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Abstract: In this paper, a many-objective optimization algorithm was developed using SPEA2 for
a system of four reservoirs in the Karun basin, including hydropower, municipal and industrial,
agricultural, and environmental objectives. For this purpose, using 53 years of available data, hedging
rules were developed in two modes: with and without applying fuzzy logic. SPEA2 was used to
optimize hedging coefficients using the first 43 years of data and the last 10 years of data were used
to test the optimized rule curves. The results were compared with those of non-hedging methods,
including the standard operating procedures (SOP) and water evaluation and planning (WEAP)
model. The results indicate that the combination of fuzzy logic and hedging rules in a many-objectives
system is more efficient than the discrete hedging rule alone. For instance, the reliability of the
hydropower requirement in the fuzzified discrete hedging method in a drought scenario was found
to be 0.68, which is substantially higher than the 0.52 from the discrete hedging method. Moreover,
reduction of the maximum monthly shortage is another advantage of this rule. Fuzzy logic reduced
118 million cubic meters (MCM) of deficit in the Karun-3 reservoir alone. Moreover, as expected,
the non-hedging SOP and WEAP model produced higher reliabilities, lower average storages, and less
water losses through spills.

Keywords: discrete hedging rule; fuzzy logic; optimum reservoir operation; Karun basin; SPEA2
algorithm; WEAP

1. Introduction

Iran is part of the arid and semi-arid regions of the world, with an average annual
precipitation of about 250 mm, which is less than one-third of the world’s average annual
rainfall. In such circumstances, optimum use of available water resources and the extracting
optimize rule curve is important. The rule curve, as the main pattern of reservoir operation
policy, determines the amount of water stored or released at each time step [1].

Applying hedging policies during drought periods can improve the utilization of
water resources. This method is based on the fact that the higher number of drought
periods with less intensity is preferred to fewer periods with higher intensity, mainly due
to the nonlinear cost function of shortages. In other words, the relation between damages
and deficiency is not linear [2]. The continuous hedging method was introduced in 1982 by
Hashimoto et al. [3]. Later, Shih and ReVelle [4] introduced the discrete hedging method.
In 1999, Neelakantan and Pundarikanthan improved the reservoir operation performance
through the simulation–optimization procedure with the application of the hedging rule [5].
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Considering the provision of hedging policies in recent years, many studies have been
conducted to optimize utilization policies in drought periods, including the study by
Dariane [2] to reduce the effect of drought. Dariane and Karami [6] presented an online
optimization scheme for combined use of artificial neural networks (ANN), hedging
policies, and the harmony search algorithm (HS) in developing optimum operating policies
in a multiple-reservoir system. They developed a simulation–optimization methodology in
which the management decision variables were passed from the optimization model to the
simulation one to obtain the value of the objective function. Spiliotis et al. [7] presented a
method by using the particle swarm optimization (PSO) algorithm for adopting the best
hedging policy for reservoir operation. Jin et al. [8] reviewed the reservoir operation
policies based on the discrete hedging method by using linear programming for the
Hapcheon Reservoir in South Korea. In his research, hedging involved four phases, concern,
caution, warning, and severe dehydration, in which the reservoir operation policies were
determined based on the amount of available water and the tendency of the remaining
reservoir in the existing phase. The amount of water in the reservoir also consisted of water
stored at the beginning of the period plus the inflow into the reservoir.

In addition, in the past decades, a large number of papers have presented the fuzzy
approach for improving the operation of reservoirs. For example, Russell and Campbell [9]
used fuzzy logic programming to extract operational rules. Shrestha et al. [10] used a fuzzy
rule-based model to derive operation rules for a multi-purpose reservoir. In this context,
further research has been proposed using fuzzy logic theory to improve the efficiency in
reservoir operation [11–17]. Ahmadinefar et al. [18,19] showed that the combination of
hedging methods and fuzzy logic reduced the effects of drought because the rationing
factors do not change suddenly when the combination is used. Rajendra et al. [20] and
Kambalimath and Chandra Deka [21] reviewed fuzzy logic models for the operation of a
single-purpose reservoir and hydrology and water resources domain, respectively.

In discussing many-objective optimization algorithms (problems with more than three
objective functions) visualization of a high-dimensional objective space and obtaining
a good convergence of the Pareto front are challenges because the proportion of non-
dominated objective solutions increases when the number of objectives exceeds four.
This makes ranking difficult. Zitzler and Thiele [22] introduced the SPEA algorithm.
This algorithm consists of a population set and an external set. The program begins with
the initial population and the outer blanket, and the following operations are performed
on each repetition. The dominant answers are copied to the empty set, and the evaluation
function for all the existing answers is calculated. It is worth noting that the goal is to
minimize the evaluation function. The SPEA2 method is the modified version of SPEA [23].

According to the importance of operating policies in drought periods, this study at-
tempted to optimize the operation rules for a many-objective system (more than three objec-
tive functions), including the Karun-4, Karun-3, Karun-1, and Gotvand reservoirs, by using
the hedging and fuzzy approach with the SPEA2 optimization algorithm. This study can
help decision makers to decide how much water should be released now and how much
should be retained for future uses, which is the major task of reservoir operation. This sim-
ple choice becomes complex in the presence of uncertain future inflows and nonlinear
economic benefits for released water. Combining fuzzified hedging policies optimized with
the SPEA2 optimization algorithm is a useful method in occurrence of severe and frequent
droughts and can improve reservoir operation rules and aid water supply operators in
coping with the risk of dramatic water deficiencies to the users. This is a new strategy
for optimal operation of multiple reservoirs by combining discrete hedging and fuzzy
theory during drought and water scarcity for a multi-reservoir, many-objective systems.
It proposes water supply policies in the form of a rule curve and reduces drought effects
in meeting demands. In the discrete hedging method, the hedging coefficient changes
abruptly in each phase. Using the fuzzy approach creates a transition region for this
coefficient and causes the coefficient to change gradually and mitigates the intensity of
drought periods. In fact, the flexibility of the hedging factors increases by using fuzzy logic.
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Finally, vulnerability assessment, scarcity and reliability criteria are used to demonstrate
the function of the fuzzy approach in hedging rules.

2. Methodology
2.1. Discrete Hedging Method

In this study, similar to Shih and ReVelle [4] and as shown in Figure 1, three hedging
levels were assumed for the operation of reservoirs. In each reservoir, the amount of total
available water (TAW), i.e., the sum of the initial reservoir storage, St, and the projected
inflow, Qt, in period t, was calculated during each time step. If TAW is above V1t, then the
normal condition is assumed, and all demands are fully met. In this case, the reservoir
will spill if TAW increases to above the reservoir capacity plus demand. Hedging occurs
when TAW falls under V1t. If TAW is between V1t and V2t, the first water rationing phase
is implemented where demand supply is cut down and only α1 percent of the demand is
released (0.4 ≤ α1 ≤ 0.85). The second rationing phase is implemented if TAW falls further
to a level between V2t and V3t, and α2 percent of the demand is provided where 0.4 ≤ α2 ≤
α1 ≤ 0.85.
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Figure 1. The discrete hedging method.

Therefore, decision variables for each reservoir examined in this study were: V1t, V2t,
V3t, α1, and α2. V3t is equal to the minimum reservoir capacity (Smint) according to the con-
straints of the problem, meaning no release occurs below this level. Hence, we must decide
on four variables per month which is a total of 48 variables in a year. After determining the
variables, the reservoir operation policy is applied in the following way:

If Sti+Qti< V3t Then Rti = 0 (1)

Else If V3ti < Sti+Qti< V2ti Then Rti= α2ti ∗ Dti (2)

Else If V2ti < Sti+Qti< V1ti Then Rti= α1ti ∗ Dti (3)

Else If V1ti < Sti+Qti Then Rti= Dti (4)

Else if Smaxi> Sti+Qti Then Rti= Dti and Spillti+Qti= Sti+Qti−Smaxi (5)

where Rti, Dti, Sti, Qti, Spillti is the release, demand, storage, inflow, and spill of reservoir i
in period t. Smin t and Smax t are the minimum and maximum capacity of the reservoir i.
If the constraints of the problem are violated, a penalty is considered for Rti in order to
remove that choice from the optimization process and make it feasible.
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2.2. Fuzzified Discrete Hedging Method

Fuzzy logic was first introduced by Zadeh in 1973. In fuzzy logic, the membership
function specifies how each point is mapped to a membership value between 0 and 1 [24,25].
If the membership grade of an element is 0, then that member is completely out of the
set, and if it is equal to 1, that member is completely in the set. Now, if it is between
0 and 1, this number represents the degree of gradual membership. In this research,
the trapezoidal membership function was used to apply fuzzy logic. In the discrete
hedging method, the hedging coefficient changes suddenly in each phase. Using the fuzzy
approach creates a transition region for this coefficient and causes the coefficient to change
gradually. The schematic diagram (Figure 2) shows the fuzzy hedging rule.
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In Figure 2, there are two line curves (upper and lower curves) and four transition
paths. When the available water is in zone 2 (between transmission lines B and C), α1
percent of demand is provided. If the available water is higher than the transmission line
B, the coefficient is determined between α1 and 1 by using the fuzzy membership function.
It is the first phase of hedging for slight droughts. The same trend is considered for the
second phase for severe droughts. When the available water is below the transmission
line C, the coefficient is determined between α2 and α1 by using the fuzzy membership
function. Using transition zones around the rule curves in fuzzy logic prevents the sudden
change of coefficients. In the other words, where the reservoir level is going from one zone
to another, the hedging coefficients will be increased or decreased gradually. Trapezoidal
membership function is shown in Figure 3.
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The operation policy of each reservoir is defined by Equations (6)–(15). µ is the degree
of belongingness to a fuzzy set and Equations (6)–(9) present the parameters of determining
the trapezoidal membership function. The main approach for the developed hedging rule
is illustrated in Equations (10)–(15).

M1ti= Smini+(V2ti − Smini) ∗ β1ti (6)

M2ti= V2ti + (V1ti − V2ti) ∗ β2ti (7)

M3ti= M2 + (V1ti −M2ti) ∗ β3ti (8)

M4ti= V1ti+(Smaxi − V1ti) ∗ β4ti (9)

If Sti+Qti Ie zone 3 Then Rti= Dti (10)

If Sti+Qti Ie transition zone 2 Then Rti= ( µ3α1ti +µ4) ∗ Dti (11)

If Sti+Qti Ie zone 2 Then Rti= α1ti ∗ Dti (12)

If Sti+Qti Ie transition zone 1 Then Rti= ( µ1α2ti +µ2α1ti) ∗ Dti (13)

If Sti+Qti Ie zone 1 Then Rti= α1ti ∗ Dti (14)

If Sti+Qti < V3ti Then Rti = 0 (15)

S, Q, V, R, D, and α were defined before in Section 2.1. β1ti, β2ti, β3ti, and β4ti are the
membership function parameters and are obtained by applying optimization algorithm.
Hence, based on this method, with V1t, V2t, α1, and α2, there are eight decision variables
for optimization in each time period.

2.3. SPEA2 Optimization Algorithm

The SPEA algorithm consists of a population set and an external set [22]. The program
begins with the initial population and the blank outer set, and the following operations are
performed on each repetition. The dominant answers are copied to the empty external set,
and the evaluation function for all the existing answers is calculated as follows (Figure 4).
It is worth noting that the goal is to minimize the evaluation function. For each solution
(i) in the external, S(i) is assigned between 0 and 1. This is the ratio of solutions that are
dominated by i to the population size plus 1 and represents the evaluation function of
that answer. For the solutions (j) in the population set, the evaluation function is obtained
from the sum of S(i) for solutions dominant j plus 1. Finally, depending on the evaluation
function, the mating, combination and mutation operators are performed, and the new set
replaces the previous one.
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The SPEA2 method is the modified version of SPEA. In this algorithm, S(i) and R(i)
are computed as follows. Pt and Pt in are population and external sets, respectively. In the
following equations, the ≺ symbol indicates that solution i is dominant j [23].

S(i) =
∣∣{j

∣∣ j ε Pt + Pt î > j
}∣∣ (16)

R(i) = ∑Pt+Pt , J>i S(j) (17)

To calculate the evaluation function of each solution, the D(i) parameter, which also
contains the distance information from the nearest neighbor, k, is added to R(i). For this
purpose, the distance between the solution i and all solutions in the population and the
external set j is calculated and incrementally arranged in a list. The solution k is represented
by σk

i , where k is the root of total number of solutions in population and external sets.
Finally, D(i) and the evaluation function F(i) are calculated as follows.

D(i) =
1

σk
i + 2

(18)

F(i) = R(i) + D(i) (19)

In this research, the number of iterations was considered as 3000.

2.4. Water Evaluation and Planning (WEAP)

WEAP is a software tool that was developed for integrated water resources simulation.
It can cover a wide range of issues, such as water protection, rights and allocation priorities,
simulation of surface water and groundwater, reservoir operation, hydropower generation,
pollution control, ecosystem demands, vulnerability assessment, and benefit–cost analysis
of the project [26].
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Water allocation in this program is based on priorities that can range from 1 to 99.
Reservoirs are also considered as a demand site with a priority of 99 so they will fill only
when there is additional water in the system. The objective function is maxmization of the
coverage rate for all demand sites. WEAP uses linear programming and iterates for each
priority so that demands with priority 1 are supplied first and before priority 2. Hence,
the program is run at least once for each priority. If one demand site can be able to supply its
water from several sources, the resources are also prioritized. The WEAP simulation model
is able to optimize allocations among different users in each time step. It is not capable of
maximizing throughout the time and has no hedging mechanism by itself, and thus acts
similar to the standard operating procedures (SOP) method in this regard. Here, the output
of this model was mainly used as a base solution for comparison purposes.

3. Case Study

The study area was the Karun basin in southwestern Iran. Five reservoirs, including
the Karun-4, Karun-3, Karun-1, Godarlandar, and Gotvand reservoirs, along with their
demand site were used in this paper to evaluate the methods (Figure 5). It should be
noted that the Godarlandar reservoir does not play a role in downstream flow regulations;
therefore, it was removed from the optimization process, leaving a system of four reservoirs.
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The whole Karun basin area is about 67,100 km2, where 68% is in the mountains and
32% is in the plains. Karun River, with a length of 950 km, is the longest river in the country
and one of the longest in the Middle East. The river originates from the Zagros Mountains
and drains into Persian Gulf after passing the Khuzestan Plain. The river is also considered
the largest river in Iran in terms of annual discharge [27].

The schematic of the study area is shown in Figure 6.
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Data and System Specifications

The time series studied in this paper were monthly data during the 1961–1962 to
2013–2014 water years, from which the initial 43 years were considered for optimization
of decision parameters and the last 10 years were used for testing the performance of the
optimized rule curves. Table 1 shows a summary of the reservoir information.

Table 1. Specifications of reservoirs and power plants.

Parameter Karun-4 Karun-3 Karun-1 Gotvand

Normal water level, masl * 1028 845 532.5 372
Top of active storage, masl 996 800 490 185

Total reservoir capacity, MCM 2279 2718 2438 4671
Active storage, MCM 834.2 1624.5 1614 3050.5

Hydropower plant capacity, MW ** 1000 2000 2000 2000
Number of HP units 4 8 8 8

Design discharge, cms + 684 1370.5 1471 1686.3
Design head, m ++ 162 161 154 130

HP efficiency, % 92 92.4 90 93
Peak power duration, h ~ 4 4 4 6

Average head loss, m 3 4.5 8 4
* meters above sea level, ** megawatts, + cubic meters per second, ++ meters, ~ hours.

The priority of demands for the Karun-4, Karun-3, and Karun-1 reservoirs is as follows:
1-hydropower, 2-municipal, 3-environmental, and 4-agricultural demands. In the Gotvand
reservoir, energy production is the secondary objective after all others. Therefore, due to
high agricultural and municipal demands and in order to increase the reservoir efficiency
for the secondary demand (hydropower), two outlets were devised. The height of the
penstock (for releasing water for hydropower generation) is 181 masl and the height of
the reservoir lower outlet for other uses (e.g., agriculture, municipal, etc.) is 161 masl.
All other demands are released through the penstock for energy generation as long as
possible. In dry periods, where the storage level falls below the penstock level (i.e., 181 m),
the demand is released through the lower outlet of the reservoir. Table 2 shows the monthly
average municipal and agricultural demands in each reservoir site.

Table 2. Municipal and agricultural demands (MCM).

Sector Karun-4 Karun-3 Karun-1 Gotvand

Municipal 0.4 9.8 0.8 116.2
Agricultural 1.3 0.4 8.6 497.2

The returned water from agricultural fields is not usually estimated accurately and
there is no report regarding this parameter in the area. Hence, in the present study, the rate
of return flow was considered as 20% of the diverted flow. Moreover, according to the
recommendation of Tennant [28], the monthly minimum streamflow for environmental
concerns at the downstream of each reservoir was assumed as the 10% of average monthly
natural streamflow.

To calculate the reservoir’s hydropower requirement, following parameters are needed:

(1) Hydropower plant capacity (MW), design head (m), and head loss (m), which can be
expressed as a constant or a function of other parameters.

(2) Number of units of power plants and the peak hours, which can be different for
each month.

(3) Efficiency (%), flood level (m of sea level), and design discharge rate (cms).
(4) Moreover, the net head (m), the required discharge rate for firm energy production

(cms), and the hydropower demand are obtained from Equations (20)–(22).
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Hnet,t =
Ht + Ht+1

2
− TWL−HL (20)

Qreq,t = (
P ∗ 1000

9.81 ∗ η ∗ Hnet,t
) (21)

Dt = Qreq,t∗PT ∗Nday ∗ 3600/106 (22)

where Ht, TWL, HL, Hnet,t, P, η, Dt, PT, and Nday are the reservoir level at the beginning of
period t (masl), tail water level (masl), head loss (m), net head (m), power plant installation
capacity (MW), plant efficiency (%), required water for hydropower demand (MCM),
and daily peak hours and number of days in a month, respectively.

4. Applications

In this study the objective functions were the minimization of the normalized deficits
for each demand as described by Equations (23)–(26).

Min TSDmun = ∑4
i = 1 ∑T

t = 1 (
Dtmun i − Rtmun i

Dtmun i
)

2
Municipal (23)

Min TSDagr = ∑4
i = 1 ∑T

t = 1 (
Dtagr i − Rtagr i

Dtagr i
)

2

Agriculture (24)

Min TSDenv = ∑4
i = 1 ∑T

t = 1 (
Dtenv i − Rtenv i

Dtenv i
)

2
Environmental (25)

Min TSDhyd = ∑4
i = 1 ∑T

t = 1 (
Dthyd i − Rthyd i

Dthyd i
)

2

Hydropower (26)

In the above equations, the index i represents the reservoir number (1 to 4), Rti and Dti
are the reservoir release and demand, respectively.

Constraints and assumptions of the problem are given as follows.

St+1 i= Sti+Qti−Rti−Spillti−Eti mass balance (27)

Smini< Sti < Smaxi capacity constraint (28)

0.4 < α2i< α1i < 0.85 assumptions of hedging (29)

Smini< V2i < V1i < Smaxi assumptions of hedging (30)

S1i= 0.9 ∗ Smaxi initial storage (31)

If Rthyd i> Rtmun i+Rtagr i+Rtenv i=> extra = Rthyd i− (Rtmun i+Rtenv i) (32)

Q′ti+1= Qti+1−0.9 ∗ Qti+Spillti+0.2 ∗ Rtagr i + Rtenv i + extra The
relationship between eachupstream and the next downstream reservoirs

(33)

The simulation method for a fuzzified discrete hedging approach is presented in
Figure 7. The steps are as follows:

1. For the first month (t = 1), the initial reservoir storage (S1i) is equal to Smax i and
Spill1i = 0.

2. The releases (Rti) are obtained in each period according to the rule curve based on
optimized coefficients (according to Equations (1)–(5) for discrete hedging and 10 to
15 for the fuzzified discrete hedging method).

3. The mass balance equation (Equation (27)) is calculated, and spill and reservoir
storage are determined in the next month.

4. The above steps are repeated until the last month of the time series.
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In this study, 53 years of measured data were available from which 43 years of data
were used for the optimization phase and the last 10 years were applied for testing the
performance of optimized rule curves.

5. Results
5.1. Calibration Stage

In this section, the results of the fuzzified discrete hedging rule are compared with
the discrete hedging rule, the SOP method, and the WEAP model. The convergence
graph of the fuzzified discrete hedging rule is illustrated in Figure 8. According to this
figure, the SPEA2 optimization algorithm had almost the same trend for all four objective
functions. The agricultural and municipal functions had the most and the least convergence
rates, respectively.

Table 3 shows the coefficients obtained in the calibration process for the hedging and
fuzzy hedging methods for each reservoir. According to the table, the V1P coefficients
for the fuzzified discrete hedging rule were less than the discrete hedging level for all
months. As shown in Figure 1, the value of V1P indicates the starting point of the hedging,
and the lower the value, more needs are fully met. The same is true for V2P. Moreover, α
coefficients were generally higher with the fuzzified discrete hedging rule compared to
the discrete hedging rule. Alpha coefficients are the percentages of the supply in hedging
phases. Therefore, higher alpha values indicate lower hedging intensity.
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Table 3. Discrete hedging and fuzzified discrete hedging coefficients.

Method Reservoir Coef. Mar Apr May June July Aug Sep Oct Nov Dec Jan Feb Avg

Fu
zz

ifi
ed

D
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e
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ng

Karun-4 V1P 2052 2085 1962 1951 1963 2028 1905 2101 2001 1463 1839 1861 1934
Karun-3 V1P 1298 1352 1895 2061 2392 1647 1209 1654 1990 1984 1769 1758 1751
Karun-1 V1P 1754 2041 2130 1633 1997 1505 2438 2409 1620 1883 2285 1246 1912
Gotvand V1P 3738 2833 1913 2677 3401 3059 3586 4668 4320 3327 2870 2794 3266

Karun-4 V2P 1841 1504 1445 2001 1514 1480 1646 1881 1719 1641 1445 1742 1655
Karun-3 V2P 1094 1306 1094 1202 1094 1510 1094 1459 1094 1414 1292 1190 1237
Karun-1 V2P 1510 934 824 1068 1741 1471 2240 2067 824 1678 2142 824 1443
Gotvand V2P 1976 1710 1710 2450 2662 2562 3452 3208 1710 3224 1710 1710 2340

Karun-4 α1 0.71 0.84 0.85 0.76 0.72 0.73 0.76 0.74 0.85 0.85 0.6 0.59 0.75
Karun-3 α1 0.64 0.61 0.85 0.85 0.76 0.6 0.81 0.85 0.84 0.85 0.6 0.57 0.73
Karun-1 α1 0.82 0.83 0.65 0.83 0.7 0.84 0.85 0.6 0.57 0.65 0.84 0.85 0.75
Gotvand α1 0.79 0.75 0.7 0.85 0.64 0.73 0.67 0.63 0.81 0.52 0.85 0.76 0.72

Karun-4 α2 0.54 0.62 0.69 0.73 0.65 0.58 0.53 0.61 0.59 0.77 0.58 0.4 0.61
Karun-3 α2 0.59 0.49 0.81 0.4 0.66 0.57 0.77 0.59 0.4 0.72 0.59 0.4 0.58
Karun-1 α2 0.43 0.78 0.5 0.57 0.67 0.66 0.62 0.58 0.4 0.54 0.68 0.57 0.58
Gotvand α2 0.47 0.68 0.59 0.41 0.58 0.42 0.46 0.63 0.7 0.44 0.46 0.61 0.54

D
is

cr
et

e-
H

ed
gi

ng

Karun-4 V1P 1895 2019 2181 1646 2000 1838 1863 2030 1902 2232 2007 1875 1957
Karun-3 V1P 1794 1973 1367 2106 1984 1159 1781 2330 2718 2215 2141 2108 1973
Karun-1 V1P 1815 1987 1210 1519 1688 1137 2438 1803 1595 1919 1837 1425 1698
Gotvand V1P 3513 2764 3440 3912 2571 3425 3109 3925 3423 3759 3002 4071 3400

Karun-4 V2P 1648 1837 1984 1536 1774 1757 1753 1817 1525 1719 1513 1844 1726
Karun-3 V2P 1485 1284 1343 1867 1856 1094 1440 1891 2379 1954 1984 2056 1719
Karun-1 V2P 1590 1279 1163 1039 1221 872 1985 1724 1118 1478 1075 1414 1330
Gotvand V2P 1710 2009 2818 2379 1710 3368 1912 2353 2686 3367 2365 2665 2445

Karun-4 α1 0.67 0.6 0.76 0.85 0.73 0.64 0.71 0.74 0.72 0.69 0.74 0.68 0.71
Karun-3 α1 0.63 0.85 0.79 0.85 0.69 0.64 0.72 0.49 0.69 0.79 0.81 0.53 0.71
Karun-1 α1 0.74 0.8 0.79 0.79 0.64 0.7 0.65 0.78 0.71 0.68 0.67 0.78 0.73
Gotvand α1 0.85 0.57 0.65 0.79 0.72 0.66 0.64 0.63 0.58 0.61 0.84 0.58 0.68

Karun-4 α2 0.52 0.57 0.55 0.43 0.67 0.4 0.52 0.66 0.4 0.68 0.67 0.52 0.55
Karun-3 α2 0.61 0.79 0.4 0.76 0.58 0.63 0.69 0.48 0.57 0.4 0.46 0.41 0.56
Karun-1 α2 0.69 0.67 0.74 0.6 0.63 0.6 0.58 0.71 0.67 0.64 0.46 0.74 0.64
Gotvand α2 0.57 0.48 0.63 0.69 0.48 0.42 0.53 0.46 0.56 0.52 0.47 0.47 0.52
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5.2. Test Stage

The performance of rule curves derived in the calibration (optimization) stage was
evaluated using a test period with data independent from those used in the calibration.
This was done through different criterions, as explained in the following sections.

5.2.1. Reliability

To define the reliability, assume that the system outputs are divided into two sets of
satisfactory (S) and failure (F) conditions. The probability that the reservoir provides the
outflow required to satisfy various water demands is called reliability (α) as defined by
Equation (34) [3].

α = Prob [Xtε S ] (34)

Although a system with higher reliability is preferred, it should be noted that higher
reliability does not always mean a better performance. For a better and comprehensive eval-
uation, more criterions are needed. Thus, the maximum monthly deficiency, the monthly
average storage volume, and the total spills were used along with the reliability in this
paper. Table 4 shows the average monthly reliability values for the test period.

Table 4. Average monthly reliability for the test period.

Method Reservoir Municipal Agriculture Environmental Hydropower Average

Fuzzified discrete hedging

Karun-4 1 1 1 0.967 0.992
Karun-3 1 1 1 0.933 0.983
Karun-1 1 1 1 0.95 0.988
Gotvand 1 0.767 1 - 0.922

average 1 0.942 1 0.951 0.971

Discrete hedging

Karun-4 1 1 1 0.983 0.996
Karun-3 1 1 1 0.883 0.971
Karun-1 1 1 1 0.913 0.978
Gotvand 1 0.75 1 - 0.917

average 1 0.938 1 0.926 0.966

SOP

Karun-4 1 1 1 0.97 0.993
Karun-3 1 1 1 0.948 0.987
Karun-1 1 1 1 0.942 0.986
Gotvand 1 0.775 1 - 0.925

average 1 0.944 1 0.953 0.973

WEAP

Karun-4 1 1 1 0.968 0.992
Karun-3 1 1 1 0.926 0.982
Karun-1 1 1 1 0.958 0.99
Gotvand 1 0.817 1 - 0.939

average 1 0.954 1 0.951 0.976

According to this Table, the results indicate that the response of the model was based
on the priorities of objective functions. The reliabilities of the SOP method were higher
than all other methods, as expected. The hedging policy spreads deficit between periods
to reduce its severity. Hence, it reduces reliability and improves vulnerability. However,
results show that reduction in reliability was not high and the fuzzified discrete hedging
rule had better performance compared to the non-fuzzified hedging rule. The average
reliability of the hydropower requirement in the fuzzified discrete hedging method was
0.951, which is better than the 0.926 from the discrete hedging method. This difference and
improvement in the reliability of the hydroelectricity was more than others (0.933 versus
0.883) in the Karun-3 reservoir. Moreover, in the Gotvand reservoir, the reliability for the
agricultural demands was better using the fuzzy discrete hedging method than the regular
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discrete hedging method. In addition, as can be seen from Table 4, the reliability values of
the WEAP were very close to the SOP method because of the similar basis.

Considering the impact of unprecedented drought and climate change in the studied
area, as well as possible projects for transferring the headwaters of the Karun River to
neighboring provinces such as Isfahan and Yazd, the scenario of reducing the natural
inflows by 30% was also investigated. Accordingly, Table 5 shows the average monthly
reliabilities for the test period, assuming a drought and water transmission scenario.

Table 5. Average monthly reliability for the test period assuming a drought and water transmission scenario.

Method Reservoir Municipal Agriculture Environmental Hydropower Average

Fuzzified discrete hedging

Karun-4 1 1 1 0.62 0.905
Karun-3 1 1 1 0.643 0.911
Karun-1 1 1 1 0.761 0.94
Gotvand 1 0.75 1 - 0.917

average 1 0.938 1 0.675 0.918

Discrete hedging

Karun-4 1 1 1 0.45 0.863
Karun-3 1 1 1 0.504 0.876
Karun-1 1 1 1 0.603 0.901
Gotvand 1 0.65 1 - 0.883

average 1 0.913 1 0.519 0.881

SOP

Karun-4 1 1 1 0.581 0.895
Karun-3 1 1 1 0.662 0.916
Karun-1 1 1 1 0.761 0.94
Gotvand 1 0.851 1 - 0.95

average 1 0.963 1 0.668 0.925

WEAP

Karun-4 1 1 1 0.536 0.884
Karun-3 1 1 1 0.591 0.898
Karun-1 1 1 1 0.694 0.924
Gotvand 1 0.782 1 - 0.927

average 1 0.946 1 0.607 0.908

As can be seen from the table, the tangible superiority of fuzzified discrete hedging
method in dealing with the drought period was evident in comparison with other algo-
rithms. For example, the average reliability of hydropower using the fuzzified discrete
hedging method was 0.675 versus 0.519 using the discrete hedging method. In addition,
the improvement of the reliability in the Karun-3 reservoir was more than other reservoirs
(0.620 versus 0.450). In addition, a similar trend to Table 4 was observed for the agricultural
demands of the Gotvand reservoir. As in the previous table, the WEAP reliability values
were very close to the SOP values. As expected, the WEAP and SOP methods performed
better than both of the hedging rules. However, the fuzzified discrete hedging method
produced better rules in terms of reliability than the regular discrete hedging method.

5.2.2. Maximum Monthly Deficiency

The maximum monthly deficiency is given in Table 6. Results indicate the overall
superiority of the fuzzified hedging method over other methods. For example, the maxi-
mum deficiency of hydropower demand in the fuzzified method was 334 (Karun-1) versus
410 MCM (Karun-3) in the non-fuzzified hedging method, 520 MCM (Karun-1) in the
SOP method, and 469 MCM in the WEAP method. In addition, the sum of maximum
deficiencies of the fuzzified method for hydropower was 626 MCM versus 856 MCM for
the regular discrete method, 1018 MCM for the SOP method, and 988 MCM for the WEAP
model. However, both hedging methods showed deficits in agricultural water demand in
the Gotvand reservoir, which was absent in the SOP and WEAP models. Overall, we can
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conclude that the fuzzified hedging method performs better than all other methods and
both hedging methods accomplish more than the non-hedging SOP or WEAP methods.

Table 6. Maximum monthly deficiency during the test period (MCM).

Method Reservoir Municipal Agriculture Environmental Hydropower

Fuzzified discrete hedging

Karun-4 0 0 0 90
Karun-3 0 0 0 292
Karun-1 0 0 0 334
Gotvand 0 419 0 -

sum 0 419 0 626

Discrete hedging

Karun-4 0 0 0 145
Karun-3 0 0 0 410
Karun-1 0 0 0 301
Gotvand 0 188 0 -

sum 0 188 0 856

SOP

Karun-4 0 0 0 134
Karun-3 0 0 0 364
Karun-1 0 0 0 520
Gotvand 0 0 0 -

sum 0 0 0 1018

WEAP

Karun-4 0 0 0 140
Karun-3 0 0 0 379
Karun-1 0 0 0 469
Gotvand 0 1.8 0 -

sum 0 0 0 988

5.2.3. Average Storage

Table 7 shows average storages during the test period of all methods (WEAP is left
out for similarity to SOP). As can be seen, in the SOP method storages were lower since in
each time period it tried to release the demand and had no hedging or storage of water
for future possible needs. The fuzzified hedging also kept storage at low levels and had
lower storages than the regular hedging while performing better in terms of meeting the
demands, as explained earlier. As a rule of thumb, lower storage means less water loss due
to spillage, which is discussed in the following section.

Table 7. Average storages during the test period (MCM).

Method Reservoir Mar Apr May June July Aug Sep Oct Nov Dec Jan Feb Avg.

Fuzzified
discrete hedging

Karun-4 2020 1859 1751 1841 1827 1871 2018 2203 2265 2264 2164 2110 2016
Karun-3 2139 1898 1664 1518 1672 1791 1982 2261 2374 2183 2275 2190 1996
Karun-1 1473 1355 1292 1400 1386 1441 1621 2128 2061 2041 1471 1511 1598
Gotvand 4403 4216 3677 3780 4044 4178 4093 4058 4371 4004 4513 4341 4140

Discrete hedging

Karun-4 2127 1966 1819 1828 1830 1890 2015 2157 2267 2276 2265 2219 2055
Karun-3 2211 2028 1846 1777 1892 1939 2075 2269 2271 2315 2269 2197 2091
Karun-1 2168 1923 1716 1778 1807 1884 2008 2170 2301 2351 2342 2259 2059
Gotvand 4624 4547 4128 4234 4380 4395 4299 4283 4431 4638 4671 4671 4442

SOP

Karun-4 2049 1888 1757 1767 1789 1847 2012 2191 2251 2273 2193 2137 2013
Karun-3 1844 1702 1585 1610 1636 1689 1845 1978 2023 2046 1972 1926 1821
Karun-1 1578 1424 1334 1524 1556 1562 1748 2160 2135 2199 1671 1646 1711
Gotvand 4294 4122 3607 3638 3887 4083 3948 4003 4396 4030 4487 4301 4066

5.2.4. Spill

The total spill volumes during the test period for the four reservoirs are shown in
Table 8. As expected, the SOP method resulted in the least spillage thanks to its lower
reservoir storages. Next stands the fuzzified method with 192,384 MCM of total spillage.
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The regular discrete hedging method had the highest total spillage with an amount equal
to 283,975 MCM. It was evident that although non-hedging methods did better in terms of
reliability and spillage, they did suffer from large amounts of deficits that could result in
huge amounts of damages.

Table 8. Total spillage (MCM).

Reservoir Fuzzified Discrete Hedging Discrete Hedging SOP

Karun-4 17,900 109,320 15,987
Karun-3 16,201 15,841 18,907
Karun-1 26,913 26,554 24,980
Gotvand 131,370 132,260 53,078

Sum 192,384 283,975 112,952

The following steps must be performed for practical implementation of the model:

(1) Input data collection such as inflow and minimum and maximum capacity for
each reservoir

(2) Determining demands for all reservoirs such as municipal, agricultural, environment,
flood control, and hydropower demands for each reservoir

(3) Prioritizing objective functions for each reservoir
(4) Specifying how reservoirs relate to each other and writing of equations
(5) Writing mass balance equations, reservoir constraints, and restrictions related to hedging
(6) Writing equations related to the membership functions of the fuzzy method (sensitiv-

ity analysis can be performed for the study area on a variety of membership functions)
(7) Assigning initial values for hedging, fuzzy, and SPEA2 parameters (please note that,

different values do not affect the final result, but their logical selection helps to speed
up the algorithm.)

(8) Selecting appropriate evaluation criteria or an appropriate number of repetitions
for stopping the algorithm. (This criterion should be selected so that the parame-
ters are well calibrated. The convergence diagram of the functions can be used for
this purpose.)

(9) Model implementation
(10) Extraction of hedging coefficients and the threshold for beginning phases one and

two of hedging
(11) Determining operation policy of the system

6. Conclusions

In this paper, the performance of the many-objective algorithm SPEA2 was evaluated
using fuzzified and regular discrete hedging rules. It was compared to the non-hedging
methods of SOP and WEAP using a four-reservoir system in the Karun basin in Iran
with four objective functions related to meeting municipal, agricultural, environmental,
and hydropower water demands. Results indicated that using fuzzy logic improves the
performance of the discrete hedging rule. The hedging methods were able to reduce the
overall vulnerability of the system by reducing the maximum water demand shortages.
In addition, the fuzzified hedging method performed better than the regular algorithm in all
aspects, including reliability, vulnerability, and losses through spills. Moreover, as expected
the non-hedging SOP and WEAP methods produced higher reliabilities, lower average
storages, and less water losses through spills. The key index in comparing the reservoir
operation methods in here is the maximum vulnerability, which may cause great amounts
of system damages and losses. The proposed many-objective algorithm SPEA2 coupled
with fuzzified discrete hedging in a multi-reservoir, multi-user site proved to be superior
to non-fuzzified hedging and non-hedging methods, including the SOP and WEAP.
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Description of Parameters

Discrete and
fuzzified discrete
jedging methods

V1t the upper threshold for phase one hedging (MCM)

V2t the upper threshold for phase two hedging (MCM)

V3t the lower threshold for phase two hedging (MCM)

α1 ratio of demand met in phase one hedging

α2 ratio of demand met in the phase two hedging

Rt i release of reservoir i in period t (MCM)

Dt i demand from reservoir i in period t (MCM)

St i
storage of reservoir i at the beginning of period t
(MCM)

Qt i inflow of reservoir i in period t (MCM)

Spillt i spill of reservoir i in period t (MCM)

Smin i minimum capacity of reservoir i (MCM)

Smax i maximum capacity of reservoir i (MCM)

β1t i, β2t i, β3t i, β4t i
the membership function parameters obtained by
using optimization algorithm

m parameter belongs to a fuzzy set

SPEA2
optimization
algorithm

S(i)
the ratio of solutions which are dominated by i
dividing with the population size plus 1

Pt population size

Pt external sets

R(i) in-crowd answers

D(i)
contains the distance information from the nearest
neighbor k

F(i) the evaluation function

Specifications of
reservoirs

Ht, reservoir level at the beginning of period (m)

TWL tail water level (m)

HF head loss in penstock (m)

Pdep power plant installation capacity (MW)

η efficiency (%)

Dt
required water for hydropower demand (millions of
cubic meters)

PT peak power time (hour)

Nday number of days in a month
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Applications

TSDmun deficits for municipal demands

TSDagr deficits for agricultural demands

TSDenv deficits for environmental demands

TSDhyd deficits for hydropower demands

Sti
storage at the beginning of period t of reservoir i
(MCM)

St+1i storage at the end of period t of reservoir i (MCM)

Qti reservoir i Inflow in period t (MCM)

Spillti reservoir i spill in period t (MCM)

Eti reservoir i evaporation in period t (MCM)

Smin i minimum storage capacity of reservoir i (MCM)

Smax i maximum storage capacity of reservoir i (MCM)

Rthydi
release for hydropower demands in reservoir i
(MCM)

Rtenvi
release for environmental demands in reservoir i
(MCM)

Rtagri
release for agricultural demands in reservoir i
(MCM)

Rtmuni release for municipal demands in reservoir i (MCM)
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