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Abstract: Soil is a non-renewable resource essential for life existence. During the last decades it has
been threatened by accelerating erosion with negative consequences for the environment and the
economy. The aim of the current study was to assess soil loss changes in a typical Mediterranean
ecosystem of Northern Greece, under climate change. To this end, freely available geospatial data
was collected and processed using open-source software package. The widespread RUSLE empirical
erosion model was applied to estimate soil loss. Current and future rainfall erosivity were derived
from a national scale study considering average weather conditions and RCMs outputs for the
medium Representative Concentration Pathway scenario (RCP4.5). Results showed that average
rainfall erosivity (R-Factor) was 508.85 MJ mm ha h−1 y−1 while the K-factor ranged from 0.0008 to
0.05 t ha h ha−1 MJ−1 mm−1 and LS-factor reached 60.51. Respectively, C-factor ranged from 0.01 to
0.91 and P-factor ranged from 0.42 to 1. The estimated potential soil loss rates will remain stable for
the near future period (2021–2050), while an increase of approximately 9% is expected by the end
of the 21th century (2071–2100). The results suggest that appropriate erosion mitigation strategies
should be applied to reduce erosion risk. Subsequently, appropriate mitigation measures per Land
Use/Land Cover (LULC) categories are proposed. It is worth noting that the proposed methodology
has a high degree of transferability as it is based on open-source data.

Keywords: soil loss; erosion; climate change; RUSLE

1. Introduction

Soil loss by water erosion is considered to be a major threat to the soil, with negative
impacts on ecosystem services, crop production, water resources, carbon stock and biodi-
versity [1–5]. Soil formation is an extremely slow process, classified as a non-renewable
resources. To this end, it is considered by the European Union as a challenge to be ad-
dressed and has become part of the environmental agenda [6,7]. The United Nations
Sustainable Development Goals (SDGs) recognize the importance of soil resources for
sustainable development and promote their protection to achieve the ambitious goal of
zero land degradation by 2030 [8]. In this framework, the Common Agricultural Policy
(CAP) supports policies and practices to reduce soil erosion.

In particular, the Mediterranean basin has been characterized as an erosion prone
area. It is well-known that both natural and human-induced landscape changes may have
profound effects on soil loss [9]. The natural factors include complex topography and steep
slopes [10], the uneven temporal distribution of rainfall with the high erosivity [11–13] and
soil type and texture [14]. The main anthropogenic factors of soil erosion are considered
to be the intensive ploughing [15], unsuitable agricultural practices [16], combined with
deforestation [9,17] and overgrazing [18,19]. Moreover, recent Mediterranean studies have
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reported accelerated soil loss rate following wildfires [20–22], which have been an integral
part of the Mediterranean ecosystem.

Therefore, the large-scale quantitative assessment of soil loss rate is an essential prior-
ity for policy making and sustainability. The monitoring of soil loss with field observation
and measurements is the most accurate approach [23,24]. However, this is not financially
feasible as it is a time-consuming process that requires increased human and technical
resources [25]. Additionally, the experimental plots cannot cover large-scale areas, but
are limited to defined sites within the watersheds, while systematic measurements are
performed over a short period of time [26,27]. The results are thus representative on
local scale.

The effective modeling of soil erosion is challenging and has raised concern among
the scientific community. The results have improved and can be better used in the policy
cycle [28]. The application of the models can improve the identification of vulnerable to
erosion areas and susceptibility mapping [29,30]. The results contribute to the watersheds
prioritization and implementation of the appropriate mitigation measures to combat ero-
sion [31,32]. In this frame, the Global Soil Partnership (GSP) Plenary Assembly supports
that the new UN global soil erosion map will be based on modeling, unlike the previous
assessments based on expert judgments.

The literature on the development of soil loss estimation models and their dynamics
is long over the past decades. These models use mathematical equations to determine
the relationship between different type of factors and erosion process. They classified
on different spatial/temporal scales and various levels of complexity [33]. The main
factors affecting soil loss rate are the climate, soil characteristics, topography, land cover
and vegetation type. In general, the models are categorized as empirical, conceptual
and physically-based depending on the physical processes simulated by the model, the
algorithms describing these processes and the data dependence [34].

Empirical models are widely applied, especially in data scarce environment as their
simplicity requires limited data and parameters. The most well-known empirical models
are USLE [35], RUSLE [36], RMMF [37], and EPM [38]. The physical-based models are
based on knowledge of the basic processes within the laws of conservation of mass and
energy, as well as on the physical understanding of the processes involved in the phe-
nomenon. These include ANSWERS [39], CREAMS [40], KINEROS2 [41], EUROSEM [42],
EPIC [43], WEPP [44] and PESERA [45]. In terms of conceptual models, these are based
on a combination of physical-based and empirical models and the most common are the
AGNPS [46], LASCAM [47] and SWAT [48].

The most commonly used empirical erosion model is USLE [35] and the revised version
RUSLE [36]. It should be noted that these models estimate average annual sheet and rill
erosion, but not gully erosion. The main advantages of the USLE/RUSLE model are the
flexibility, the accessibility of data and the extensive literature review on the adaptability
of the method in almost every kind of conditions and environment [49]. This is also
confirmed by the fact that has been frequently used at large scale [28,49,50]. Nowadays,
the well-established use of Geographic Information System (GIS), Remote Sensing (RS)
and Earth Observation (EO) data has increased the efficiency and accuracy of erosion
model [9,22,51–54].

The erosive force of rainfall is expressed as rainfall erosivity and is the main driver
of soil erosion. Rainfall erosivity considers the amount and the intensity of rainfall and
is most commonly expressed as the R-factor in RUSLE model [55]. The exposure of the
Earth’s surface to aggressive rainfall is a key factor controlling the soil loss by water in
terrestrial ecosystems and other hydrological hazards [56]. The dynamic nature of the
rainfall erosivity (R) factor in RUSLE model [52] makes it suitable for applications under
changing climate conditions [57–59]. This is highly important as the Mediterranean basin is
considered a hotspot for a climate change and biodiversity and is expected to face increased
challenges due to climate shifts [60,61]. Although the climate will become warmer and drier,
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more often, intense precipitation events are expected in the eastern Mediterranean [62] and
an increase in the rainfall erosivity [12,63].

The main object of the current study is to evaluate the soil loss in a typical Mediter-
ranean ecosystem (North Greece) under current and future rainfall erosivity conditions
based on data from high-resolution regional climate models (RCMs).

2. Materials and Methods
2.1. Study Area

The study was conducted in the Kassandra Peninsula and it is located in Northern
Greece (Figure 1). It is a well-known tourist destination with a 350 km2 area. The dom-
inant forest species is Aleppo pine (Pinus halepensis), while the presence of shrubland is
significant, even in the overstory within the stands [64]. Another characteristic of the
landscape fragmentation is the small patches of forest land alternated with olive groves
and grasslands.
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Figure 1. Location map of the study area.

The climate is typical thermo-Mediterranean and characterized by mild wet winters
and dry warm summers. According to the climatic classification of Köppen [65], the study
area belongs to the Csa climatic type, which prevails almost all over Greece. The mean
annual rainfall is about 600 mm, while the mean temperature is about 16 ◦C and the
pre-long dry period is particularly extended from May to September.

In relation to the geomorphological characteristics, the elevation ranges from sea
level to 340 m. The complex terrain and moderate slopes also stand out in the landscape,
but the slopes are more intense in the northwest. Degraded from erosion sandy and
sandy-clay types of soils predominate in the area and the dominant bedrock is marls
(sedimentary rock).
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2.2. Soil Loss Modeling and Datasets

The RUSLE model, as indicated by its name, is an updated version of the USLE model.
The model computes the mean annual soil loss from sheet and rill erosion as a linear
combination of five factors [36],

A = R × K × LS × C × P (1)

where A is the computed annual soil loss (t ha−1 y−1), R is the rainfall erosivity factor (MJ
mm ha h−1 y−1), K is the soil erodibility (t ha h ha−1 MJ−1 mm−1), LS is the combined
effect of slope length (L) and slope steepness factor (S) (dimensionless), C is the cover
management factor (dimensionless) and P is the support practice factor (dimensionless).
Based on the above-mentioned factors numerous datasets were collected and analyzed.

These datasets included the rainfall, satellite imagery, soil and topographical data.
By using the open source Quantum GIS (QGIS) software package, all the datasets were
organized in GIS thematic layers. Subsequently, the determination of each factor during
the implementation of the soil loss model is described in the following sub-subsection. A
brief flowchart of the methodology and an associated table with the input datasets are
presented in Figure 2 and Table 1, respectively.
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Figure 2. Methodological flowchart for modeling soil loss using RUSLE model.

The soil loss values were grouped into five erosion hazard classes ranging from very
low to very high. The limits of these classes were obtained as described in the national
scale studies of Flood Risk Management Plans (FRMPs), conducted in the frame of EU
Directive on floods (2007/60/EC).
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Table 1. Summary of the input datasets and sources used for the estimation of soil loss in RUSLE model.

Factors Datasets Data Source Spatial Resolution Format

Current/Future Rainfall
erosivity (R) National Scale Study [66]

https://zenodo.org/record/3692645
(accessed on 1 May 2021)

https://zenodo.org/record/3855604
(accessed on 1 May 2021)

~1 km Raster

Soil erodibility (K) Soil Map of the Greek Ministry
of Agriculture

http://mapsportal.ypen.gr/maps/289
(accessed on 1 May 2021) - Vector

Slope Length and Steepness
(LS) ALOS DEM

https://www.eorc.jaxa.jp/ALOS/en/
aw3d30/index.htm

(accessed on 1 May 2021)
30 m Raster

Cover management (C) Sentinel-2—Level 2A imagery
“Copernicus” program

https://scihub.copernicus.eu
(accessed on 1 May 2021)

10 m Raster

Support practice (P) European Soil Data Center
https://esdac.jrc.ec.europa.eu/content/

support-practices-factor-p-factor-eu
(accessed on 1 May 2021)

1 km2 Raster

2.2.1. Rainfall Erosivity Factor (R)

Rainfall is considered as a triggering factor for soil loss. It is a dynamic factor and
presents high spatial and temporal variability. It is defined as the average annual sum
of the kinetic energy of storm events with, maximum, 30-min rainfall intensity. Unfortu-
nately, rain gauge station data and especially pluviographs are rarely available in eastern
Mediterranean and especially the Greece territory. To this end, many simplified math-
ematical equations managed to link the rainfall erosivity to annual or monthly rainfall
data [9,20,67,68].

The values of the R factor were obtained from a national scale study considering
average weather conditions [66]. Annual rainfall erosivity was calculated using daily
and monthly precipitation records from rain gauge station spatially distributed through
Greece. In the above-mentioned study [66] the event erosivity EI30 (MJ mm ha−1 h−1) was
computed using pluviograph records and defined as:

EI30 =

(
m

∑
r=1

ervr

)
× I30 (2)

where er is the kinetic energy of unit rainfall (MJ ha−1mm−1) and vr is the rainfall depth
(mm) for the hyetograph’s time interval r, which has been divided into r = 1, 2, . . . , s
time sub-intervals and I30 is the maximum rainfall intensity for a 30-min period during
the rainfall.

The unit rainfall energy (er) was calculated for each time interval as follows:

er = 0.29
(

1 − 0.72e−0.82ir
)

(3)

where ir is the rainfall intensity during the time interval (mm h−1).
Following the calculation of EI30 values, the average monthly rainfall erosivity density

EDm (MJ ha−1 h−1) per station was calculated:

EDm =
1
n

n

∑
i=1

(
∑stm

k=1(EI30)k
Pm

)
i

(4)

where stm is the number of storms during the month m, (EI30)k the erosivity of storm k, Pm
the monthly precipitation height and n the number of years.

Also, in order to create the aforementioned product, the Quantile Regression Forests
(QRF) algorithm was used [69] for the spatial mapping of the results. The raster product
is available online at: https://zenodo.org/record/3692645 (accessed on 1 May 2021).
Noteworthy, previous studies on R in Greece [70] revealed that the reported R values

https://zenodo.org/record/3692645
https://zenodo.org/record/3855604
http://mapsportal.ypen.gr/maps/289
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm
https://scihub.copernicus.eu
https://esdac.jrc.ec.europa.eu/content/support-practices-factor-p-factor-eu
https://esdac.jrc.ec.europa.eu/content/support-practices-factor-p-factor-eu
https://zenodo.org/record/3692645
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were underestimated due to the presence of a significant amount of missing data in the
precipitation records used in the calculations.

Furthermore, the effect of climate change on soil loss was assessed. Hence, future
rainfall erosivity was used to address this issue. The future rainfall erosivity raster was
likewise produced in the already referenced national scale study [54]. The future projection
of precipitation was obtained from Regional Climate Models (RCM) with a fine resolution
(10 × 10 km) developed in the frame of the EURO-CORDEX project [57,71] and found
that the precipitation condition performs better for a historical time period. In order to
evaluate model’s performance comparison between station data and RCMs projections
was achieved for the historical period 1971–2000. Statistical indexes, such as root mean
square error (RMSE) coefficient of determination R2 and Lin’s Concordance Correlation
Coefficient (CCC) were used in order to evaluate the model’s performance.

The results demonstrated that the RACMO2 model achieved better performance. This
model used later on for the creation of rainfall erosivity raster for current and future condi-
tions. The RACMO2 model developed by the KNMI institute and driven by the General
Climate Model (GCM) named EC-Earth. Herein, two scenarios of future R values were
evaluated based on the medium Representative Concentration Pathway RCP4.5 scenario,
for the near future period (2021–2050) and far future period (2071–2100), respectively.

2.2.2. Soil Erodibility Factor (K)

The soil erodibility factor describes the susceptibility of soil types to detachment and
transport as a result of the raindrop and runoff process. It depends on many soil properties,
such as soil texture, permeability, shear strength, organic matter and chemical composi-
tion [14]. The estimation of the K factor based on field measurements is a complicated and
time-consuming process, usually infeasible in large scale studies. Consequently, a reliable
methodology in a form of nomograph [72] for the determination of the K values has been
developed. The nomograph firstly considering five soil parameters (silt, sand, clay and
organic matter content, a soil structure index and soil permeability index) whereas later on
was modified in order to account for the rock fragment cover effect [35]. The lower values
of K indicate soils less prone to erosion. On the other hand, the higher values attribute to
soil susceptible to erosion.

The estimation of the K factor values was based on 1:50,000 scale soil map, from the
Greek Ministry of Agriculture. Particularly, the appropriate values were assigned to each
parent material according to the relative literature [73,74] and presented in the following
table (Table 2).

Table 2. Soil parent material and assigned soil erodibility (K) values.

Parent Material K Value

Alluvial Deposits 0.015
Hard Limestone 0.0008

Peridotite 0.05
Tertiary deposits 0.015

2.2.3. Topographic Factor (LS)

The slope length (L) and slope steepness factor (S) are commonly combined as the
topographic LS factor. The S-factor measures the effect of slope steepness, and the L-
factor defines the impact of slope length. The combined LS-factor describes the effect of
topography on soil erosion process. The higher values of LS-factor represent steeper relief,
where erosion and sediment yield increase due to an increase of the runoff.

The S factor is calculated, according the slope gradient, in degrees (ϑ) as follows [75]:

S =

{
10.8 × sin ϑ + 0.03 ϑ < 0.09
16.8 × sin ϑ − 0.5 ϑ > 0.09

(5)
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Moreover, the L factor is calculated using the proposed equation by Desmet and
Govers [76]. This approach takes into account that the slope steepness is not uniform for
the whole area and introduce the concept of the unit-contributing area. The mathematical
formula given below:

L =

(
Ai,j−in + D2)m+1 − Am+1

i,j−in

Dm+2 × xm
i,j × 22.13m (6)

where Ai,j,–in is the contributing area (m2) at the inlet of grid pixel (i,j), D is the grid pixel
size (m), xi,j is the summation of the sine and cosine of aspect direction (αi,j) of grid pixel
(xi,j = sin αi,j + cos αi,j), and m is a coefficient related to the ratio b of the rill to inter-rill
erosion. The equation for the m coefficient is:

m =
β

β + 1
(7)

β =
sin ϑ

0.0896
[0.56 + 3 × (sin ϑ0.8)]

(8)

ϑ is the angle of slope in degrees and m values varies between 0 to 1. The aforementioned
approach [76] demonstrates that this procedure of LS estimation is suitable for landscapes
with complex topography.

The LS factor calculation was implemented using the System for Automated Geo-
scientific Analyses (SAGA) GIS software package which incorporates the multiple flow
algorithm [77]. SAGA software offers a robust set of terrain analysis data processing
modules [78] and is faster than ArcGIS Toolbox in computing flow accumulation directly
from DEMs [79].

A digital elevation model (DEM) is required for the calculation of the LS factor as
an input dataset. The Advanced Land Observing Satellite (ALOS) (AW3D30 v.2.2) DEM
developed by the Japan Aerospace Exploration Agency (JAXA) with spatial resolution
30 m was selected in this study (https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm,
accessed on 1 May 2021). This option is also supported by the literature review concerning
its accuracy both in Greece [80,81] and in the Mediterranean Basin [82,83] in comparison
with similar products.

2.2.4. Cover Management Factor (C)

Vegetation can significantly protect the surface soil loss and act as a factor to slow
down the soil erosion [84]. The normalized difference vegetation index (NDVI) is one of
the most widely known satellite-based indicators of vegetation growth and cover [9]. It is
expressed by the following computing formula:

NDVI =
NIR − Red
NIR + Red

(9)

where NIR and Red are the near-infrared and red spectrum of a satellite image, respectively.
Using the NDVI image, the C-factor is generated on the basis of vegetation cover,

which allows raindrops to subside their kinetic energy before impacting on the soil sur-
face [20]. This cover management factor is expressed as a rate of soil loss under specific
conditions such as vegetation and surface coverage.

The C-factor is calculated based on the following equation [84]:

C = exp
[
−a
(

NDVI
b − NDVI

)]
(10)

where a and b are the parameters that determine the relationship between C and NDVI
curve. The a and b are equals 2 and 1, respectively, and are unitless parameters that specify

https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm
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the shape of the aforementioned curve [9,51]. The C Factor ranges between 1 and 0, while
closeness to 0 indicates the well protected land.

The C-factor calculation was implemented using the NDVI index of a single-date
Sentinel-2A image obtained in the summer of 2020. In particular, the Sentinel-2A Level-2A
(launched 31 August 2020) provides high-resolution optical data (10 m, 20 m and 60 m)
with atmospheric and radiometric corrections. The image was acquired from the European
Space Agency (ESA) Copernicus Access Hub (https://scihub.copernicus.eu) (accessed
on 1 May 2021), which provides free access to Sentinel products and processed on GIS
software. The spectral bands used in this study were the NIR and Green band of 10 m
spatial resolution. As for the mathematical equation of C-factor, it was applied in a QGIS
Raster Calculator using the NDVI image and the constant a and b values. Many studies
state the profound effect of seasonality on C factor estimation [85]. This occurs due to the
rapid change of vegetation conditions during the year. However, the main LULC classes
in the study area are permanents (pinewood, olive groove, shrubland) so their canopy
characteristics are stable through the year. Therefore, a single-data image acquisition
considered representative for the C factor estimation [86].

2.2.5. Support Practice Factor (P)

The support practice factor (P) defines the impact of management practices against soil
loss. These practices mainly include contour farming, stone walls and grass margins over
the examined region. The P values range between 0 and 1. A low P factor, approaching 0,
indicates an effective support practice. Whereas, a P factor near to 1 corresponds to the
absence of conservation practice.

The P values were obtained in raster format from a recently published study [87]
and the associate datasets are available from the European Soil Data Center [88]. In these
studies, Greece was included in the list of countries where support practices have the
greatest impact.

3. Results

According to the extent of the study area there is no significant spatial variability of the
rainfall. The rainfall erosivity (R), as already mentioned in the previous subsections, was
derived from a national scale study (see Figure 3d). The rainfall erosivity values ranged
from 490 to 538 MJ mm ha h−1 y−1 with a mean value of 508.8 MJ mm ha h−1 y−1 and
standard deviation (SD) of 13.3 MJ mm ha h−1 y−1. The spatial distribution of R factor
showed a clear distinction between the hilly areas in the central part (with high R value)
and the coastal regions (with low R value). The role of topography is emphasized as the
mountains are found in the middle part of the study area.

In terms of soil erodibility (K), it must be quoted that the dominant parent rocks were
tertiary and alluvial deposits, followed by peridotites and finally smaller area occupied
by hard limestones. The soil erodibility values (K) in the study area ranged from 0.0008 to
0.05 t ha h ha−1 MJ−1 mm−1 with a mean value equal to 0.02 t ha h ha−1 MJ−1 mm−1 and
standard deviation (SD) of 0.01 t ha h ha−1 MJ−1 mm−1 (see Figure 3c). The topographic
factor (LS) values ranged from 0.03 to 60.5, with a mean value of 2.86 and standard deviation
(SD) of 2.97 (see Figure 3b). The cover management (C) values ranged from 0.01 to 0.91
with a mean value of 0.22 and standard deviation (SD) of 0.2 (see Figure 3a). The lower
values were found in pinewoods, followed by shrublands. In the majority of the study area
there is no support practices, as revealed from the European dataset used herein. Therefore,
the mean P value is equal to 0.98 and the standard deviation (SD) of 0.07 (see Figure 3e).

The expected potential soil loss (A) expressed in tons per hectare per year (t ha−1 y−1)
and was calculated by multiplying the five RUSLE factors. The spatial distribution of the
RUSLE factors and soil loss map are presented in the following figure (Figure 3).

The coupling of the above-mentioned factors results to the estimation of soil loss and
the creation of the associated map (Figure 3f). The mean annual soil loss was found to be
3.4 t ha−1 y−1, and characterized as very low according the classification categories. The

https://scihub.copernicus.eu
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results of the potential soil loss hazard map illustrated that the 80.1% of the study area
belong to the very low hazard class, followed by low (13.1%) and moderate (5.1%) hazard
classes. Additionally, soil loss characterized as high or very high only in the 1.3% and
0.1% of the area, respectively. Due to a combination of factors, such as steep slopes and
barren land, considerable high values of soil loss presented in the coastal zone. This is also
common in other Mediterranean coastal areas.
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The LULC is the most crucial variable in soil loss models, as it is the only factor that
can be altered by humans, for better or for worse. Land Use/Land Cover (LULC) generally
refers to the categorization or classification of human activities and natural elements on
the landscape within a specific time frame based on established scientific and statistical
methods of analysis of appropriate source materials.

Also, it provides an effective erosion control. In order to design an integrated erosion
mitigation plan, the identification of soil loss rate per LULC type is required. In the study
area, the soil loss was analyzed by LULC based on second level of CORINE (CLC2018)
land cover database (Figure 4).
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The mean rate of soil loss from arable land is 3.1 t ha−1 y−1. Permanent crops and
heterogeneous agricultural areas present higher rates of soils loss than arable lands equal to
4.1 and 4.9 t ha−1 y−1 respectively. This is due the fact that olive trees located in hilly areas
and heterogeneous agriculture land in areas with complex relief, while arable lands are in
flat or gently sloping areas. The agricultural areas, including arable lands, heterogeneous
agricultural areas and permanent crops cover an area of 62.7% of the study area. The
rate of soil loss in agricultural areas is 4.1 t ha−1 y−1 and is 20% higher than the overall
mean. These agricultural lands account for 77.5% of the total soil losses. As for the artificial,
non-agricultural vegetated areas, results covering only the 3.1% of the study area and
having a relative low impact on soil loss in the current study. The forests present by far
the lowest rate of soil loss (0.9 t ha−1 y−1). Despite covering more than 20% of the area,
forestlands contribute to less than 9% of the total soil loss. Finally, areas covered with
shrubs and herbaceous vegetation concentrate 14% of the study area and have a mean soil
loss above average (2.6 t ha−1 y−1).

In order to evaluate the climate change effect on the potential soil loss, the RUSLE
model was applied under future climate conditions, as derived from the RACMO2 RCM.
According to the RCP4.5 scenario, the process was carried out for the near future (2021–2050)
and the far future period (2071–2100). Spatial difference between the projected R factor
and the baseline period (1971–2000) showed an increase of 4.4 MJ mm ha h−1 y−1 and
46.1 MJ mm ha h−1 y−1 for the 2021–2050 and 2071–2100 periods, respectively. As a result,
the changes are considered to be higher in the northwestern part of the study area and will
intensify until the end of the 21th century (Figure 5).

The aforementioned changes in R factor will also affect the soil loss potential. The
outcomes of the RUSLE model implementation under climate change conditions are pre-
sented in the following figure (Figure 6). The mean annual soil loss will remain stable until
2050, with a mean difference from the baseline period of 0.02 t ha−1 y−1 and a standard
deviation (SD) of 0.12. However, an increase (+8.7%) is expected for the far future period
(3.7 t ha−1 y−1) with mean difference from the baseline period equal to 0.31 t ha−1 y−1 and
standard deviation (SD) of 0.52. Nevertheless, the hazard classes’ rates remain the same
without any notable change for both near future and far future period.
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4. Discussion

The soil loss by sheet and rill erosion was estimated using the RUSLE model. Un-
fortunately, there are no experimental plots in the study area. However, studies in Greek
territory comparing model with actual measurements showed acceptable accuracy, despite
a slight underestimation approximately equal to 30% [89,90].

The mean annual rate of soil loss due to water erosion in European Union (EU) is
estimated equal to 2.46 t ha−1 y−1 [28]. The variety of geomorphological, climatological
and land use conditions across EU lead to a wide range of erosion values. As reported
by Panagos [28], the highest mean annual soil loss rate (at country level) is found in Italy
(8.46 t ha−1 y−1), followed by Slovenia (7.43 t ha−1 y−1) and Austria (7.19 t ha−1 y−1) due
to a combination of high rainfall erosivity and complex topography. Particularly, in the
Mediterranean countries, including Greece, the mean rates of soil loss are also higher than
pan—European average [28,91], as can be seen in the following table (Table 3).
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Table 3. Average soil loss rate in Mediterranean countries.

Country Averaged Soil Loss (t ha−1 y−1)

Croatia 3.16
Cyprus 2.89
France 2.25
Italy 8.46

Greece 4.13
Malta 6.02

Portugal 2.31
Slovenia 7.43

Spain 3.94

This is also confirmed by the findings of the current study, as the mean rates of soil
loss in the Kassandra Peninsula (Northern Greece) are estimated equal to 3.4 t ha−1 y−1.
It is noteworthy that the total soil of the Mediterranean EU Member States is 67% of the
total soil loss in the European Union. On the contrary, the lowest values of mean annual
soil loss rates were found in Finland (0.06 t ha−1 y−1), Estonia (0.21 t ha−1 y−1) and the
Netherlands (0.27 t ha−1 y−1). In relation to the Scandinavian and Baltic states the soil loss
rates is approximately equal to 0.52 t ha−1 y−1.

The Intergovernmental Panel on Climate Change (IPCC) last report predicts warmer
and drier conditions for the future European climate [92]. The climate change will strongly
affect the Mediterranean basin as the future changes will be larger than in Central Eu-
rope [93,94]. Extreme precipitation events will be more intense and rainfall—related natural
disaster more frequent regarding the future climate projections [95–98]. Consequently, soil
erosion rates are expected to increase in response to climate change [99,100].

Climate change will also affect the rainfall erosivity in Europe due to alteration of
rainfall patterns. An overall increase of rainfall erosivity in Europe by 18% until 2050
expected [63]. The results are in line with the 17% increase of rainfall erosivity reported
for USA. The changes in Europe are heterogeneous based on future projection of the most
erosive months. The most significant increases in R-factors are expected for Central Europe
and Netherlands. On the contrary, parts of the Mediterranean basin are experiencing a
decline in rainfall erosivity. In Greek territory, the ratio of mean projected R to the current
values were −3.7%, −4.3% and −0.7% for 2040, 2070, and 2100, respectively [70]. Despite
the general decrease in R values, an increased trend was observed in parts of the regions of
Central Macedonia, Thessaly and Northern Thrace.

GCMs are the most widespread and advanced tool currently available for simulating
the response of the global climate to increasing concentrations of greenhouse gases. Due to
the coarse spatial resolution of GCMs (200–300 km) they have been proven ineffective to
simulate accurately regional scale phenomena related to local condition and particularities,
such as complex topography, coastlines, lakes and small islands [101,102]. In order to over-
come these limitations and bridge the gap between large-scale GCM estimation and local
needs, the RCMs have been developed by dynamic downscaling of GCM data [103,104].
However, the studies concerning climate change effect on soil erosion in the Mediterranean
and especially Greece are limited [12,105]. A particular importance study has been recently
conducted about rainfall erosivity in Greece territory [68]. This study not only estimated
the rainfall erosivity values but also future values based on RCMs. In the current work the
data from the RCM that shows better performance are used. The findings indicated that
mean annual soil loss will remain stable in the near future (2050) while a slight increase
is expected until the end of the 21th century (2100). These results are in accordance with
other studies in Greece. Regarding a recent study conducted in Central Pindus [105], a
slight decrease of soil loss potential is expected until the end of the 21th century.

In order to protect the valuable soil resources from soil erosion by water a sustainable
plan should be elaborative. The plan should determine the appropriate mitigation measures
against accelerated erosion. These measures should be adapted and specialized per LULC,
taking into account the magnitude of erosion rate estimated in each category [31]. Low
erosion rates areas are observed in the majority of the study areas forestlands. The main
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consideration on these areas is the protection of forest from clear cutting [106]. Also, the
forest management practices should be aimed to increase tree cover density and highlighted
the protective role of forest instead of timber production only [107,108]. The management
of the shrublands must incorporate forest management strategies that support the increase
of shrub density. In addition, restoration of degraded shrubland and conversion to forest
could be a target of forest management using silvicultural techniques [109]. Shrublands
are routinely graze areas. Therefore, management measures must be adopted to control
overgrazing [18,109]. The higher values of erosion rates, among the existing LULC, were
found in agricultural areas. Therefore, these are the important areas that measures should
be applied. There are some costless practices that farmers adopted so as to protect erosion.
Cultivation on contour can reduce soil erosion up to 50% compared with cultivation up-and-
down the slope depending on the slope gradient [110,111]. Another practice to protect soil
erosion is contour farming with strip cropping which involves cultivating a field partitioned
into long, narrow strips which are alternated in a crop rotation system [112]. Furthermore,
retaining agricultural field margins, ditches and avoiding land leveling will increase the
resistance of soil to runoff and consequently to soil erosion [113]. Moreover, in areas with
steep slopes the stone walls, which are landscape features in Mediterranean [114], can offer
reliable protection against erosion. Finally, a new European policy must be implemented,
according to which no subsidies will be given to farmers on high erosion rate areas [31].
However, a prerequisite for a successful erosion mitigation plan is the acceptance from the
local community and the information, awareness and education of the individuals.

Nowadays, large-scale assessment of soil loss rate under climate change condition
is considered feasible. This is due to the development of cloud computing environments
and availability of EO and gridded climatological data [39,115–117]. This could be a target
of future research. In the future work, not only climate change but also future land use
changes effects on soil erosion should be evaluated. Finally, the effect of seasonality in
estimating the dynamic R and C-factors of soil erosion is obvious.

5. Conclusions

In this paper, the soil loss rate was estimated under current and future rainfall ero-
sivity condition using the RUSLE model and simulation of the RACMO2 RCM based on
RCP4.5 scenario. This approach integrates freely available geospatial data and open-source
software in order to develop an accurate and cost-effective soil loss map.

The mean annual soil loss rate in the Kassandra Peninsula was found to be equal to
3.4 t ha−1 y−1. Agricultural areas present the highest rates of soils loss. Particularly, the
permanent crops found to have higher values than heterogeneous agricultural and arable
land. On the other hand, the lower soil loss rates reported in forests followed by shrublands.
Subsequently, appropriate mitigation measures are proposed per LULC categories.

Considering the reported future climate projections and the associated changes in
rainfall erosivity, the response of climate change to the soil loss rate was evaluated. The soil
erosion will remain almost equal in the near future condition (2050), while for the far future
(2100) an increase of about 9% was predicted. The predicted values of soil loss rate under
climate change should be taken into account by stakeholders and policy makes in order to
adapt an erosion mitigation strategy, especially in complex Mediterranean landscapes.
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38. Gavrilović, S. Engineering of Debris Flow and Erosion; Izgradnja: Beograd, Serbia, 1972; p. 292. (In Serbian)
39. Beasley, D.B.; Huggins, L.F.; Monke, A. ANSWERS: A model for watershed planning. Trans. ASAE 1980, 23, 938–944. [CrossRef]
40. Knisel, W.G.; Williams, J.R.; Singh, V.P. Hydrology components of CREAMS and GLEAMS models. Comput. Models Watershed

Hydrol. 1995, 1, 1069–1114.
41. Smith, R.E.; Goodrich, D.C.; Quinton, J.N. Dynamic, distributed simulation of watershed erosion: The KINEROS2 and EUROSEM

models. J. Soil Water Conserv. 1995, 50, 517–520.
42. Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.W.A.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E.

The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small
catchments. Earth Surf. Process. Landf. J. Br. Geomorphol. Group 1998, 23, 527–544. [CrossRef]

43. Williams, J.R.; Jones, C.A.; Dyke, P.T. A modeling approach to determining the relationship between erosion and soil productivity.
Trans. ASAE 1984, 27, 129–144. [CrossRef]

44. Nearing, M.A.; Foster, G.R.; Lane, L.J.; Finkner, S.C. A process-based soil erosion model for USDA-Water Erosion Prediction
Project technology. Trans. ASAE 1989, 32, 1587–1593. [CrossRef]

45. Kirkby, M.J.; Le Bissonais, Y.; Coulthard, T.J.; Daroussin, J.; McMahon, M.D. The development of land quality indicators for soil
degradation by water erosion. Agric. Ecosyst. Environ. 2000, 81, 125–135. [CrossRef]

46. Young, R.A.; Onstad, C.A.; Bosch, D.D.; Anderson, W.P. AGNPS: A nonpoint source pollution model for evaluating agricultural
watersheds. J. Soil Water Conserv. 1989, 44, 168–173.

47. Viney, N.R.; Sivapalan, M. A conceptual model of sediment transport: Application to the Avon River Basin in Western Australia.
Hydrol. Process. 1999, 13, 727–743. [CrossRef]

48. Arnold, J.G.; Allen, P.M. Estimating hydrologic budgets for three Illinois watersheds. J. Hydrol. 1996, 176, 57–77. [CrossRef]
49. Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling.

Int. Soil Water Conserv. Res. 2019, 7, 203–225. [CrossRef]
50. Schürz, C.; Mehdi, B.; Kiesel, J.; Schulz, K.; Herrnegger, M. A systematic assessment of uncertainties in large-scale soil loss

estimation from different representations of USLE input factors—A case study for Kenya and Uganda. Hydrol. Earth Syst. Sci.
2020, 24, 4463–4489. [CrossRef]

51. Wang, H.; Zhao, H. Dynamic Changes of Soil Erosion in the Taohe River Basin Using the RUSLE Model and Google Earth Engine.
Water 2020, 12, 1293. [CrossRef]

52. Polykretis, C.; Alexakis, D.D.; Grillakis, M.G.; Manoudakis, S. Assessment of intra-annual and inter-annual variabilities of soil
erosion in Crete Island (Greece) by incorporating the Dynamic “Nature” of R and C-Factors in RUSLE modeling. Remote Sens.
2020, 12, 2439. [CrossRef]

53. Zhu, X.; Zhang, R.; Sun, X. Spatiotemporal dynamics of soil erosion in the ecotone between the Loess Plateau and Western
Qinling Mountains based on RUSLE modeling, GIS, and remote sensing. Arab. J. Geosci. 2021, 14, 1–12. [CrossRef]

54. Kumar, N.; Singh, S.K.; Reddy, G.P.; Mishra, V.N.; Bajpai, R.K. Remote Sensing and Geographic Information System in Water
Erosion Assessment. Agric. Rev. 2020, 41, 116–123. [CrossRef]

55. Panagos, P.; Borrelli, P.; Meusburger, K.; Yu, B.; Klik, A.; Lim, K.J.; Yang, J.E.; Ni, J.; Miao, C.; Chattopadhyay, N.; et al. Global
rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 2017, 7, 4175. [CrossRef] [PubMed]

56. Diodato, N.; Borrelli, P.; Fiener, P.; Bellocchi, G.; Romano, N. Discovering historical rainfall erosivity with a parsimonious
approach: A case study in Western Germany. J. Hydrol. 2017, 544, 1–9. [CrossRef]

http://doi.org/10.1016/j.envsci.2015.08.012
http://doi.org/10.1007/s10346-014-0515-8
http://doi.org/10.1080/17445647.2019.1599452
http://doi.org/10.1007/s12594-016-0477-7
http://doi.org/10.1080/17538947.2012.671380
http://doi.org/10.1016/S0341-8162(00)00171-5
http://doi.org/10.13031/2013.34692
http://doi.org/10.1002/(SICI)1096-9837(199806)23:6&lt;527::AID-ESP868&gt;3.0.CO;2-5
http://doi.org/10.13031/2013.32748
http://doi.org/10.13031/2013.31195
http://doi.org/10.1016/S0167-8809(00)00186-9
http://doi.org/10.1002/(SICI)1099-1085(19990415)13:5&lt;727::AID-HYP776&gt;3.0.CO;2-D
http://doi.org/10.1016/0022-1694(95)02782-3
http://doi.org/10.1016/j.iswcr.2019.05.004
http://doi.org/10.5194/hess-24-4463-2020
http://doi.org/10.3390/w12051293
http://doi.org/10.3390/rs12152439
http://doi.org/10.1007/s12517-020-06329-z
http://doi.org/10.18805/ag.R-1968
http://doi.org/10.1038/s41598-017-04282-8
http://www.ncbi.nlm.nih.gov/pubmed/28646132
http://doi.org/10.1016/j.jhydrol.2016.11.023


Water 2021, 13, 2002 16 of 18

57. Kourgialas, N.N.; Koubouris, G.C.; Karatzas, G.P.; Metzidakis, I. Assessing water erosion in Mediterranean tree crops using GIS
techniques and field measurements: The effect of climate change. Nat. Hazards 2016, 83, 65–81. [CrossRef]

58. Pal, S.C.; Chakrabortty, R. Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed
based on RUSLE, SCS runoff and MIROC5 climatic model. Adv. Space Res. 2019, 64, 352–377. [CrossRef]

59. Gianinetto, M.; Aiello, M.; Vezzoli, R.; Polinelli, F.N.; Rulli, M.C.; Chiarelli, D.D.; Bocchiola, D.; Ravazzani, G.; Soncini, A. Future
Scenarios of Soil Erosion in the Alps under Climate Change and Land Cover Transformations Simulated with Automatic Machine
Learning. Climate 2020, 8, 28. [CrossRef]

60. Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities.
Nature 2000, 403, 853–858. [CrossRef]

61. Diffenbaugh, N.S.; Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Chang. 2012, 114,
813–822. [CrossRef]

62. Tolika, K.; Anagnostopoulou, C.; Maheras, P.; Vafiadis, M. Simulation of future changes in extreme rainfall and temperature
conditions over the Greek area: A comparison of two statistical downscaling approaches. Glob. Planet. Chang. 2008, 63, 132–151.
[CrossRef]

63. Panagos, P.; Ballabio, C.; Meusburger, K.; Spinoni, J.; Alewell, C.; Borrelli, P. Towards estimates of future rainfall erosivity in
Europe based on REDES and WorldClim datasets. J. Hydrol. 2017, 548, 251–262. [CrossRef]

64. Mallinis, G.; Koutsias, N.; Makras, A.; Karteris, M. Forest parameters estimation in a European Mediterranean landscape using
remotely sensed data. For. Sci. 2004, 50, 450–460.

65. Köppen, W. Grundriss der Klimakunde; Walter de Gruyter: Berlin, Germany, 1931.
66. Vantas, K.; Sidiropoulos, E.; Loukas, A. Estimating current and future rainfall erosivity in Greece using regional climate models

and spatial quantile regression forests. Water 2020, 12, 687. [CrossRef]
67. Kazamias, A.P.; Sapountzis, M. Spatial and temporal assessment of potential soil erosion over Greece. Eur. Water 2017, 59,

315–321.
68. Efthimiou, N. Evaluating the performance of different empirical rainfall erosivity (R) factor formulas using sediment yield

measurements. Catena 2018, 169, 195–208. [CrossRef]
69. Meinshausen, N. Quantile Regression Forests. J. Mach. Learn. Res. 2006, 7, 983–999.
70. Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K. Spatio-Temporal analysis of rainfall erosivity and erosivity density in Greece.

Catena 2016, 137, 161–172. [CrossRef]
71. Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.

EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14,
563–578. [CrossRef]

72. Wischmeier, W.H.; Johnson, C.B.; Cross, B.W. A soil erodibility nomograph for farmland and construction sites. J. Soil Water
Conserv. 1971, 26, 189–193.

73. Karydas, C.G.; Petriolis, M.; Manakos, I. Evaluating alternative methods of soil erodibility mapping in the Mediterranean Island
of Crete. Agriculture 2013, 3, 362–380. [CrossRef]

74. Efthimiou, N. The importance of soil data availability on erosion modeling. Catena 2018, 165, 551–566. [CrossRef]
75. McCool, D.K.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised Slope Length Factor for the Universal Soil Loss Equation. Trans.

ASAE 1989, 30, 1387–1396. [CrossRef]
76. Desmet, P.J.J.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape

units. J. Soil Water Conserv. 1996, 51, 427–433.
77. Pilesjö, P.; Hasan, A. A Triangular Form-based Multiple Flow Algorithm to Estimate Overland Flow Distribution and Accumula-

tion on a Digital Elevation Model. Trans. GIS 2014, 18, 108–124. [CrossRef]
78. Olaya, V.; Conrad, O. Geomorphometry in SAGA. Dev. Soil Sci. 2009, 33, 293–308.
79. Schwanghart, W.; Scherler, D. TopoToolbox 2–MATLAB-based software for topographic analysis and modeling in Earth surface

sciences. Earth Surf. Dynam. 2014, 2, 1–7. [CrossRef]
80. Liampas, S.-A.G.; Stamatiou, C.C.; Drosos, V.C. Comparison of three DEM sources: A case study from Greek forests. In

Proceedings of the Sixth International Conference on Remote Sensing and Geoinformation of Environment, Paphos, Cyprus,
26–29 March 2018; Volume 10773.

81. Nikolakopoulos, K.G. Accuracy assessment of ALOS AW3D30 DSM and comparison to ALOS PRISM DSM create with classical
photogrammetric techniques. Eur. J. Remote Sens. 2020, 2, 1–14.

82. Florinsky, I.V.; Skrypitsyna, T.N.; Trevisani, S.; Romaikin, S.V. Statistical and visual quality assessment of nearly-global and
continental digital elevation models of Trentino, Italy. Remote Sens. Lett. 2019, 10, 726–735. [CrossRef]

83. Azizian, A.; Brocca, L. Determining the best remotely sensed DEM for flood inundation mapping in data sparse regions. Int. J.
Remote Sens. 2020, 41, 1884–1906. [CrossRef]

84. Van der Knijff, J.M.; Jones, R.J.A.; Montanarella, L. Soil Erosion Risk Assessment in Europe; European Soil Bureau; European
Commission: Brussels, Belgium, 2000.

85. Alexandridis, T.K.; Sotiropoulou, A.M.; Bilas, G.; Karapetsas, N.; Silleos, N.G. The effects of seasonality in estimating the C-factor
of soil erosion studies. Land Degrad. Dev. 2015, 26, 596–603. [CrossRef]

http://doi.org/10.1007/s11069-016-2354-5
http://doi.org/10.1016/j.asr.2019.04.033
http://doi.org/10.3390/cli8020028
http://doi.org/10.1038/35002501
http://doi.org/10.1007/s10584-012-0570-x
http://doi.org/10.1016/j.gloplacha.2008.03.005
http://doi.org/10.1016/j.jhydrol.2017.03.006
http://doi.org/10.3390/w12030687
http://doi.org/10.1016/j.catena.2018.05.037
http://doi.org/10.1016/j.catena.2015.09.015
http://doi.org/10.1007/s10113-013-0499-2
http://doi.org/10.3390/agriculture3030362
http://doi.org/10.1016/j.catena.2018.03.002
http://doi.org/10.13031/2013.30576
http://doi.org/10.1111/tgis.12015
http://doi.org/10.5194/esurf-2-1-2014
http://doi.org/10.1080/2150704X.2019.1602790
http://doi.org/10.1080/01431161.2019.1677968
http://doi.org/10.1002/ldr.2223


Water 2021, 13, 2002 17 of 18

86. Alexakis, D.D.; Hadjimitsis, D.G.; Agapiou, A. Integrated use of remote sensing, GIS and precipitation data for the assessment of
soil erosion rate in the catchment area of “Yialias” in Cyprus. Atmos. Res. 2013, 131, 108–124. [CrossRef]

87. Panagos, P.; Borrelli, P.; Meusburger, K.; van der Zanden, E.H.; Poesen, J.; Alewell, C. Modelling the effect of support practices
(P-factor) on the reduction of soil erosion by water at European scale. Environ. Sci. Policy 2015, 51, 23–34. [CrossRef]

88. Panagos, P.; Van Liedekerke, M.; Jones, A.; Montanarella, L. European Soil Data Centre: Response to European policy support
and public data requirements. Land Use Policy 2012, 29, 329–338. [CrossRef]

89. Efthimiou, N.; Lykoudi, E.; Panagoulia, D.; Karavitis, C. Assessment of soil susceptibility to erosion using the EPM and RUSLE
Models: The case of Venetikos River Catchment. Glob. NEST J. 2016, 18, 164–179.

90. Efthimiou, N.; Lykoudi, E.; Karavitis, C. Comparative analysis of sediment yield estimations using different empirical soil erosion
models. Hydrol. Sci. J. 2017, 62, 2674–2694. [CrossRef]

91. Verheijen, F.G.; Jones, R.J.; Rickson, R.J.; Smith, C.J. Tolerable versus actual soil erosion rates in Europe. Earth Sci. Rev. 2009, 94,
23–38. [CrossRef]

92. IPCC. Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013.

93. Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [CrossRef]
94. Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J.

Hydrol. 2012, 424, 264–277. [CrossRef]
95. Tolika, K.; Maheras, P.; Vafiadis, M.; Flocas, H.A.; Arseni-Papadimitriou, A. Simulation of seasonal precipitation and raindays

over Greece: A statistical downscaling technique based on artificial neural networks (ANNs). Int. J. Climatol. 2007, 27, 861–881.
[CrossRef]

96. Soltani, S.; Almasi, P.; Helfi, R.; Modarres, R.; Esfahani, P.M.; Dehno, M.G. A new approach to explore climate change impact on
rainfall intensity–duration–frequency curves. Theor. Appl. Climatol. 2020, 142, 911–928. [CrossRef]

97. Ribas, A.; Olcina, J.; Sauri, D. More exposed but also more vulnerable? Climate change, high intensity precipitation events and
flooding in Mediterranean Spain. Disaster Prev. Manag. Int. J. 2020, 29, 229–248. [CrossRef]

98. Lemaitre-Basset, T.; Collet, L.; Thirel, G.; Parajka, J.; Evin, G.; Hingray, B. Climate change impact and uncertainty analysis on
hydrological extremes in a French Mediterranean catchment. Hydrol. Sci. J. 2021, 66, 888–903. [CrossRef]

99. Nearing, M.A.; Pruski, F.F.; O’neal, M.R. Expected climate change impacts on soil erosion rates: A review. J. Soil Water Conserv.
2004, 59, 43–50.

100. Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montarella, L.; Ballabio, C. Land use and
climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [CrossRef]
[PubMed]

101. Mearns, L.O.; Easterling, W.; Hays, C.; Marx, D. Comparison of agricultural impacts of climate change calculated from high and
low resolution climate change scenarios: Part I. The uncertainty due to spatial scale. Clim. Chang. 2001, 51, 131–172. [CrossRef]

102. Zanis, P.; Katragkou, E.; Ntogras, C.; Marougianni, G.; Tsikerdekis, A.; Feidas, H.; Anadranistakis, E.; Melas, D. Transient
high-resolution regional climate simulation for Greece over the period 1960–2100: Evaluation and future projections. Clim. Res.
2015, 64, 123–140. [CrossRef]

103. Rummukainen, M. State of the art with Regional Climate Models. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 82–96. [CrossRef]
104. Xue, Y.; Janjic, Z.; Dudhia, J.; Vasic, R.; De Sales, F. A review on regional dynamical downscaling in intraseasonal to seasonal

simulation/prediction and major factors that affect downscaling ability. Atmos. Res. 2014, 147, 68–85. [CrossRef]
105. Stefanidis, S.; Stathis, D. Effect of climate change on soil erosion in a mountainous Mediterranean catchment (Central Pindus,

Greece). Water 2018, 10, 1469. [CrossRef]
106. Borrelli, P.; Panagos, P.; Märker, M.; Modugno, S.; Schütt, B. Assessment of the impacts of clear-cutting on soil loss by water

erosion in Italian forests: First comprehensive monitoring and modelling approach. Catena 2017, 149, 770–781. [CrossRef]
107. Gatzojannis, S.; Stefanidis, P.; Kalabokidis, K. An inventory and evaluation methodology for non-Tiber functions of forests. Mitt.

Abt. Forstl. Biom. 2001, 1, 3–49.
108. Zagas, T.; Tsitsoni, T.; Gkanatsas, P. Perspectives of silviculture as discipline in Greece. Silva. Gandav. 1999, 64, 17–23. [CrossRef]
109. Middleton, N. Rangeland management and climate hazards in drylands: Dust storms, desertification and the overgrazing debate.

Nat. Hazards 2018, 92, 57–70. [CrossRef]
110. Nortcliff, S. Reclaimed Land-Erosion Control, Soils & Ecology. Eur. J. Soil Sci. 2001, 52, 525–526.
111. Stevens, C.J.; Quinton, J.N.; Bailey, A.P.; Deasy, C.; Silgram, M.; Jackson, D.R. The effects of minimal tillage, contour cultivation

and in-field vegetative barriers on soil erosion and phosphorus loss. Soil Tillage Res. 2009, 106, 145–151. [CrossRef]
112. Ricci, G.F.; Jeong, J.; De Girolamo, A.M.; Gentile, F. Effectiveness and feasibility of different management practices to reduce soil

erosion in an agricultural watershed. Land Use Policy 2020, 90, 104306. [CrossRef]
113. Marshall, E.J.P. Agricultural landscapes: Field margin habitats and their interaction with crop production. J. Crop. Improv. 2004,

12, 365–404. [CrossRef]
114. Petanidou, T.; Kizos, T.; Soulakellis, N. Socioeconomic dimensions of changes in the agricultural landscape of the Mediterranean

basin: A case study of the abandonment of cultivation terraces on Nisyros Island, Greece. Environ. Manag. 2008, 41, 250–266.
[CrossRef]

http://doi.org/10.1016/j.atmosres.2013.02.013
http://doi.org/10.1016/j.envsci.2015.03.012
http://doi.org/10.1016/j.landusepol.2011.07.003
http://doi.org/10.1080/02626667.2017.1404068
http://doi.org/10.1016/j.earscirev.2009.02.003
http://doi.org/10.1016/j.gloplacha.2007.09.005
http://doi.org/10.1016/j.jhydrol.2012.01.011
http://doi.org/10.1002/joc.1442
http://doi.org/10.1007/s00704-020-03309-x
http://doi.org/10.1108/DPM-05-2019-0149
http://doi.org/10.1080/02626667.2021.1895437
http://doi.org/10.1073/pnas.2001403117
http://www.ncbi.nlm.nih.gov/pubmed/32839306
http://doi.org/10.1023/A:1012297314857
http://doi.org/10.3354/cr01304
http://doi.org/10.1002/wcc.8
http://doi.org/10.1016/j.atmosres.2014.05.001
http://doi.org/10.3390/w10101469
http://doi.org/10.1016/j.catena.2016.02.017
http://doi.org/10.21825/sg.v64i0.825
http://doi.org/10.1007/s11069-016-2592-6
http://doi.org/10.1016/j.still.2009.04.009
http://doi.org/10.1016/j.landusepol.2019.104306
http://doi.org/10.1300/J411v12n01_05
http://doi.org/10.1007/s00267-007-9054-6


Water 2021, 13, 2002 18 of 18

115. Krishnaveni, N.; Sivakumar, G. Survey on dynamic resource allocation strategy in cloud computing environment. Int. J. Comput.
Appl. Technol. Res. 2013, 2, 731–737. [CrossRef]

116. Verde, N.; Kokkoris, I.P.; Georgiadis, C.; Kaimaris, D.; Dimopoulos, P.; Mitsopoulos, I.; Mallinis, G. National Scale Land Cover
Classification for Ecosystem Services Mapping and Assessment, Using Multitemporal Copernicus EO Data and Google Earth
Engine. Remote Sens. 2020, 12, 3303. [CrossRef]

117. Dubey, S.; Gupta, H.; Goyal, M.K.; Joshi, N. Evaluation of precipitation datasets available on Google earth engine over India. Int.
J. Climatol. 2021, 1–20, in press.

http://doi.org/10.7753/IJCATR0206.1019
http://doi.org/10.3390/rs12203303

	Introduction 
	Materials and Methods 
	Study Area 
	Soil Loss Modeling and Datasets 
	Rainfall Erosivity Factor (R) 
	Soil Erodibility Factor (K) 
	Topographic Factor (LS) 
	Cover Management Factor (C) 
	Support Practice Factor (P) 


	Results 
	Discussion 
	Conclusions 
	References

