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Abstract: Soil moisture (SM) plays an important role for understanding Earth’s land and near-
surface atmosphere interactions. Existing studies rarely considered using multi-source data and
their sensitiveness to SM retrieval with few in-situ measurements. To solve this issue, we designed
a SM retrieval method (Multi-MDA-RF) using random forest (RF) based on 29 features derived
from passive microwave remote sensing data, optical remote sensing data, land surface models
(LSMs), and other auxiliary data. To evaluate the importance of different features to SM retrieval,
we first compared 10 filter or embedded type feature selection methods with sequential forward
selection (SFS). Then, RF was employed to establish a nonlinear relationship between the in-situ
SM measurements from sparse network stations and the optimal feature subset. The experiments
were conducted in the continental U.S. (CONUS) using in-situ measurements during August 2015,
with only 5225 training samples covering the selected feature subset. The experimental results show
that mean decrease accuracy (MDA) is better than other feature selection methods, and Multi-MDA-
RF outperforms the back-propagation neural network (BPNN) and generalized regression neural
network (GRNN), with the R and unbiased root-mean-square error (ubRMSE) values being 0.93
and 0.032 cm3/cm3, respectively. In comparison with other SM products, Multi-MDA-RF is more
accurate and can well capture the SM spatial dynamics.

Keywords: soil moisture retrieval; random forest; multi-source remote sensing; feature selection; the
continental U.S.

1. Introduction

Soil moisture (SM) is usually defined as a volume of water stored within the unsatu-
rated zone [1,2], and surface (0–5 cm) SM is an important variable associated with global
terrestrial water, energy, and carbon cycles [3,4]. Therefore, it is necessary to obtain accurate
and timely SM data.

Although traditional in-situ SM acquiring methods can provide accurate data each day,
they only obtain scattered and limited point data [5]. In addition, it is impractical to deploy
intensive monitoring stations around the world. Therefore, the in-situ measurements
cannot well describe the spatial variability at large scale, especially when the measurements
are sparse. Satellite microwave remote sensing is a more advocated method with the
advantages of large-scale observation and high temporal resolution, which was proven to
be a more effective way to estimate SM. Microwave remote sensing data, optical remote
sensing data, and land surface models (LSMs) all provide products to estimate SM values.

For the microwave remote sensing data, several satellites were launched in the past
two decades, carrying on board radiometer (passive), radar (active), or both sensors
in various frequency bands with different spatial and temporal resolutions. Compared
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with the active microwave products, passive microwave products have lower spatial
resolutions, but the revisit periods are shorter. Therefore, passive microwave products
are more conducive to large-scale SM retrieval and obtain timely SM values. Microwave
remote sensing products also have different bands. Various low frequencies (X, C, and
L bands) have been used to detect SM content [6]. Some multi-band sensors mainly
include Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E),
the Advanced Microwave Scanning Radiometer 2 (AMSR2), the Advanced Scatterometer
(ASCAT), and Fengyun-3B Microwave Radiation Imager (FY-3B), etc. L-band radiometers
and radars mainly include Soil Moisture and Ocean Salinity (SMOS) and the Soil Moisture
Active Passive (SMAP), which are more widely used these years since the L band is
considered as the optimal band for SM monitoring due to its strong penetration ability of
both soil and vegetable [7].

For the optical remote sensing data, related studies mainly used Moderate Resolution
Imaging Spectroradiometer (MODIS), which provides many land products related to SM
variations [8–14]. For example, Cui et al. [9] reconstructed the FY-3B SM product based
on three MODIS products including 16-day NDVI, daily land surface temperature, and
16-day albedo. Kim et al. [8] used the MODIS-based EVI product as an indication for the
vegetation condition at each site to assess the remote sensing SM products.

As for the LSMs, there are the European Center for Medium-range Weather Fore-
casts Re-Analysis Interim (ERA-Interim) [5,15–17], Global Land Data Assimilation System
(GLDAS) [18–22], and Modern Era Retrospective Analysis for Research and Applications
(MERRA) [23–25], which are also beneficial to estimating SM values. For example, Qu
et al. [22] used the GLDAS Noah Land Surface Model L4 data as the reference to estimate
SM values. Ge et al. [5] used the ERA-Interim product to train the deep convolutional
neural network and neural network, the results suggest that the simulated SM values and
the ERA-Interim SM agree relatively well at a global scale.

SM retrieval methods can use those multi-source data to estimate SM values, and dif-
ferent methods can be categorized into two classes: physical-driven models and data-driven
models. Traditional SM retrieval methods are based on different physical models [26–37].
Although these physical models can estimate SM values by fitting geophysical parameters
and in-situ measurements, they are lack of extendibility and flexibility. On the one hand,
the model parameters are usually directly obtained from limited measurement values,
which cannot extend to large areas. On the other hand, the complexity of physical models
makes it difficult to flexibly construct the relationship between physical parameters and
SM values.

Some SM retrieval methods are equipped with machine learning (ML) algorithms.
ML-based models can handle a large amount of nonlinear data and flexibly combine
information from multiple sources without explicit physical relationships. According to
the usage of training samples, they can be divided into three types. The first type uses
LSMs as the reference for the SM retrieval model [5,38]. The advantage of this method is
that it is more suitable for large-scale SM retrieval since the LSMs have global space-time
coverage, inducing sufficient training samples. The disadvantage is that each LSM has
some uncertainties due to the model parameter estimation errors, which can be transferred
to the SM retrieval model. The second type uses the satellite SM products as the training
data [9,22,39]. This method has been widely used in SM downscaling studies to obtain
high spatial resolution SM. Although high spatial resolution SM products can enhance
ecological and hydrological applications, the accuracy is relatively low compared with in-
situ measurements. The third type uses in-situ measurements as the reference. Xu et al. [40]
designed a method based on generalized regression neural network (GRNN) to train SMAP
products using in-situ measurements from five networks, and they found that GRNN has
a good potential for retrieving SM. Eroglu et al. [41] used the in-situ measurements as a
reference based on artificial neural network, which was capable of generating sub-daily
and high-resolution SM predictions. The advantage of this method is that the in-situ
measurements are closer to the true value than using LSMs or satellite SM products as
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the reference, which is beneficial to improving the accuracy for SM retrieval. However, it
is hard to obtain large-scale, adequate, and evenly distributed in-situ SM measurements.
In addition, we should consider the problem of spatial matching between in-situ point
measurements and satellite remote sensing data.

SM retrieval is a complex process, which depends on many interactive factors, such
as soil texture, soil structure, the organic matter content, surface roughness, topography,
and vegetation coverage [42,43]. It poses great challenges for accurate SM retrieval when
facing with multi-source data, especially for multiple feature selection and fusion based
on those factors. ML-based models have big potentials for SM retrieval considering those
challenges. Among most of existing ML-based studies, the involved features are mainly
from a single-source, and they are usually selected based on prior experience [5,9,22,40,44].
The features may contain noisy or redundant information without feature selection, which
may decrease accuracy and increase computational cost [45]. Actually, feature selection
methods can help us to understand the impact of different features on retrieval accuracy,
which can also help to reduce noisy or redundant information, and avoid over-fitting in
the SM retrieval model. To the best of our knowledge, very few ML-based studies have
considered feature selection in SM retrieval based on multi-source data.

In this study, we designed a novel SM retrieval method (Multi-MDA-RF) using random
forest (RF) based on 29 features derived from passive microwave remote sensing data,
optical remote sensing data, LSMs, and other auxiliary data. The Multi-MDA-RF model is
examined in a serial of comprehensive experiments: (1) we compared 10 filter or embedded
type feature selection methods combined with sequential forward selection (SFS) to find
the optimal feature subset for SM retrieval; (2) we analyzed the impacts of RF parameters
on accuracy, including mtry and ntree; (3) our model was compared to back-propagation
neural network (BPNN) and GRNN; (4) our product was compared with five popular
SM products, including SMAP, AMSR2, SMOS, FY-3B, and ERA-Interim; (5) we analyzed
the applicability of our model using in situ measurements from seven networks; (6) we
visually inspected our product on three U.S. states with similar latitudes in the east, central,
and west of CONUS; (7) we resampled the optimal features according to the lowest spatial
resolution, to improve the spatial resolution of the input features and obtain a higher spatial
resolution product.

It is worth noting that, some studies [40,44,46] are closely related to our work. How-
ever, there are some essential differences. Firstly, we considered multi-source data and
generated 29 features as the inputs of the SM retrieval model, nevertheless other studies
mainly used a single microwave remote sensing product. Secondly, the importance of
different features was evaluated by using 10 feature selection methods, while existing
studies did not exploit feature selection in SM retrieval. Thirdly, we used fewer training
samples (i.e., a total of 5225), which was around one-third to a half of that reported in
other studies, whereas achieving more accurate results with R = 0.93, which was around
0.03–0.26 higher than other studies. Finally, we produced a SM product with higher spatial
resolution of 0.125◦, which is around one-third of that reported in other studies. In this
context, the main contribution and novelty of our work lie in that we proposed a novel
Multi-MDA-RF model for SM retrieval, where multi-source data and 29 features were used
as the inputs, and the importance of different features are evaluated. In addition, fewer
training samples were used to produce more accurate results with higher spatial resolution.
To the best of our knowledge, the proposed model is unique in the literature.

The rest of this paper is organized as follows. Section 2 describes the study area and
the multi-source data used for the SM retrieval model. Section 3 illustrates the feature
selection methods and presents the Multi-MDA-RF procedure for SM estimation. Section 4
reports the experimental results with a comprehensive comparison. Section 5 compares
our model with other published state-of-the-art methods. Section 6 provides a summary
and puts forward an outlook for future work.
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2. Study Area and Data
2.1. Study Area

The study area is the continental U.S. (CONUS), which borders on the North Atlantic
and North Pacific [44]. The terrain of CONUS is complex and diverse. The east is composed
of hills and low mountains, and the center is a vast plain. The west is the most complex
area, consisting of the Colorado Plateau, Wyoming Plateau, Columbia Plateau, Grand
Canyon, the Sierra Nevada Mountains, and the Cascade Mountains. There are many rivers
and lakes in this area. The central and eastern regions have the largest freshwater lakes in
the world, which is known as the North American Mediterranean. The climate of CONUS
is mostly temperate and subtropical. The southeast is a subtropical climate zone with an
average annual rainfall of 1500 mm, which is relatively humid. The climate in the western
plateau is dry with large temperature differences, and the annual average rainfall is below
500 mm.

2.2. In-Situ Measurements

CONUS is an ideal study area for SM retrieval, because it has large-scale and long-
term SM observation networks covering almost the entire continent. These abundant
in-situ measurements are evenly distributed, which is conducive to the construction of SM
retrieval models.

The in-situ measurements come from seven networks, which are spread across the
whole CONUS: the Cosmic-ray Soil Moisture Observing System (COSMOS) [47–49], the In-
teractive Roaring Fork Observation Network (iRON) [50], PBO_H2O [51], the Soil Climate
Analysis Network (SCAN) [52,53], the Snow Telemetry (SNOTEL) [54], the Soil moisture
Sensing Controller and oPtimal Estimator (SOILSCAPE) [55], and the U.S. Climate Ref-
erence Network (USCRN) [56]. All in-situ measurements can be downloaded from the
International Soil Moisture Network (ISMN) (http://ismn.geo.tuwien.ac.at/ accessed on
20 February 2021). ISMN has assembled over 50 operational and experimental SM net-
works around the world [57,58], providing uniform data format and pre-processing quality
flags for global SM database [45]. Since the remote sensing satellite can only detect the
surface SM, the in-situ measurements should be screened by retaining the surface SM
measurements with a depth of 0–10 cm for COSMOS and 0–5 cm for others. The spatial
distribution and the characteristics of the in-situ measurements are presented in Figure 1
and Table 1, respectively. The sites (total) in Table 1 refer to the total number provided by
ISMN, and the sites (used) refer to the remaining number after the screening of depth.

Figure 1. Study area and the spatial distribution of the in-situ measurements.

http://ismn.geo.tuwien.ac.at/
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Table 1. The characteristics of the in-situ measurements.

Network Sites
(Total)

Sites
(Used) Available Time Depth

(cm)
Temporal

Resolution Sensor

COSMOS 109 6 28 April 2008–
29 March 2020 0–10 Hourly Cosmic-ray

Probe

iRON 9 9 21 August 2012–
1 January 2020 5 Hourly

EC5 II, 10HS,
EC5 I, HMP155,

EC5

PBO_H2O 159 140
27 September 2004–

16 December
2017

0–5 Daily GPS

SCAN 239 188 1 January 1996–
Now 5 Hourly n.s., 5.0 Volt,

2.5 Volt, linear
SNOTEL 441 130 1 October 1980–

Now 5 Hourly n.s., 5.0 Volt,
2.5 Volt

SOILSCAPE 171 114 3 August 2011–
29 March 2017 5 Hourly EC5

USCRN 115 113 15 November 2000–
Now 5 Hourly

Stevens
HydraProbe II

Sdi-12

2.3. Multi-Source Microwave Remote Sensing Data

National Aeronautics and Space Administration (NASA) launched the SMAP satellite
in January 2015 to monitor global SM and landscape freeze-thaw conditions. On 31
March 2015, the L-band (1.41G Hz) radiometer was used to continuously collect scientific
data [59]. Its nominal incident angle is 40◦ and it can achieve global coverage every
2–3 days. SMAP carries a radiometer and a radar to provide active and passive microwave
remote sensing data at the same time. However, the radar stopped working after about
three months of operation [60]. The ascending and descending overpasses of SMAP
satellite are at 6 p.m. and 6 a.m., respectively, which are synchronized with the sun. As the
thermal equilibrium of vegetation canopy and near-surface soil increases with temperature,
SM retrieval is more stable in the early morning [7]. Therefore, we use SMAP Level-3
radiometer global daily 36-km EASEv2-grid soil moisture (SPL3SMP) descending overpass
data, including brightness temperatures at vertical and horizontal polarization (SMAP_TBV,
SMAP_TBH), the 4th Stokes’ parameters (SMAP_TB4) [38], surface temperature (SMAP_Ts),
vegetation water content (SMAP_VWC), albedo (SMAP_albedo), landcover classification
(SMAP_landcover), latitude, and longitude. SMAP are available from https://nsidc.org/
data/SPL3SMP (accessed on 15 January 2021).

AMSR2 was launched by the Japan Aerospace Exploration Agency (JAXA) on 18 May
2012, and its first scientific observation began on July 3, 2012. As the successor of AMSR-E,
AMSR2 continues to provide observations similar to AMSR-E. The orbit and basic settings
of AMSR2 are consistent with AMSR-E. The ascending overpass of AMSR2 is 1:30 p.m., and
the descending overpass was 1:30 a.m. [61]. We used the descending overpass, because it
was closer to the early morning. We used AMSR2 Level-2 product with a spatial resolution
of 25 km, including C-band 36GHz brightness temperatures at vertical and horizontal
polarization (AMSR2_TBV, AMSR2_TBH), C-band surface temperature (AMSR2_Ts), C-
band optical depth (AMSR2_optx), and X-band optical depth (AMSR2_optc). AMSR2 are
available from https://search.earthdata.nasa.gov/ (accessed on 15 January 2021) and
https://suzaku.eorc.jaxa.jp/ (accessed on 15 January 2021).

SMOS was developed by the European Space Agency (ESA), which is the first polar
orbit L-band radiometer. It was successfully launched on 2 November 2009, and has become
one of the most important satellites for monitoring the global water cycle [62]. SMOS
observations cover the globe approximately every 3 days with the ascending overpass at
6 a.m. and the descending overpass at 6 p.m., respectively. We used SMOS L3 ascending
overpass observations with a spatial resolution of 25 km, including H and V polarization
brightness temperature data (SMOS_TBV, SMOS_TBH), and optical depth (SMOS_opt).
SMOS data can be obtained from https://smos-diss.eo.esa.int/oads/access/ (accessed on
20 February 2021).

https://nsidc.org/data/SPL3SMP
https://nsidc.org/data/SPL3SMP
https://search.earthdata.nasa.gov/
https://suzaku.eorc.jaxa.jp/
https://suzaku.eorc.jaxa.jp/
https://smos-diss.eo.esa.int/oads/access/
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FY-3B was successfully launched by the China National Space Administration (CNSA)
on 5 November 2010, and the data service ceased on June 2020. It was equipped with
a passive microwave radiometer called Microwave Radiation Imager (MWRI) [39]. MWRI
provides observations with a total of five frequencies of 10.65, 18.7, 23.8, 36.5, and 89.0 GHz
in both ascending (1:40 p.m.) and descending (1:40 a.m.) overpass. Each frequency has
horizontal and vertical polarizations. We used 25km FY-3B level-1 10.65 GHz H and
V polarization brightness temperature data with descending overpass (FY-3B_TBV, FY-
3B_TBH). FY-3B data can be obtained from http://satellite.nsmc.org.cn/portalsite/default.
aspx (accessed 20 February 2021).

The specific characteristics of all of the above microwave remote sensing products are
reported in Table 2.

Table 2. The characteristics of the microwave remote sensing products.

Microwave
Remote Sensing

Product
Band

Spatial
Resolution

(km)

Temporal
Resolution

(days)
Available Time Orbit

SMAP L 36 ~3 April 2015–Now 6:00 p.m. (A)
6:00 a.m. (D)

SMOS L 25 ~3 January 2010–Now 6:00 a.m. (A)
6:00 p.m. (D)

AMSR2 C/X 25 ~2 July 2012–Now 1:30 p.m. (A)
1:30 a.m. (D)

FY-3B X/Ku/K/Ka/E 25 ~2 July 2011–June 2020 1:40 p.m. (A)
1:40 a.m. (D)

Note: A for ascending and D for descending.

2.4. Auxiliary Data

MODIS was developed by NASA to understand global climate changes. We used three
0.05◦ MODIS products, including MOD13C2, MOD11C3 and MCD12C1. MOD13C2 pro-
vides monthly global Normalized Difference Vegetation Index (MODIS_NDVI). MOD11C3
provides monthly night surface temperature (MODIS_Ts). MCD12C1 is a global land-
cover classification product (MODIS_landcover). MODIS data are available from https:
//modis.gsfc.nasa.gov/ (accessed on 13 December 2020).

ERA-Interim is a global atmospheric reanalysis product provided by the Medium-
range Weather Forecasts (ECMWF) [5]. The time coverage of the product ranged from
January 1979 to August 2019. We used surface roughness (ERA_SR), surface temperature
(ERA_Ts), and albedo (ERA_albedo) with a spatial resolution of 0.125◦ at 6 a.m. from this
product. ERA-Interim can be obtained from http://apps.ecmwf.int/datasets/ (accessed
on 13 December 2020).

The 30-m Global Land Cover Dataset (GlobeLand30) is produced by National Geo-
matics of China [63]. The data covers the land area of 80◦ N to 80◦ S, which consisted of
10 land cover types. GlobeLand30 are available from http://kmap.ckcest.cn/ (accessed
on 13 December 2020). DEM data used in this experiment come from Shuttle Radar
Topography Mission (SRTM) with a spatial resolution of 90 m. SRTM started in Febru-
ary 2000, and it covers an area of more than 119 million square kilometers between 60◦

N and 56◦ S. SRTM data can be obtained from http://srtm.csi.cgiar.org/ (accessed on
13 December 2020). The soil texture data come from the 1 km Harmonized World Soil
Database version 1.2 (HWSD), which contains 12 soil textures. HWSD can be obtained
from http://www.fao.org/ (accessed on 13 December 2020). The day of year (DOY) should
also be considered as a necessary feature to reflect time variations.

3. Methodology

In this work, we designed a novel Multi-MDA-RF method to estimate SM values
in CONUS. The presented method includes multi-feature generation, feature evaluation,
and RF. Firstly, we matched multi-source data and in-situ measurements spatially and
temporally to generate multiple features. Secondly, we evaluated these features by using
various feature selection methods. According to the feature importance ranking, the

http://satellite.nsmc.org.cn/portalsite/default.aspx
http://satellite.nsmc.org.cn/portalsite/default.aspx
https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
http://apps.ecmwf.int/datasets/
http://kmap.ckcest.cn/
http://srtm.csi.cgiar.org/
http://www.fao.org/
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optimal subset was obtained by using SFS. Then, RF was employed to establish a nonlinear
relationship between in-situ SM measurements and the optimal feature subset. Finally,
the SM retrieval model was evaluated from many aspects in terms of different models,
products, in-situ measurements, and U.S. states. A flowchart of this work is exhibited in
Figure 2, and the details are described as follows.

Figure 2. The flowchart of Multi-MDA-RF.

3.1. Multi-Feature Generation

For in-situ measurements, PBO_H2O records SM data once at 12 p.m. every day, and
the other networks record data per hour. We used the measurements recorded at 6 a.m.
for all networks except for PBO_H2O, which was in accordance with the time of satellite
observations. In order to ensure the authenticity of in-situ SM measurements, we only
selected the data with a quality mark “G (Good)”.

In order to comprehensively consider the variables related to SM retrieval, 29 multi-
source features from passive microwave remote sensing data (SMAP, AMSR2, SMOS,
FY-3B), optical remote sensing data (MODIS), LSM (ERA-Interim), and some other auxil-
iary data (GlobeLand30, SRTM, HWSD, DOY) were generated, as listed in Table 3. These
features included brightness temperature data, surface parameters, vegetation parame-
ters, soil texture, land use classification, geographical location, time, which are commonly
used features in SM retrieval. There are some repetitive variables, which may be based on
different criteria or methods, such as brightness temperature data from different passive mi-
crowave remote sensing data. We used feature selection to remove the redundant features
among them, and then selected the features that were more suitable for SM retrieval.

For the multi-source microwave remote sensing data and the auxiliary data, they were
converted to the same projection coordinate system of SMAP and resampled to a spatial
resolution of 36 km.
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Table 3. Multi-source data considered for SM retrieval.

Data Index Feature Spatial
Resolution Description

SMAP

1 SMAP_TBH

36 km

Brightness temperatures (H)
2 SMAP_TBV Brightness temperatures (V)
3 SMAP_TB4 4th Stokes’ parameters
4 SMAP_Ts Daily surface temperature
5 SMAP_VWC Daily vegetation water content
6 SMAP_albedo Daily single-scattering albedo
7 SMAP_landcover Daily landcover classification
8 Latitude Center latitude
9 Longitude Center longitude

AMSR2

10 AMSR2_TBH

25 km

C-band brightness
temperatures (H)

11 AMSR2_TBV
C-band brightness
temperatures (V)

12 AMSR2_Ts C-band daily surface
temperature

13 AMSR2_optc C-band optical depth
14 AMSR2_optx X-band optical depth

FY-3B
15 FY-3B_TBH

25 km

X-band brightness
temperatures (H)

16 FY-3B_TBV
X-band brightness
temperatures (V)

SMOS
17 SMOS_TBH

25 km
Brightness temperatures (H)

18 SMOS_TBV Brightness temperatures (V)
19 SMOS_opt optical depth

ERA-Interim
20 ERA_SR

0.125◦
Daily surface roughness

21 ERA_Ts Daily surface temperature
22 ERA_albedo Daily albedo

GlobeLand30 23 GLC30_landcover 30 m Landcover classification (2010)

MODIS
24 MODIS_NDVI

0.05◦

Monthly Normalized
Difference Vegetation Index

25 MODIS_Ts Monthly night surface
temperature

26 MODIS_landcover Landcover classification (2015)

SRTM 27 DEM 90 m Elevation

HWSD 28 Soil texture 1 km Soil texture (FAO74)

DOY 29 DOY \ Day of year

Then, the multi-source data should be matched with in-situ measurements, spatially
and temporally. In order to relieve the scale difference between in-situ points and satellite
pixels, the in-situ measurements within a multi-source data grid were averaged, which was
adopted in many previous studies [5,64]. After the point-surface matching, 410 spatially
isolated sites were available.

3.2. Sensitive Feature Evaluation Methods

The feature selection algorithms can be divided into filter, wrapper, and embedded
type methods. The filter methods measure feature importance based on different indicators,
which are independent of the adopted predictor. The wrapper methods train the predictor
using a subset of features, and then add or remove a feature based on a selected criterion.
The embedded methods obtain the feature importance in the model training process [65].

In this experiment, we used 10 filter or embedded type feature selection methods to
obtain the importance ranking of each feature. Then, we combined these methods with
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SFS to find the optimal feature subset. The filter type methods included regression ReliefF
(RReliefF), F-test, neighborhood component analysis (NCA), Laplacian score (LS), Pearson
correlation coefficient (PCCs), and maximal information coefficient (MIC). The embedded
methods included mean decrease impurity (MDI), mean decrease accuracy (MDA), Lasso,
and the feature optimization of Gaussian process regression (GPR) model.

3.2.1. The Filter Methods

1. RReliefF: RReliefF is inspired from Relief [66], which is very powerful in estimating
the quality of features [67,68]. RReliefF penalizes the input features that give different
values to neighbors with the same response values, and rewards the input features
that give different values to neighbors with different response values. We used the
29 features as the input data and the in-situ measurements as the response values.
The algorithm selects a random observation and finds the k-nearest observations to it.
Then, the weight of SM features can be calculated as follows:

w =
wdŷdx

wdy
−

wdr − wdŷdr

m− wdy
(1)

where wdy is the weight of having different values for the response y, wdr is the weight
of having different values for the feature r, wdŷdr is the weight of having different
response values and different values for the feature r, m is the number of iterations.
The importance ranking of each feature can be obtained according to this weight.

2. F-test: F-test is a statistical test by calculating the f -score of each feature [69]. We
examined the importance of each feature individually using F-test, which calculates
the values of f-score as follows, and the features were ranked based on f-scores.

f − score = − log(p) (2)

where p is the p values between features and in-situ measurements.
3. NCA: a novel nearest neighbor-based feature selection method was proposed by [70].

This feature selection method performs feature selection with regularization to learn
feature weights for minimization of an objective function that measures the aver-
age leave-one-out regression loss over the training data. The objective function of
minimization is as follows:

f (w) =
1
n

n

∑
i=1

li + λ
p

∑
r=1

w2
r (3)

where n is the number of observations, li is the distance between the in-situ mea-
surements and y, wr the feature weight, λ is the regularization parameter, p is the
average accuracy.

4. S: Laplacian score is a feature selection algorithm introduced by [71]. The locality
preserving power for each feature was reflected by calculating the Laplacian score.
Then, we can rank features using the Laplacian scores computed as follows:

Li =
r̃T

i Lr̃i

r̃T
i DgLr̃i

(4)

where ri is the i-th feature, Dg is the degree matrix, and L is the Laplacian matrix.
5. PCCs: Pearson correlation coefficient is a simple method that can help to understand

the relationship between features and response variables. This method measures the
linear correlation between variables. The value range of the result is (−1, 1), where
“−1” represents the complete negative correlation, “+1” represents the complete
positive correlation, and “0” represents no linear correlation. The feature with the
larger absolute value of the correlation is considered more important.
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6. MIC: MIC is a powerful measure for relevance [72]. It is used to measure the degree
of correlation between two variables r and y, and is often used in feature selection of
machine learning. MIC can eliminate the feature with less information, so as to make
the variable used in model more representative. MIC between the feature r and the
response values y can be computed as follows:

MIC(r; y) = max
a×b<B

I(r; y)
log2 min(a, b)

(5)

where I (r; y) is the mutual information between r and y, a, b,is the number of grids
in r and y directions, and B is a variable, approximately set to the 0.6th power of the
amount of data.

3.2.2. The Embedded Methods

1. MDI: RF based feature selection methods can be divided into MDI and MDA [73].
MDI computes feature importance for tree by summing changes in the mean squared
error (MSE) due to splits on every feature and dividing the sum by the number of
branch nodes. The importance of each feature segmentation is as follows:

imp(ri) = (R1 − R2 − R3)/Nbranch (6)

where Ri is the MSE of each node, Nbranch is the total number of nodes.
2. MDA: MDA quantifies variable importance by measuring the change in prediction

accuracy when the values of the variable are randomly permuted [74]. The importance
of the feature r is then calculated using the following equation:

imp(ri) = dr/σr (7)

where dr is the average differences of the features, σr is the standard deviation of
the features.

3. Lasso: this method trains a linear regression model with Lasso regularization. For a
given value of λ, a nonnegative parameter, Lasso solves the problem:

w = min
β0,β

(
1

2N

N

∑
i=1

(
yi − β0 − rT

i β
)2

+ λ
p

∑
j=1
|β|
)

(8)

where N is the number of observations, yi is the response at observation i, ri is the
i-th feature, a vector of length p at observation i, λ is a nonnegative regularization
parameter corresponding to one value of Lambda, and the parameters β0 and β are a
scalar and a vector of length p, respectively.

4. GPR: This method is a feature selection method of GPR model [75]. It trains a GPR
model and finds the predictor weights by taking the exponential of the negative
learned length scales. Then, we can normalize the weights and obtain the impor-
tance ranking.

3.2.3. Sequential Forward Selection (SFS)

SFS is a bottom-up search procedure [76], in which the features are added to an
empty set in the specified order until the addition of further features does not decrease the
criterion. The criterion used in this experiment was the root mean square error (RMSE),
and Pearson correlation coefficient (R) serves as a reference. The order of forward input
features was the importance ranking of each feature selection method.

3.3. The Random Forest (RF) Method

RF was developed by [77], which is a popular method in Applied Statistics field to
solve classification and regression problems using multiple decision trees. One advantage
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of RF is that it has powerful generalization performance by using multiple regression trees,
which is beneficial to reducing the variability of the model. Another advantage of RF is that
it does not require complex parameter adjustments since it only has two parameters: the
number of trees (ntree) and the number of features (mtry). RF selects features from the entire
set using replacement sampling to establish the decision tree. To model the relationship
between SM values and sparse network stations, a set of training input–output pairs should
be given. The input variables are the optimal subset selected from the 29 features, and the
output variables are the in-situ SM measurements. Once the SM retrieval model is trained,
we then can estimate SM values by feeding the new samples into the model.

3.4. Evaluation Method

Four commonly used error metrics including RMSE, the mean bias (bias), R, and
the unbiased root mean square error (ubRMSE) were used to evaluate the performance
between the SM products and the in-situ SM measurements [78]. Those error metrics are
defined as follows:

R =
E[(x− E[x])(y− E[y])]

σxσy
(9)

RMSE =

√
E[(x− y)]2 (10)

bias = E[x]− E[y] (11)

ubRMSE =

√
E
[
((x− E[x])− (y− E[y]))2

]
(12)

where x is the SM product, y is the in-situ measurements, σx and σy indicate the standard
deviation of x and y, respectively.

4. Results
4.1. Experimental Settings

For validation set, there were a total of 1999 samples covering all 29 features. We split
the validation set into training (60%) and test (40%). We further screened the training set
after selecting the optimal feature subset, and there were 5225 training samples left. For
the two parameters of RF, mtry and ntree in the RF model were experimentally set to 4 and
100, respectively, for feature selection. All experimental results were reported by averaging
the outputs of 20 independent runs in terms of randomly initializing the training set. Note
that our experiments were carried on a personal computer (Intel Core 2.40 GHz processor
with 8 GB random access memory). The software implementation was performed using
MATLAB (The MathWorks Inc., Natick, MA, USA).

4.2. Selection of Sensitive Features

Initially, 29 features from SMAP, AMSR2, SMOS, FY-3B, ERA-interim, MODIS, Glo-
beLand30, SRTM, HWSD and DOY were used. In this experiment, 10 filter and embedded
type feature selection methods with SFS were considered. Different feature selection meth-
ods could obtain the importance weights for each feature, and the weights were normalized
to 0–1 for a fair comparison. The corresponding feature importance of each feature selection
method is shown in Figure 3. The abscissa is 28 features, except DOY, and the ordinate is
the stacked importance. Figure 3 shows that the feature importance calculated by different
feature selection methods are discrepant. Some features gained high importance in a variety
of feature selection methods, such as latitude and MODIS_NDVI. These features may be
more sensitive to SM. Some features are less important after integrating various feature
selection methods, such as SMAP_Tb4. It may reduce the accuracy of SM retrieval and
increase the uncertainty.
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Figure 3. Stacked bars of feature importance obtained by different feature selection methods.

Then, we used the obtained importance to rank these features as listed in Table 4.
The data reported in the table represent the importance rankings of different features
based on different feature selection methods, and the features with high rankings were
considered more sensitive for SM retrieval. It can be found that, even for the same feature,
the importance ranking of different feature selection methods is quite different. Even both
MDI and MDA methods are based on RF; they have different evaluation results for the
same feature. Therefore, it is necessary to find a better feature selection method to get the
optimal feature subset.

Table 4. The importance ranking of different feature selection methods.

Feature

The Importance Ranking

Filter Embedded

RReliefF F-Test NCA LS PCCs MIC MDI MDA GPR Lasso

SMAP_TBH 14 3 6 20 7 8 15 13 26 10
SMAP_TBV 16 2 4 15 4 7 2 8 24 26
SMAP_TB4 28 28 16 28 23 23 22 28 21 11
SMAP_Ts 21 24 18 13 21 20 20 18 18 12

SMAP_VWC 4 9 13 3 12 5 4 6 13 13
SMAP_albedo 23 11 25 4 16 10 11 14 1 1

SMAP_landcover 19 17 9 1 25 28 27 27 2 14
Latitude 6 1 20 2 1 2 1 1 3 6

Longitude 2 22 15 5 19 22 10 3 4 27
AMSR2_TBH 20 27 28 22 24 24 17 17 27 15
AMSR2_TBV 24 16 27 26 15 21 28 24 28 23
AMSR2_Ts 27 25 14 25 20 27 21 23 17 16

AMSR2_optc 11 12 21 24 8 14 19 21 15 4
AMSR2_optx 10 7 22 14 5 11 5 11 14 2
FY-3B_TBH 18 26 17 18 26 26 26 20 22 7
FY-3B_TBV 22 8 8 19 10 13 24 26 20 17
SMOS_TBH 15 6 1 23 6 12 16 22 25 28
SMOS_TBV 17 5 5 17 3 9 23 15 23 18
SMOS_opt 25 21 23 27 18 17 12 16 16 19

ERA_SR 13 23 10 9 17 4 14 4 5 25
ERA_Ts 26 19 26 21 11 19 9 19 19 20

ERA_albedo 9 20 24 16 13 15 7 9 12 3
GLC30_landcover 5 14 12 11 9 16 18 12 6 24

MODIS_NDVI 3 4 3 8 2 1 3 2 7 9
MODIS_Ts 12 18 7 12 22 6 6 5 8 21

MODIS_landcover 8 15 19 6 27 25 25 25 9 5
DEM 7 10 2 10 28 3 8 10 10 8

Soil texture 1 13 11 7 14 18 13 7 11 22
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With the importance ranking at hand, we then used SFS to stack features one-by-one,
and used the RF model to test the stacked features. It is worth noting that DOY is a
necessary feature to reflect the temporal variation of SM. The SM retrieval results after
feature selection are shown in Figure 4 (filter type) and Figure 5 (embedded type), where
we plot the retrieval accuracies (using R and RMSE) obtained by different feature selection
methods as a function of the number of features (K). We also included a random feature
selection (RS) method to validate the effects of feature selection. The ranking of features
was randomly shuffled in the RS method.

Figure 4. (a) R and (b) RMSE based on different filter type feature selection methods as a function of
the number of features.

Figure 5. (a) R and (b) RMSE based on different embedded type feature selection methods as a
function of the number of features.

Generally, the curves obtained by embedded type methods are smoother than that
of filter type methods, which is due to the fact that the filter type methods are indepen-
dent of the adopted predictor. The overall trends of different feature selection methods
are consistent, i.e., the accuracies gradually increase to the maximum value and then de-
crease, which verifies that too many features will lead to accuracy reduction in the SM
retrieval models. Specifically, among the filter type methods, RReliefF achieves a min-
imum RMSE value of 0.0502 cm3/cm3, and LS achieves a maximum R value of 0.8431.
Whereas, among the embedded type methods, all feature selection methods are better
than RS, which shows the effectiveness of feature selection. MDA obtained a minimum
RMSE value of 0.0499 cm3/cm3 and a maximum R value of 0.8457 with the top 5 features.
Compared with all 29 features as input, R value increased by 0.0527 and RMSE value
decreased by 0.0085 cm3/cm3, indicating that feature selection is worthy of attention in
SM retrieval problems.
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As we can see, MDA is the best feature selection method since it achieves the smallest
RMSE and highest R values. Therefore, we chose to use the optimal features selected by
MDA. In order to observe the results more clearly and to find the optimal K value, we
drew the step diagrams of RMSE and R values obtained by MDA in Figure 6. Our retrieval
model achieved the best accuracy when K = 5. Therefore, the optimal feature subset was
determined as DOY, latitude, MODIS_NDVI, longitude, and ERA_SR. The five selected
features include geographic location (latitude, longitude), time (DOY), surface parameter
(ERA_SR), and vegetation parameter (MODIS_NDVI). These factors are closely related to
SM retrieval, which also shows that the feature selection method is scientific in this work.

Figure 6. Step diagrams of (a) R and (b) RMSE based on MDA as a function of the number of features.

4.3. Parameters Selection for Multi-MDA-RF

In order to analyze the impacts of parameters on SM retrieval accuracy, we tested
two parameters, including mtry and ntree and determined their optimum values. In this
experiment, we experientially set mtry to (1, 2, . . . , 5), and set ntree to (100, 200, . . . , 1000).
The variations of R and RMSE values against mtry and ntree parameters are depicted in
Figures 7 and 8, respectively. It can be seen that the best results appear when mtry = 4 and
ntree = 800. To sum up, the mtry parameter is set to 4 and the ntree parameter is set to 800
in the following experiments.

Figure 7. Effects of mtry parameter on the SM retrieval performance. (a) R and (b) RMSE.
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Figure 8. Effects of ntree parameter on the SM retrieval performance. (a) R and (b) RMSE.

4.4. Generalization Performance Analysis

In general, the performance could be better when we use more training samples since
the model will be well-trained with sufficient prior knowledge. In this experiment, we
tested the generalization performance in our model under different numbers of training
samples. To this end, the ratio of training samples was set to (0.1, 0.2, . . . , 0.9). As shown
in Figure 9, the accuracy increases as the ratio of training samples also increases, which
confirms our assumption. In the following experiments, the ratio of training samples is set
to 0.7, to obtain better results and retain sufficient validation data.

Figure 9. Effects of the ratio of training samples (%) on the SM retrieval performance. (a) R and
(b) RMSE.

4.5. Evaluation of Different Retrieval Models

Based on the above experiments, the proposed Multi-MDA-RF model is determined.
In order to give a comprehensive and reliable analysis of our model, BPNN and GRNN are
chosen for comparison with the same training samples. The results of different models are
summarized in Table 5. It can be observed that Multi-MDA-RF obtains much higher accu-
racy than BPNN and GRNN, with R (ubRMSE) values improved by 0.30 (0.039 cm3/cm3)
and 0.19 (0.029 cm3/cm3) for BPNN and GRNN, respectively. For the operation time, our
model is reasonable with a time cost of 37 s. However, GRNN takes the longest time among
the three models. Although BPNN has a shorter calculation time, its accuracy is lower than
the other models.
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Table 5. The results of Multi-MDA-RF model compared to BPNN and GRNN. The bold numbers
indicate better evaluation results.

Model Training
Samples

Testing
Samples Time (s) R Bias

(cm3/cm3)
RMSE

(cm3/cm3)
ubRMSE
(cm3/cm3)

BPNN 5225 2239 2 0.63 0.000 0.071 0.071
GRNN 5225 2239 114 0.74 0.000 0.061 0.061
Multi-

MDA-RF 5225 2239 37 0.93 0.000 0.033 0.032

We then drew box plots in Figure 10 to analyze the stabilities of different models.
More intuitively, it can be seen that the results of our model are more compact, indicating
that it is more stable than the other two models. Among the three models, BPNN is the
least accurate and the most unstable one. SM retrieval maps based on the three models are
generated in Figure 11, which displays the mean SM maps during August 2015 for different
models and the in-situ measurements. From a spatial perspective, all three models show
low SM values in the west, with an increase toward the east, which agrees with climate
of CONUS. However, both BPNN and GRNN underestimate SM values, especially in the
center of CONUS. The result of our model illustrated in Figure 11c is wetter than BPNN and
GRNN models, which is well matched with the spatial pattern of the in-situ measurements.

Figure 10. Box plots for (a) R, (b) bias, (c) RMSE, and (d) ubRMSE obtained by BPNN, GRNN, and
Multi-MDA-RF. The central mark indicates the median, while the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data
points not considered outliers plotted individually using the “+” symbol.
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Figure 11. Mean SM maps of August 2015 obtained by different models. (a) BPNN, (b) GRNN, (c) Multi-MDA-RF, and
(d) in-situ measurements.

4.6. Evaluation of Different SM Products

In this experiment, Multi-MDA-RF is compared with other five SM products including
SMAP, AMSR2, SMOS, FY-3B, and ERA-Interim. We used 1577 points of spatiotemporal
matching to draw scatter plots as shown in Figure 12. According to the scatter plots, Multi-
MDA-RF matches the 1:1 line better than the other products, indicating that our product
has the highest accuracy. Most SM values of SMAP, SMOS, and FY-3B agree with the in-situ
measurements, but there are still some deviation values that make the accuracy relatively
low. AMSR2 is less accurate with the R value of 0.29, and its SM values deviate from the
1:1 line. Most SM values of ERA-Interim are concentrated between 0.1 and 0.3 cm3/cm3,
which are inconsistent with the in-situ measurements. Note that the satellite data used in
our model are not screened, and we did not conduct quality control for all of the considered
products for a fair comparison, which results in the deviations of the other products.

According to the mean SM maps (Figure 13), our product can well capture the spatial
dynamics and outperform the other products. The results of SMAP and SMOS are not
“good”, and their SM estimates involve too many black pixels near the continental margins
and water systems, where the water bodies or wet soil may lead to the poor performance.
AMSR2 seems to be the worst with a lot of black pixels and it overestimates the SM
values, especially in densely vegetated areas. This may be because C-band satellites do
not have capacity to penetrate vegetation as well as L-band satellites [79]. Note that, those
black pixels in Figure 13b–d represent that the corresponding SM values are greater than
0.5 cm3/cm3, which are considered as outliers [80]. Therefore, SMAP, SMOS, and AMSR2
need conducting carefully quality control to avoid errors in practical applications. FY-
3B is also very poor, and there are a lot of gaps in the map. The gaps in satellite-based
SM products are intrinsic due to satellite orbits and retrieval algorithms [9]. The data
gaps in CONUS accounts for about 25%, which makes the application value of FY-3B
extremely limited. In addition, microwave remote sensing products are easily affected by
Radio-Frequency Interference (RFI), which may be another reason for the low accuracies of
these products. ERA-Interim overestimates the SM values in the east and underestimates
the SM values in the west of CONUS. Its estimations are too smooth to reflect variations
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since the distribution of SM values cannot be so uniform in practice. This may be because
ERA-interim is a reanalysis product from the data assimilation system, the product itself
has certain deviations.

Figure 12. Scatter plots of (a) Multi-MDA-RF, (b) SMAP (c) AMSR2, (d) SMOS, (e) FY-3B, and (f) ERA-Interim. The red line
is the 1:1 line.
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Figure 13. Mean SM maps of August 2015 for (a) Multi-MDA-RF, (b) SMAP, (c) AMSR2, (d) SMOS, (e) FY-3B, (f) ERA-Interim,
and (g) in-situ measurements. Black pixels are considered as outliers.

In this context, our product is more consistent with the in-situ measurements, which
means it outperforms the other compared products, including official satellites and LSM.
In addition, the obtained scatter plot and the map of our product are fairly good, demon-
strating it is able to accurately describe the relationship between the selected features and
in-situ measurements. Therefore, Multi-MDA-RF showed the best predictive ability and
can well capture spatial variations in SM even without quality control.

To further evaluate the performance of the proposed method, we selected two typical
products, including SMAP and ERA-Interim using 410 spatially isolated sites. Figure 14
shows the monthly mean difference between Multi-MDA-RF, SMAP, and ERA-Interim
with in-situ measurements. It can be seen that our product has the smallest difference, i.e.,
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most of the points are closer to the 0 line, indicating the good accuracy and potential of
Multi-MDA-RF in SM retrieval.

Figure 14. Difference diagram by comparing Multi-MDA-RF, SMAP, EAR-Interim with
in-situ measurements.

4.7. Evaluation of Different SM Networks

In order to evaluate the predictive power of the Multi-MDA-RF model over each
network, Table 6 and Figure 15 show the specific evaluations at different networks. It can
be observed that our model performs slightly better at SCAN and USCRN than the other
five networks. This is because the two networks have sufficient, widespread and uniform
in-situ measurements, which are ideal SM observation networks. Table 6 shows that the R
values of PBO_H2O and SOILSCAPE are lower than the others. This may be due to the
fact that most of the sites of these two networks are located in rugged areas of the west
CONUS. In addition, PBO_H2O only records SM data at 12 p.m. once a day. However, the
satellite data used in the experiment are close to 6 a.m., which may be another reason for
the low correlation of this network. Box plots in Figure 15 show that the results of SCAN,
SNOTEL and USCRN are compact and stable. However, the results of COSMOS, iRON,
and SOILSCAPE are unstable. This is mainly due to the fact that only a few sites of these
three networks participate in model training, resulting in unstable prediction results.

Table 6. Average statistics of the evaluation of SM retrieval against in-situ measurements over
each network.

Network Training
Samples R Bias (cm3/cm3)

RMSE
(cm3/cm3)

ubRMSE
(cm3/cm3)

COSMOS 48 0.95 –0.013 0.050 0.0489
iRON 36 0.94 –0.002 0.029 0.029

PBO_H2O 1640 0.78 0.000 0.028 0.028
SCAN 2197 0.96 0.002 0.028 0.028

SNOTEL 2569 0.95 –0.001 0.030 0.030
SOILSCAPE 49 0.88 –0.008 0.026 0.024

USCRN 1481 0.96 0.003 0.029 0.029
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Figure 15. Box plots for (a) R, (b) bias, (c) RMSE, and (d) ubRMSE of each network.

Radar plot is usually used for comprehensive analysis of multiple indicators, which
has the advantages of integrity, clarity and intuition. Figure 16 shows the performance
of different models at seven networks. The results show that the performance of Multi-
MDA-RF is better than the other models, which means that our model is more adaptable at
different networks. In addition, BPNN and GRNN have low accuracy in predicting SM
values at iRON, which may be because the two models are not dominant when there are
few training samples. Figure 17 shows the performance of different SM products at seven
networks. Multi-MDA-RF still performs best at all networks. The other products show low
R values at COSMOS except for our product, which further indicates that Multi-MDA-RF
has a wider range of applications. The RMSE values of AMSR2 are much higher than the
other products at all networks, because there are many abnormal values in this product.

Figure 16. Radar plots for (a) R and (b) ubRMSE of three models at different networks.
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Figure 17. Radar plots for (a) R and (b) ubRMSE of six SM products at different networks.

4.8. Evaluation of Different U.S. States

To evaluate the spatial variations between different states, we compared the SM values
from three U.S. states with similar latitudes, i.e., Utah in the west, Kansas in the central,
and Virginia in the east of CONUS. As shown in Figure 18, the topographies of the three
areas are different. Utah is mainly covered with forest and grassland with high altitude.
Kansas is mainly cultivated land and grassland, and the terrain is gentle. Virginia is mainly
covered with forests, hills and low mountains. Table 7 shows the evaluation results of three
selected U.S. states. The R value of Utah is the highest, which may be due to the richer
in-situ measurements in the western region. Kansas has the lowest RMSE value, this is
because the terrain of the central region is flat, which is conducive to the construction of
SM retrieval model. The performance of Virginia is not very good, because the eastern
region has less in-situ measurements and the dense vegetation cover is unfavorable for
SM retrieval.

Figure 18. The distribution and land cover of U.S. states, where Utah, Kansas, and Virginia are
highlighted. The source of land cover is GlobeLand30.

Table 7. Evaluation of different U.S. states.

Scheme 3. Training
Samples R Bias

(cm3/cm3)
RMSE

(cm3/cm3)
ubRMSE
(cm3/cm3)

Utah 1032 0.94 0.000 0.027 0.027
Kansas 112 0.88 0.000 0.026 0.026
Virginia 64 0.87 0.002 0.031 0.030



Water 2021, 13, 2003 23 of 28

4.9. Producing High Resolution SM Map

Although our product has potential for SM retrieval, a SM product with relatively low
spatial resolution is inadequate to be applied to practical use in some fields. Therefore, in
this experiment, we used higher spatial resolution features as the input data to retrain the
proposed Multi-MDA-RF model, and obtain a higher spatial resolution SM product.

In previous experiments, we resampled all of the features to the same spatial resolution
of 36 km. After feature selection, the selected five features could be resampled according
to the lowest resolution among the features, i.e., 0.125◦ of ERA-Interim product. The
evaluation results of the retraining model are measured as R = 0.94, bias = 0.000 cm3/cm3,
RMSE = 0.033 cm3/cm3, ubRMSE = 0.033 cm3/cm3, which means that the SM map with
high spatial resolution still maintain high accuracy. Figure 19 shows a comparison of the
lower and the higher resolution SM maps. It can be found that the SM map with higher
spatial resolution can well represent the global and local variations with more clear details.

Figure 19. Comparison of SM maps with different resolutions; (a) 36 km and (b) 0.125◦.

5. Discussion

The comparison of SM products shows that satellite products and LSM products have
great uncertainty. Existing studies used these products as reference to train SM retrieval
models, which will inevitably bring great uncertainty to the results [5,38,81]. The proposed
model has greatly reduced the uncertainty from several aspects. Firstly, we used the in-situ
measurements as the reference, which was beneficial to yielding more accurate results.
Secondly, we conducted sensitive analysis of 29 features generated from multi-source data.
Thirdly, we equipped the RF model with feature selection for SM retrieval, which had
higher generalization performance with limited training samples. Previous comprehensive
experiments have validated the ability of our model in terms of weakening uncertainty.
For example, our model is more stable compared to BPNN and GRNN according to the
box plots. Our product is closer to the in-situ measurements compared to other products
according to the scatter plots, SM maps, and difference diagram. Our method equally
performs best at different networks according to the radar plots.

To demonstrate the advantages of Multi-MDA-RF in terms of generalization perfor-
mance, we compared several other studies in the same study area in Table 8. Firstly, it can
be found that our method uses the most abundant features from multi-source products.
However, the input data of other studies are all from a single source except auxiliary prod-
ucts. Most of the experiments have not conducted feature selection, while our experiment
optimizes sensitive features. Although Senyurek et al. [45] also selected features, they
considered fewer features, which may be not comprehensive enough. Secondly, we used
fewer training samples (5225), which shows that our product also can be used in the areas
with insufficient in-situ measurements. Thirdly, we achieve higher accuracies with the
R value of 0.93 and the ubRMSE value of 0.032 cm3/cm3, indicating that our product has
more potential to predict SM values. Fourthly, we produced two SM maps with different
spatial resolutions and provide the highest spatial resolution in the analogous studies. The
0.125◦ map also has high accuracy and more clear details.
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Table 8. Comparison of existing results obtained by related studies in the same study area.

Reference Model Number of Features
(Main Inputs)

Feature
Selection
(Yes/No)

Study Period #Training
Samples

Spatial
Resolution Accuracy

Fang et al.
[46] LSTM

5
(Precipitation,
Temperature,

Radiation, Humidity,
Wind speed from North

American Land Data
Assimilation System

phase II)

No 1 April 2015–
31 March 2017 \ 36 km

R = 0.87
RMSE = 0.035

cm3/cm3

Xu et al. [40] GRNN

7
(SM from SMAP,

Landcover from IGBP,
Surface temperatures
from GEOS-5, VWC

from MODIS, Month,
Latitude, Longitude)

No 31 March 2015–
31 August 2017 \ 36 km

R = 0.91
ubRMSE = 0.044

cm3/cm3

Chatterjee
et al. [82]

MLR, Cubist,
RF

8
(The backscatter data
(VV, VH, and Angle)

and Temporal statistics
(Temporal mean and
SD) from Sentinel-1,
Terrain parameters,

Land cover, Soil
properties)

No
1 January
2016–31

December 2017
\ 30 m

R2 = 0.68
RMSE = 0.06

cm3/cm3

Senyurek
et al. [45] RF

12
(Reflectivity, TES, LES,
Incidence angle from

CYGNSS, NDVI, VWC,
H-value from MODIS,
Slope, Elevation, Silt,

Clay, Sand)

Yes 1 January 2017–
31 December 2019 17,065 3 km

R = 0.89
ubRMSE = 0.052

cm3/cm3

Yuan et al.
[44] GRNN

7
(SMAP_TBH,

SMAP_TBV, SMAP_Ts,
SMAP_VWC, Month,
Latitude, Longitude)

No 1 April 2015–
31 March 2018 97,843 36 km

R = 0.88
RMSE = 0.050

cm3/cm3

bias =
0.000cm3/cm3

ubRMSE = 0.050
cm3/cm3

Ours RF

29
(SMAP_TBH,
SMAP_TBV,
SMAP_TB4,
SMAP_Ts,

SMAP_VWC,
SMAP_albedo,

SMAP_landcover,
Latitude, Longitude,

AMSR2_TBH,
AMSR2_TBV,
AMSR2_Ts,

AMSR2_optc,
AMSR2_optx,
FY-3B_TBH,
FY-3B_TBV,
SMOS_TBH,
SMOS_TBV,

SMOS_opt, ERA_SR,
ERA_Ts, ERA_albedo,

GLC30_landcover,
MODIS_NDVI,

MODIS_Ts,
MODIS_landcover,
DEM, Soil texture,

DOY)

Yes
1 August 2015–
31 August 2015

5225 36 km

R = 0.93
RMSE = 0.033

cm3/cm3

bias = 0.000
cm3/cm3

ubRMSE = 0.032
cm3/cm3

6657 0.125◦

R = 0.94
bias = 0.000

cm3/cm3

RMSE = 0.033
cm3/cm3

ubRMSE = 0.033
cm3/cm3

6. Conclusions

In this paper, we proposed a novel Multi-MDA-RF method for the estimation of
high-quality SM values in CONUS during the August 2015. The core content of this
method is to select sensitive features from 29 multi-source SM variables before training
the SM retrieval model. Ten various feature selection methods were compared, and MDA
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shows the highest accuracy when K = 5. Then, RF was employed to establish a nonlinear
relationship between the optimal feature subset and the in-situ measurements with fewer
training samples (i.e., a total of 5225). Compared with BPNN and GRNN, our model is
more stable and achieves higher accuracy with the R value of 0.93 and ubRMSE value of
0.032 cm3/cm3. Compared with other SM products, our product is more consistent with
the in-situ measurements, and it shows the best predictive ability and can well capture
SM spatial dynamics. The evaluation of different SM networks indicates that SCAN and
USCRN are ideal SM observation networks, and our method is more adaptable at different
networks compared with other models and products. The evaluation of different U.S.
states shows that the flat area with rich in-situ measurements is more suitable for the
implementation of SM retrieval work. We also produced a SM product with higher spatial
resolution of 0.125◦, which can well represent the global and local variations with more
clear details.

To conclude, the Multi-MDA-RF method used in this study shows great potential in
estimating reliable regional SM values. The ideology of our work may be extended to SM
retrievals from other meaningful SM features and applied in other geographical regions in
the world. Future work will focus on more comprehensive SM feature selection, quality
control of the in-situ data, and more intensive monthly data. We can also consider the
incorporation of some state-of-the-art deep learning techniques to replace RF.
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