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Abstract: Surface soil moisture (SSM) is a major factor that affects crop growth. Combined microwave
and optical data have been widely used to improve the accuracy of SSM retrievals. However, the
influence of vegetation indices derived from the red-edge spectral bands of multi-spectral optical
data on retrieval accuracy has not been sufficiently analyzed. In this study, we retrieved soil moisture
from wheat-covered surfaces using Sentinel-1/2 data. First, a modified water cloud model (WCM)
was proposed to remove the influence of vegetation from the backscattering coefficient of the radar
data. The vegetation fraction (FV) was then introduced in this WCM, and the vegetation water
content (VWC) was calculated using a multiple linear regression model. Subsequently, the support
vector regression technique was used to retrieve the SSM. This approach was validated using
in situ measurements of wheat fields in Hebi, located in northern Henan Province, China. The
key findings of this study are: (1) Based on vegetation indices obtained from Sentinel-2 data, the
proposed VWC estimation model effectively eliminated the influence of vegetation; (2) Compared
with vertical transmit and horizontal receive (VH) polarization, vertical transmit and vertical receive
(VV) polarization was better for detecting changes in SSM key phenological phases of wheat; (3) The
validated model indicates that the proposed approach successfully retrieved SSM in the study area
using Sentinel-1 and Sentinel-2 data.

Keywords: surface soil moisture; sentinel-1 SAR; Sentinel-2; vegetation water content; water cloud
model; support vector regression

1. Introduction

Surface soil moisture (SSM) is a key variable that couples the land and the atmosphere,
as well as energy and water cycles. SSM, therefore, plays an essential role in hydrology,
climatology, meteorology, ecology, and agronomy [1–3]. SSM is particularly important in
arid and semi-arid agricultural regions, where its spatiotemporal distribution affects crop
growth and development [4,5]. Despite its importance, it is difficult to accurately retrieve
SSM over large scales due to the complexity of natural surfaces [6,7].

Retrieving SSM using remote sensing technology has been investigated for more than
30 years. Among the remote sensing methods, most optical methods estimate SSM by using
the spectral reflectance indices, which are easy to implement but can be easily affected by
weather [8]. In thermal infrared methods, SSM is mainly estimated from thermal inertia [9].
It is important to note that the vegetation canopy can conceal soil radiation information,
thereby affecting the accuracy of SSM retrievals in areas with high vegetation coverage [10].
Microwaves have stronger penetrating ability and are not influenced by clouds due to their
longer wavelengths.

Previous quantitative studies showed that microwave remote sensing methods could
effectively estimate SSM. Passive sensors measure the intensity of naturally emitted mi-
crowaves from the Earth’s surface. However, the atmospheric effect is not negligible
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frequencies above 6 GHz, which limits the advantages of microwave remote sensing mea-
surements in all-weather conditions [11,12]. As active instruments, synthetic aperture radar
(SAR) sensors supply their own source of illumination and subsequently determine the
energy difference between the transmitted and received electromagnetic radiation [13,14].
They can make SSM observations over large areas in all weather conditions. Further,
they can operate during the day and night. However, it is inevitable that vegetation will
microwave SSM retrieval [15]. Therefore, multi-sensor synergistic methods for retrieving
SSM have attracted more attention, of which SAR and optical data synergy is one of the
most widely used approaches [16–18].

The Sentinel-1 mission is the European radar observatory for the Copernicus joint
initiative of the European Commission (EC) and the European space agency (ESA). The
Sentinel-1A and Sentinel-1B satellites include C-band imaging operating in four exclusive
imaging modes and operate in a constellation, collect free high spatial (5 m × 5 m) and
temporal resolution (6 d) data.

Subsequently, the Sentinel-2A and Sentinel-2B satellites were launched, carrying a
multi-spectral instrument (MSI) that also collects high spatial (10 m) and temporal res-
olution (5 d) data. Based on the synergy between Sentinel-1 SAR and Sentinel-2 data,
Attarzadeh et al. [19] estimated the SSM in vegetated areas of Kenya using the support vec-
tor regression (SVR) technique. Their results showed that the coefficient of determination
(R2) between the measured and estimated SSM values was 0.89. Bousbih et al. [20] retrieved
SSM in the semi-arid region of the Kairouan plain using VV polarization backscattering
coefficients recorded by Sentinel-1 and normalized difference vegetation index (NDVI)
data from Sentinel-2 images. They compared the SSM values using the water cloud model
(WCM) and a neural network (NN) and found that both of the measurements were accurate,
with a root mean square error (RMSE) of less than 5%. Wang et al. [21] used Sentinel-1 SAR
data to estimate SSM in wheat farmlands based on the WCM and the advanced integral
equation model (AIEM). To evaluate the accuracy of the different optical datasets used in
SSM retrieval, they compared seven vegetation indices based on Landsat-8, Sentinel-2, and
GF-1 data and concluded that the Sentinel-2 data achieved higher accuracy than the data
from the other sources.

Previous studies mostly focused on vegetation parameters derived from Sentinel-2
data for the purpose of estimating the impact of vegetation. Sentinel-2 data have three
red-edge spectral bands centered at 705, 740, and 783 nm, which are closely related to
important biochemical parameters of green plants [22,23]. However, few researchers have
investigated using these red-edge spectral data to retrieve SSM.

Considering this, the main aim of this study was to evaluate the synergistic use of
Sentinel-1 and Sentinel-2 data to retrieve SSM over wheat-covered areas, with a focus on
developing a method for eliminating vegetation influence from the radar backscattering.
To accomplish this, we developed and utilized the WCM. The vegetation spectral indices
obtained from Sentinel-2 data were used to express the VWC, which is an important
parameter in the WCM. Moreover, the SVR technique [24], which has good robustness for
the limited availability of reference results in various application domains, was applied to
retrieve SSM.

2. Study Area and Dataset
2.1. Study Area

The study area was Hebi (35◦26′–36◦02′ N, 113◦59′–114◦45′ E), which is located in
northern Henan Province, China (Figure 1). The agricultural fields analyzed in this study
area are mainly located on the Huang-Huai-Hai Plain, which has a homogeneous soil
texture. Hebi has a sub-humid warm temperate continental monsoon climate. The average
rainfall ranges from 349.2 to 970.1 mm, with peaks between May and August. Dry spells
occur between November and March, so the seasonal climatic characteristics are favorable
for crop farming. The cropping systems in this area usually include wheat, corn, cotton,
and canola, and wheat cycles occur between late September (emergence) and the middle of
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June (harvest) of the following year. A total of 28 samplings in this region were selected
on slopes between 0% and 5% (Figure 1c). According to the statistic of Hebi in the 2019
National economic and social development communique, the wheat fields in the study
area covered approximately 897.4 km2 in 2019.
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Figure 1. Overview of the study area and map showing the locations of the sampling sites.

2.2. Remote Sensing Data
2.2.1. Sentinel-1 Data

Although these two satellites pass over the study area at least 2–3 times per month
and considering that the sensitivity of wheat differs at different growth stages, this study
only analyzed the SSM when wheat was in key phenological stages (jointing, heading, and
filling stages). Therefore, Sentinel-1 images from 9 April, 3 May, and 27 May 2019 were
used. The acquired SAR images were single look complex (SLC) and level-1B data, which
need to be pre-processed prior to retrieving SSM. The Sentinel-1pre-processing used for
the Sentinel-1 images was based on a common software platform, namely the Sentinel
application platform (SNAP). The specific processes were conducted as follows:
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(1) The SAR images were corrected using radiometric calibration so that their pixel val-
ues truly represented the radar backscatter of the reflecting surface. Radiometric calibration
was conducted based on the following expression:

σ0
i,j = 10log10

(∣∣DNij
∣∣2

A2
ij

)
(1)

where σ0 is the backscattering coefficient (dB); i and j represent the i-th row and the j-
th column, respectively; (DNij is the digital number of the SAR image; and Aij is the
calibration parameter;

(2) Image mosaics were constructed, and geometric corrections were made;
(3) The refined Lee filter method was applied to the multi-look images for speckle

noise removal [25]. In this method, the weights of neighboring pixels were first estimated
using kernel density, after which the value of the central pixel was calculated using linear
weighting. Following this process, the speckle was effectively eliminated while preserving
the edge information of the image. Figure 2a shows the pre-processing results of Sentinel-1
SAR data from the study area for 9 April 2019.
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Figure 2. Remote sensing images of the study area. (a) Sentinel-1 SAR image (VV polarization).
(b) Sentinel-2 composite false red green blue (RGB) images (Band 8 = red, Band 4 = green, and
Band 3 = blue).

2.2.2. Sentinel-2 Data

Three Sentinel-2 optical images were used over the study sites and were located
as close as possible to the SAR data (depending on cloud coverage; Table 1). These
acquired optical images were level-2A data, in which bottom-of-atmosphere reflectance
was corrected in cartographic geometry. We resampled the data to a 10 m resolution.
Figure 2b shows the Sentinel-2 optical image of the study area on 3 April 2019.

Table 1. List of satellite-based and in situ data used over the study area.

Phenology Sentinel-1 Sentinel-2 In Situ

Jointing stage 4-9-2019 4-3-2019 4-7-2019
Heading stage 5-3-2019 5-3-2019 5-3-2019
Filling stage 5-27-2019 5-23-2019 5-27-2019

2.3. In Situ Measurements
2.3.1. SSM Measurements

Contemporaneous with the satellites acquisitions, gravimetric soil moisture (GSM) at
depths of 0–10 cm were conducted during the key phenological phases of wheat (jointing,
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heading, and filling stage). Data collection was divided into three periods, with 28 sampling
sites selected for each period. At each sampling site, three sampling points were selected
that were separated by approximately 10 m. In addition, the location of each in situ
measurement was recorded using a global positioning system (GPS) device. It should
be noted that, as soon as the soil samples were returned to the laboratory, they were
immediately weighed with an electronic balance (accuracy of 0.1 g) and dried in an oven at
105 ◦C for 20–24 h, until a constant temperature was reached. GSM was obtained using the
following formula:

GSM(%) =
Wwet −Wdry

Wdry
× 100% (2)

where Wwet and Wdry are the weights of soil samples collected before and after drying,
respectively.

The volumetric soil moisture (VSM) was then obtained by multiplying the GSM by
the soil bulk density. Therefore,

VSM(%) = GSM(%)× ρb (3)

where ρb is the soil bulk density.
The SSM used in this study was the VSM.

2.3.2. Vegetation Parameters

To obtain the vegetation parameters, wheat samples were collected at the same times
as the soil moisture samples. The main vegetation parameters were plant height, plant
density, and VWC. The height of the wheat was measured using a meter scale over a
20 × 20 cm area; the plant density was determined for 1 m2 of each wheat field. The fresh
weight (WF) was measured after the wheat samples were brought back to the laboratory,
and the dry weight (WD) was obtained by drying the wheat in an oven. The specific
equation for VWC is as follows:

VWC = (WF −WD)× ρ) (4)

where ρ is the plant density of wheat.
The details of the experimental sites are summarized in Table 1.

3. Methods

In this study, we propose a proper SSM retrieval method for wheat-covered fields
based on the data described in Section 2. After a variety of tests, the decomposed scattering
model and SVR were implemented for SSM retrieval in this region. A flowchart of the
processing steps for SSM estimation is shown in Figure 3. The SSM retrieval method used in
this study comprised three main phases. The first phase was obtaining the parameters for
the model from remote sensing; i.e., the backscattering coefficient images of the study areas
from Sentinel-1 SAR were obtained by pre-processing, and the backscattering coefficients
for each sample were extracted according to their latitudes and longitudes. The vegetation
spectral indices obtained from Sentinel-2 underwent a similar process. The second phase
was the central part of the processing chain. To eliminate the influence of vegetation on
radar backscattering, a modified WCM with the vegetation fraction was constructed. VWC,
as one of the important parameters in the WCM, can be expressed using the multiple linear
regression model combined with the vegetation indices obtained from the Sentinel-2 data.
Finally, to achieve an efficient and robust SSM retrieval algorithm, a machine learning
approach was used. In detail, an SVR technique was applied that allowed for non-linear
relationships between a target variable and several input features. Further, the coefficient
of determination (R2) and root mean square error (RMSE) were calculated to evaluate the
accuracy of the SSM estimates, and the SSM values were mapped throughout the study
area. More details on each part of the soil moisture retrieval algorithm are given below.
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3.1. Modified WCM

Vegetation canopies reduce the sensitivity of radar measurements to soil moisture,
thereby affecting the accuracy of soil moisture estimations. Addressing this issue was
the main aim of this study. The WCM is based on the radiation transport model and
was proposed by Attema and Ulaby in 1978 [26]. According to the model, the total
backscattering term (σ0

pp) over the vegetated fields is simply divided into two parts: the
backscatter contribution from the vegetation canopy (σ0

veg) and the backscatter contribution
from the soil surface (σ0

soil). To better describe the backscattering of the soil and vegetation
during different periods in wheat-covered areas, the vegetation fraction was introduced
into the WVC. For a given incidence angle, the model is described as follows:

σ0
pp = fv

(
σ0

veg + L2σ0
soil

)
+ (1− fv)σ

0
soil (5)

σ0
veg = aV1 cos(θ)

(
1− L2

)
(6)
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L2 = e−2bV2/ cos (θ) (7)

where θ is the incident angle, fv is the vegetation fraction; σ0
pp is the co-polarized total

backscattering coefficient, σ0
veg is the backscatter contribution from the vegetation canopy,

σ0
soil is the backscatter contribution from the soil surface, and L2 is the double attenuation

factor. V1 and V2 denote the vegetation descriptors. These can be VWC, NDVI, the leaf area
index (LAI), or other vegetation descriptors [27–29]. In this study, V1 and V2 refer to VWC
(kg/m2). The empirical parameters a and b depend on the vegetation type and the incident
angle. Bindlish and Barros [30] proposed values for a and b for different land cover types.
As the crop in the study area was wheat, winter wheat was selected as the land cover type,
with values of 0.0018 and 0.138 for a and b, respectively.

Moreover, fv is an additional parameter in the vegetation scattering model used
to distinguish the proportions of vegetation coverage and bare soil in pixels. fv can be
calculated using the mixed pixel decomposition model [31]:

fv = (NDVI−NDVImin)/(NDVImax −NDVImin) (8)

where NDVImin denotes a bare soil pixel, which is theoretically close to zero, and NDVImax
denotes a pure vegetation pixel, which is theoretically close to one. In order to reduce the
influence of weather conditions, a 0.5% confidence level was used to obtain the thresholds
for NDVImin and NDVImax.

3.2. Building the VWC Model

Based on previously published studies, the vegetation indices can be used to estimate
VWC [32]. The vegetation indices commonly used for VWC estimation include NDVI [33]
and NDWI [34]. These two vegetation indices are be calculated as follows:

NDVI = (RNIR − RRed)/(RNIR + RRed) (9)

NDWI = (RNIR − RSWIR)/(RNIR + RSWIR) (10)

where RNIR is the reflectivity in the near-infrared band, RRed is the reflectivity in the
red band, and RSWIR is the reflectivity in the shortwave infrared band. Sentinel-2 data
have three shortwave infrared bands: SWIR1 (central wavelength = 1.374 µm), SWIR2
(central wavelength = 1.610 µm), and SWIR3 (central wavelength = 2.190 µm). As the
spatial resolution of SWIR1 is only 60 m, SWIR2 and SWIR3 were selected to calculate the
vegetation indices (NDWI1610 and NDWI2190) in this study.

In recent years, studies have focused on the red-edge band between the red and
near-infrared bands because of the abrupt changes in leaf reflectivity that occurs within this
band. This focus has produced good applications for identifying surface types, calculating
parameters, distinguishing vegetation growth states, and estimating vegetation leaf area
indices. The normalized difference red-edge index (NDRI) can be calculated as follow:

NDRI =
(

RRed−edge1 − RRed−edge2

)
/
(

RRed−edge1 + RRed−edge2

)
(11)

where RRed−edge is the reflectivity in the red-edge infrared band. The Sentinel-2 data have
three red-edge infrared bands, and the central wavelengths of red-edge bands 1 and 2 are
located at the valley value (0.705 µm) and peak value (0.740 µm) of the red-edge band
range, respectively. Therefore, the two red-edge infrared bands were used to calculate the
NDRI in this study.

In this study, the model used to estimate VWC was divided into two steps. The first
step established the exponential relationship between the VWC and the vegetation index.
This exponential expression is as follows:

C = αeβx (12)
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where C is the VWC, α and β are the parameters to be solved, and x is the vegetation index
(NDVI, NDWI1610, NDWI2190, or NDRI).

In the second step, the VWC obtained in the first step was used as the characteristic
parameter of the multiple linear regression equation. Thus, the modified VWC can be
expressed as

mveg = γ0 + γ1C1 + γ2C2 + . . . + γkCk + ε (13)

where mveg is the modified VWC, k is the number of vegetation indices, ε is the bias that
obeys the normal distribution N(0,σ2), and γ is a parameter. If (y1; x11, x21, . . . , xk1, . . . ,
(yn; x1n, x2n, . . . , xkn) is a sample of capacity n, then:

y1 =
k
∑

i=0
γiCi1 + ε1

. . .

yn =
k
∑

i=0
γiCin + εn

(14)

The value of the parameter γi (i = 0, 1, 2, . . . , k) can then be estimated.

3.3. SVR Estimation of SSM

SVR is a supervised regression technique that allows the modeling of multi-dimensional
and non-linear relationships between target variables [35]. According to functional theory,
as a kernel function satisfies Mercer’s theorem, it can correspond to some type of inner
product in the high-dimensional feature space. Owing to its accurate estimation, good
intrinsic generalization ability, and its ability to deal with complex non-linear problems,
the SVR technique can be applied for soil moisture estimation [36].

In this study, the SVR technique was chosen to retrieve SSM from the backscattering
coefficients, and the entire procedure can be divided into two main phases: the training
and estimation phases.

During the training phase, the field measurements, coupled with the features ex-
tracted from remote sensing data, were exploited to determine the underlying relationship
between the input features and the output target value. According to our previous analysis,
the features of the remote sensing data were estimated using the modified WCM, which
reduced the ambiguity in the SAR signal due to the presence of vegetation. The relation-
ships between the backscattering coefficient and the field measurements were implemented
using MATLAB, and these reference samples were divided into two subsets, that is, 75%
(63 samples) for training and 25% (21 samples) used for the quantitative assessment of the
estimation performance.

Typically, the SVR technique has different configurations of the free model parameters,
namely hyper-parameters that can control the learning process of the estimation method.
These hyper-parameters are composed of the regularization parameter C, the tolerance
to errors ε, and the kernel parameters. The Gaussian radial basis function (RBF) kernel
function was chosen due to its limited computational overhead [37], and a grid search
strategy was adopted to drive the selection of the best parameter configuration.

After the above learning phase (carried out off-line), the trained SVR regressor was
ready for the estimation phase. During the estimation phase, independent test samples
were used to quantitatively assess the estimation performance using common metrics such
as the RMSE and R2.

4. Results and Discussion
4.1. Estimating VWC from Sentinel-2 Data

A total of 84 in situ measurements were acquired, of which 68 random samples were
used to build the VWC models, while the remaining 16 samples were used to validate the
performance of the models. According to Equation (12), the fitting relationship between
the measured VWC and the estimated VWC was based on a multiple linear regression
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model under different combinations of vegetation indexes, as shown in Figure 4. The R2

and RMSE between the estimated and measured VWC values based on the 16 validation
data points are shown in Table 2.
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Table 2. Correlations between the modified VWC estimation models and the in situ measured VWC data.

No. The Multiple Regression Models R2 RMSE/kg·m−2 Note

a y = 0.3e2.538x1 − 0.019e3.949x2 − 0.058 0.871 0.201

x1 is NDVI,
x2 is NDWI1610,

x3 is NDWI2190, and
x4 is NDRI

b y = 0.384e2.538x1 − 0.14e2.635x3 − 0.051 0.876 0.197
c y = 0.15e3.949x2 + 0.22e2.635x3 + 0.04 0.799 0.251
d y = 0.376e3.933x4 − 0.064e3.949x2 + 0.151 0.907 0.171
e y = 0.391e3.933x4 − 0.088e2.635x3 + 0.169 0.908 0.17
f y = 0.101e2.538x1 + 0.218e3.933x4 + 0.019 0.917 0.162
g y = 0.402e2.538x1 − 0.26e3.949x2 − 0.439e2.635x3 − 0.034 0.886 0.189
h y = 0.199e2.538x1 − 0.234e3.949x2 + 0.306e3.933x4 + 0.048 0.938 0.14
i y = 0.019e3.949x2 − 0.439e2.635x3 + 0.39e3.933x4 + 0.171 0.908 0.17
j y = 0.32e2.538x1 − 0.433e2.635x3 + 0.375e3.933x4 + 0.088 0.961 0.11

k y = 0.261e2.538x1 + 0.127e3.949x2

−0.604e2.635x3 + 0.428e3.933x4 + 0.092
0.965 0.105

By examining the characteristic parameters of the multiple linear regression model,
which include VWC with two vegetation indices, Figure 4a–f show that NDVI + NDRI
yielded the best result, with R2 and RMSE values of 0.917 and 0.162, respectively. The R2

gradually increased with an increasing number of characteristic parameters, whereas the
RMSE gradually decreased. Regarding the characteristic parameters of multiple regression
models that included VWC with three vegetation indices (Figure 4g–j), NDVI + NDWI2190
+ NDRI yielded the best result, with R2 and RMSE values of 0.963 and 0.108, respectively.
NDVI + NDWI1610 + NDWI2190 + NDRI yielded the best result of all combinations. The
R2 between the estimated and measured SSM was 0.965, and the correlation between
them was statistically significant at the 0.01 level. Compared with the inputs of the three
characteristic parameters, the R2 values for model No. k were 0.079, 0.027, 0.057, and
0.002 higher, respectively. RMSE decreased by 0.084, 0.035, 0.065, and 0.006, respectively.
Therefore, model No. k was used as the modified VWC estimation model in this study.

4.2. SSM Retrieval Results Using the Modified WCM

As stated in Section 4.1, the VWC values from the Sentinel-2 vegetation index were
used in the formula of the WCM to obtain the soil backscattering coefficient. The cor-
responding backscatter coefficients for the 84 samples in their image according to the
coordinates, their relationships before and after removing the VV vegetation influence, and
the VH polarization backscattering coefficient are shown in Figure 5. The backscattering
coefficients of VV polarization (Figure 5a) were higher than those of VH polarization
(Figure 5b) at the same sampling points. After removing the influence of vegetation, the
value of the soil backscatter coefficient was generally lower than that of the total backscatter
coefficient. The variation in the VV polarization backscattering coefficient was −2.35 dB,
while that of the VH polarization was −2.92 dB. The variation in the VH polarization
backscattering before and after the correction was greater than that of the VV polarization.
This indicates that VH polarization was more easily affected by the vegetation layer during
the transmission process.

After extracting the most relevant features using SVR, training was performed, as
shown in the flowchart in Figure 6. The R2 and RMSE values are presented in Table 3. In
order to evaluate the accuracy of the modified model, we compared the performances with
the original WCM (where VWC is composed of NDVI) and the radar backscatter coefficient,
which ignores the influence of vegetation.
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Table 3. Summary of results for different reference samples by SVR.

Reference Samples
VV VH

R2 RMSE (%) R2 RMSE (%)

radar backscattering coefficient 0.661 3.314 0.451 4.192
soil backscattering coefficient by original WCM 0.801 2.992 0.586 3.994
soil backscattering coefficient by modified WCM 0.86 2.119 0.667 3.629

As shown in Figure 6 and Table 3, for the VV polarization, the R2 between the esti-
mated and measured SSM was 0.86 for the modified WCM, and the RMSE of the estimated
SSM was 2.119 %, while the R2 and RMSE values of SSM were 0.801 and 2.992%, and
0.661 and 3.314% respectively, for the original WCM and radar backscatter coefficient. The
correlation between the estimated and measured SSM was statistically significant at the
0.01 level.

In contrast, the scattered VH polarization points deviated more from the 1:1 line than
those of the VV polarization. For the VH polarization, the R2 between the estimated and
measured SSM was 0.667 for the modified WCM, and the RMSE of the estimated SSM
was 3.629%, while the R2 and RMSE values of SSM were 0.586 and 3.994%, and 0.451 and
4.192% respectively, for the original WCM and radar backscatter coefficient. The correlation
between the estimated and measured SSM was statistically significant at the 0.05 level.

From the results, this study confirms previous findings regarding the significance of
using vegetation indices in the soil moisture retrieval process in vegetated areas. Further,
VV polarization had good accuracy and stability for retrieving SSM in the study area,
and the modified WCM yielded satisfactory results in retrieving SSM with Sentinel-1 and
Sentinel-2 data.

The spatial distribution of SSM retrievals and frequency diagram of SSM in the study
area are shown in Figure 7. Based on the supervised classification technology of threshold
segmentation by the environment for visualizing images (ENVI) software, the non-wheat
areas, such as towns, rivers, and other non-agricultural areas in the Sentinel-1 SAR image
of the study area were removed.

As seen in Figure 7, the retrieved SSM in the study areas were mainly distributed
in the range of 25–40%. The result of the SSM retrieval on 3 April was slightly drought,
but the SSM in a small part of the central and southern were significantly higher than
that in other areas (Figure 7a). There is a possibility of being irrigated of the wheat fields
in the dry spring. Due to the fact that there was continuous rainfall in the south of the
study area, the results of SSM retrieval were relatively moist in the southern on 3 May
(Figure 7b). According to the meteorological data, there was no amount of rainfall in the
study area before the satellite’s transit, and this may explain why the SSM was slightly
lower on 23 May than that on 3 May (Figure 7c). The SSM retrieval results were basically
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consistent with the measured SSM. Therefore, the method proposed in this study had
strong applicability for the study area.
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4.3. Discussion

As a classical model, the WCM has been widely used to retrieve soil moisture informa-
tion from areas with vegetation cover. In recent years, some studies have used Sentinel-1
and Sentinel-2 data to estimate SSM. Guo et al. [38] estimated farmland SSM using multi-
source remote sensing data from Sentinel-1 radar and Sentinel-2 optical images. They
applied the Oh model [39], SVR, and a generalized regression neural network (GRNN) to
retrieve SSM. They used the WCM to remove the influence of vegetation. The inputs of
SVR included the dual-polarization radar backward scattering coefficient, altitude, local
incident angle, and vegetation indices (NDVI, the modified soil adjusted vegetation index
(MSAVI), and the difference vegetation index (DVI)). Their results indicated that combining
multi-characteristic parameters based on SVR delivered the best retrieval accuracy with
the R2 of 0.903 and an RMSE of 0.014 cm3/cm3. Zhao et al. [40] estimated the SSM for
winter wheat fields using Sentinel-1 and Sentinel-2 data. Based on near-infrared, red, and
shortwave infrared bands, they proposed a new fusion vegetation index (FVI) to estimate
VWC. They used the Maclaurin series to improve the WCM and considered that the single-
polarization backscattering coefficients could be replaced by VV/VH. As a result of their
retrieval analysis, they obtained an R2 value of 0.7642 and an RMSE of 0.0209 cm3/cm3

in VV/VH; their R2 and RMSE values were 0.6791 and 0.0249 for VV polarization, and
0.5151 and 0.0289 for VH polarization, respectively. In the present study, vegetation indices
including NDVI, NDWI1610, NDWI2190, and NDRI were used (NDRI was composed of two
red edge bands). To the best of the authors’ knowledge, this study is the first to propose
removing the influence of vegetation on SSM estimation by using the red side bands in
Sentinel-2 data. Baghdadi et al. [7] estimated the SSM of crop fields and grasslands from
Sentinel-1/2 data. They combined the WCM with the integral equation model (IEM) [41]
using real data composed of a C-band radar backscattered signal, NDVI, soil moisture, and
surface roughness values. Their results indicated that the soil contribution to the total radar
backscatter signal was lower in VH polarization than in VV polarization. Zeng et al. [17]
studied SSM under different vegetation covers based on Sentinel-1A and SVR techniques
and concluded that VV polarization could achieve high retrieval accuracy. Wang et al. [42]
combined full polarization Radarsat-2 SAR data and SVR techniques to estimate soil mois-
ture in sparsely vegetated arid areas. They determined that the inversion accuracy of the
co-polarization data (VV or HH polarization) was higher than that of the cross-polarization
data (VH or HV polarization). Comparing the inversion results reported in this study
with those of the previous studies mentioned above, it is possible to conclude that VV
polarization is more sensitive to SSM than VH polarization.

One of the limitations of this study is that it only focused on wheat fields. In addition,
only a small number of sampling sites were measured. Furthermore, as wheat is a drought-
resistant crop, it is also planted on hills and mountains in China, while this study only
examined wheat on plains. However, soil moisture retrieval methods that are based on
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other kinds of crops and those that encompass many terrain conditions may have more
practical significance than the method reported here.

5. Conclusions

Using Hebi, a representative wheat planting area in Henan Province, China, as the
study area, we investigated the potential for synergy between C-band Sentinel-1 SAR and
Sentinel-2 optical data for SSM retrieval in wheat fields. To extract the soil backscattering
coefficient (σ0

soil) from the Sentinel-1 SAR data, the WCM was selected to remove the
influence of the vegetation layer from the radar backscattering coefficient. Then, combined
with the WCM and SVR algorithms, the SSM of the wheat-covered fields were retrieved
and analyzed under different polarization modes (VV, VH). The main conclusions of this
study can be summarized as follows:

(1) A modified WCM was constructed using FV and VWC values calculated from
Sentinel-2 data. The FV was used to distinguish the proportions of vegetation coverage
and bare soil in pixels, and the VWC model, which was based on the combination of
four vegetation indices (NDVI, NDWI1610, NDWI2190, and NDRI), was able to effectively
remove the influence of the vegetation canopy on the backscattering coefficient of the
Sentinel-1SAR data;

(2) Compared with Sentinel-1 VH polarization data (after removing the vegetation
influence using the WCM), VV polarization data produced higher estimation accuracies
regarding the SSM retrieval. This result indicates that the VV polarization contains more soil
backscattering information and is more sensitive to changes in SSM than VH polarization;

(3) C-band Sentinel-1 SAR and Sentinel-2 optical data were used to study wheat-
covered fields. The results indicate that the estimated SSM based on these two kinds of
satellite data are applicable to agricultural environments for wheat. To further this research,
we intend to examine the proposed algorithm with regard to other crops and different
regions. Furthermore, to estimate SSM more accurately on a large scale, some advanced
algorithms, such as deep learning, should be implemented.
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