and y are the coordinates of the jump surface profile, and the origin is the 

channel bed at the jump’s beginning. The curvature radius of any curve is defined as: 

𝑅 = |
(1 + 𝑦′2)3 2⁄

𝑦″
| (18) 

Figure 4. Jump surface profile symmetry and the upper streamline.

Hence, we could use a jump surface profile equation, and determine the curvature
radius at the endpoint, and take that into account as the streamline’s curvature radius at
the same point. For this purpose, we could use the jump surface profile equation given by
Gupta [16] as:

1− y
h2 − h1

=

(
h2 − h1

Lj

)2( Lj

h2 − h1
− x

h2 − h1

)2

(17)

in which x and y are the coordinates of the jump surface profile, and the origin is the
channel bed at the jump’s beginning. The curvature radius of any curve is defined as:

R =

∣∣∣∣∣
(
1 + y′2

)3/2

y′′

∣∣∣∣∣ (18)

Computing the first and second-order derivatives of Equation (17) and substituting in
Equation (18), R is obtained as:

R =

∣∣∣∣∣∣∣∣∣
(

1 +
[
2(h2 − h1)

(
Lj − x

)
/L2

j

]2
)3/2

−2(h2 − h1)/L2
j

∣∣∣∣∣∣∣∣∣ (19)

Replacing x = Lj and h2 = h3 + s, the curvature radius at the step brink is gained as:

R =
L2

j

2(h3 + s− h1)
(20)
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Using the continuity equation, and Equations (14) and (16), Equation (13) transforms to:

h2
1

2
−

h2
3

2
− s

2

(
2h2 +

v2
2

g
− s

)
− s

v2
2h2

gR
=

q2

g

(
1
h3
− 1

h1

)
(21)

In large Froude numbers, due to intensive jet flow against the step, Equation (21)’s
accuracy diminishes. This could be justified by stagnation’s great effect on the flow
curvature. Thus, it seems necessary to include the Froude number’s effect in the flow
curvature term. To achieve this goal, we could assume a correction factor such as C, which
is a function of F1, and rewrite the momentum equation as:

h2
1

2
−

h2
3

2
− s

2

(
2h2 +

v2
2

g
− s

)
− Cs

v2
2h2

gR
=

q2

g

(
1
h3
− 1

h1

)
(22)

Extracting C from Equation (22), and using the experimental data of Forster and
Skrinde [4], as shown in Figure 5, we could extract a power curve (R2 = 0.36) as:

C = 7.17F1.321
1 (23)Water 2021, 13, 2005 8 of 11 
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Replacing R with Equation (20) and after a few manipulations:

F2
1 =

1− (Y + S)2

S(Y + S)−2 + 4CSY−2(Y + S− 1)(Y + S)−1(Lj/h3)
−2 + 2(Y−1 − 1)

(24)

where F1, Y, and S are the same as in Equation (2); Lj/h3 is replaced by Equation (12); and
C is replaced by Equation (23).

Equation (24) constitutes the critical relationship between relative step height S, initial
Froude number F1, and conjugate flow depth Y. Figure 6 shows the variation of Y with
F1 for different step heights. It should be noted that each curve’s starting point is the
least computable value of Y. In other words, Y is not defined for lower initial Froude



Water 2021, 13, 2005 8 of 10

numbers. Additionally, Equation (24) indicates an approximate linear trend that rises
with the slope of almost unity. Figure 6 also compares Equation (24)’s predictions with
experiments of Forster and Skrinde [4] as well as the theoretical models of Hager and
Sinniger [5], and Einwachter [3]. Equation (24) presents the most accurate curve with
the closest consistency with experiments for different step heights as well as a fair range
of initial Froude numbers. Even though previous theoretical models given by Hager
and Sinniger [5] and Einwachter [3] diverge from experiments in large Froude numbers,
Equation (24) fits the data well, even for high steps and large initial Froude numbers.
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2.3. Energy Dissipation

Since energy dissipation has always been the intrinsic aspect of hydraulic jumps, here,
we present an estimation of this parameter to detect the model’s efficiency. For this purpose,
using the specific energy equation, we obtain the relative energy dissipation as:

∆E
E1

= 1−
Y + S + 0.5F2

1

{
(Y + S)−2 + Y−2

}
1 + 0.5F2

1
(25)

where Y is replaced by Equation (24) to consider the small rise and the flow curvature effect.
Figure 7 shows the relative energy dissipation variation with the initial Froude number.
In Figure 7, we compare the experimental data from Forster and Skrinde [4] for different
step heights, along with the data from Rajaratnam [10] for the jump without a step, and the
theoretical estimation from Hager and Sinniger [5] with Equation (25).

Water 2021, 13, 2005 10 of 11 
 

 

 

Figure 7. Relative energy dissipation variation with initial Froude number. 

As indicated, the suggested curve pursues the data trend, which is energy dissipation 

increase with the initial Froude number. It was noted that the increased energy dissipation 

rate dwindled in larger Froude numbers. We also saw a minor divergence at lower Froude 

numbers between Equation (25) and the estimation of Hager and Sinniger [5]. Increasing 

the step height, and consequently the initial Froude number, resulted in an energy dissi-

pation rise. Besides, the curves presented for different step heights in Equation (25) sub-

sequently overlapped in significant initial Froude number ranges, meaning that in those 

ranges, step height does not make any difference in energy dissipation. 

3. Conclusions 

This paper presents a new theoretical model for the A-type hydraulic jump in a hor-

izontal rectangular channel with a positive step. Based on an accurate closed-form ap-

proximation, and assuming a concave curvilinear flow profile at a positive step, we used 

a one-dimensional momentum equation and developed an expression for the conjugate 

flow depth, which agreed very well with previous measurements. Compared to previous 

theoretical models given by Hager and Sinniger [5] and Einwachter [3] that diverged from 

experiments with large Froude numbers, the proposed equation in this study fit the data 

well, even for high steps and large initial Froude numbers. 

Moreover, based on the similarity between the hydraulic jump and turbulent wall jet, 

we presented a new method to estimate the jump length. The proposed equation showed 

a similar trend to the experimental data. However, for low Froude numbers (F1 < 5), the 

equation was less accurate in estimating the jump length. 

We also estimated the jump’s energy dissipation and proved the model’s efficiency. 

However, it is noted that the increased energy dissipation rate dwindles in larger Froude 

numbers. 

For future research, we recommend conducting more experimental studies on the 

hydraulic jump at a positive step to more accurately examine the subject as well as en-

hance the accuracy of the proposed equations. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12

Δ
E

/E
1

F1

Forster and Skrinde (S = 0.5)

Forster and Skrinde (S = 1)

Forster and Skrinde (S = 2)

Forster and Skrinde (S = 4)

Rajaratnam (classical jump)

Equation (25) S = 0.5

Equation (25) S = 1

Equation (25) S = 2

Equation (25) S = 4

Hager and Sinniger (1985)

Figure 7. Relative energy dissipation variation with initial Froude number.

As indicated, the suggested curve pursues the data trend, which is energy dissipation
increase with the initial Froude number. It was noted that the increased energy dissipation
rate dwindled in larger Froude numbers. We also saw a minor divergence at lower Froude
numbers between Equation (25) and the estimation of Hager and Sinniger [5]. Increasing the
step height, and consequently the initial Froude number, resulted in an energy dissipation
rise. Besides, the curves presented for different step heights in Equation (25) subsequently
overlapped in significant initial Froude number ranges, meaning that in those ranges, step
height does not make any difference in energy dissipation.

3. Conclusions

This paper presents a new theoretical model for the A-type hydraulic jump in a
horizontal rectangular channel with a positive step. Based on an accurate closed-form
approximation, and assuming a concave curvilinear flow profile at a positive step, we used
a one-dimensional momentum equation and developed an expression for the conjugate
flow depth, which agreed very well with previous measurements. Compared to previous
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theoretical models given by Hager and Sinniger [5] and Einwachter [3] that diverged from
experiments with large Froude numbers, the proposed equation in this study fit the data
well, even for high steps and large initial Froude numbers.

Moreover, based on the similarity between the hydraulic jump and turbulent wall jet,
we presented a new method to estimate the jump length. The proposed equation showed
a similar trend to the experimental data. However, for low Froude numbers (F1 < 5), the
equation was less accurate in estimating the jump length.

We also estimated the jump’s energy dissipation and proved the model’s efficiency. How-
ever, it is noted that the increased energy dissipation rate dwindles in larger Froude numbers.

For future research, we recommend conducting more experimental studies on the
hydraulic jump at a positive step to more accurately examine the subject as well as enhance
the accuracy of the proposed equations.
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