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Abstract: Establishing reference conditions in rivers is important to understand environmental
change and protect ecosystem integrity. Ranked third globally for fish biodiversity, the Mekong
River has the world’s largest inland fishery providing livelihoods, food security, and protein to the
local population. It is therefore of paramount importance to maintain the water quality and biotic
integrity of this ecosystem. We analyzed land use impacts on water quality constituents (TSS, TN,
TP, DO, NO3

−, NH4
+, PO4

3−) in the Lower Mekong Basin. We then used a best-model regression
approach with anthropogenic land-use as independent variables and water quality parameters as the
dependent variables, to define reference conditions in the absence of human activities (corresponding
to the intercept value). From 2000–2017, the population and the percentage of crop, rice, and
plantation land cover increased, while there was a decrease in upland forest and flooded forest.
Agriculture, urbanization, and population density were associated with decreasing water quality
health in the Lower Mekong Basin. In several sites, Thailand and Laos had higher TN, NO3

−, and
NH4

+ concentrations compared to reference conditions, while Cambodia had higher TP values
than reference conditions, showing water quality degradation. TSS was higher than reference
conditions in the dry season in Cambodia, but was lower than reference values in the wet season in
Thailand and Laos. This study shows how deforestation from agriculture conversion and increasing
urbanization pressure causes water quality decline in the Lower Mekong Basin, and provides a first
characterization of reference water quality conditions for the Lower Mekong River and its tributaries.

Keywords: tropical rivers; reference conditions; urbanization; agriculture

1. Introduction

Water quality is becoming degraded worldwide [1] due to increasing sediment loads
and nutrient concentrations of nitrogen and phosphorus into rivers and downstream
coastal areas [2]. Rivers provide a wide range of ecosystem services [3] which are particu-
larly valuable in tropical developing countries where the livelihoods depend directly on
freshwater resources [4]. In Southeast Asia’s Mekong Basin, food security and economic
well-being of nearly 70 million people depend on about 2.3 million tonnes of fish caught
from the Mekong Basin annually. Fish production in this region represents around 20%
of worldwide inland fisheries production [5]. In addition to its economic importance, the
Mekong River Basin is also a hotspot for biodiversity and is home to critically endangered
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mega-fish species [6]. Despite its ecological and economic importance, the Mekong Basin
is experiencing high rates of environmental degradation from multiple causes such as
deforestation, rapid population growth, agricultural development, fish overharvest, and
dam development [7–10].

Drivers of land use change vary between countries in the lower Mekong Basin, but in
the last 30 years deforestation has increased in Cambodia, Laos, Thailand, and Vietnam [11].
Of these countries, Cambodia has the most forested land, but is experiencing particularly
high deforestation rates, with 19% of tropical forest, 31% of the floodplain, and 18% of
upland forest converted to other uses from 1993 to 2017 [9]. In addition to forest loss, the
use of fertilizers for agriculture, and in particular rice production, has increased [12]. Water
quality that was considered “moderate” or “good” by the Mekong River Commission in
the past [13] has now been degraded [14,15], primarily in Mekong tributaries [14]. The
degradation of water quality in the Mekong River has become a concern because of its
importance for drinking, domestic uses, and agriculture, so water degradation could harm
human, animal, and ecosystem health [16]. While some studies on water quality in the
Lower Mekong have noted a decline of water quality [14–16], we found only one study
that assessed the effects of land use change on total suspended solids (TSS) and dissolved
inorganic nitrogen (NO3

−) [17]. A comprehensive study that assesses the effects of land
use change on multiple water quality parameters in the Lower Mekong Basin is needed to
provide reference conditions for water quality, including nutrients, dissolved oxygen, and
total suspended solids, which are key parameters for driving ecosystem productivity.

Defining reference conditions can improve our understanding of how riverine systems
may respond to global environmental changes and inform management strategies to
preserve water quality and ecological integrity of rivers. Reference nutrient concentrations
are less known and studied than physical habitats in river systems [18]; this information is
available for temperate areas of the United States [19] and Europe [20,21], but typically is
unavailable for tropical areas, limiting the understanding of riverine nutrient dynamics and
trophic ecology. Although some studies have been carried out defining baseline nutrient
concentrations in rivers and streams of tropical regions in Brazil [22,23], to our knowledge
this information is unavailable for tropical rivers of Southeast Asia.

In this study, our objectives were to (1) identify parameters that should be monitored
to define water quality, and (2) use long-term land use and water quality data to define
reference conditions for the Lower Mekong Basin. We used multiple regression models
to estimate relationships between anthropogenic land uses and water quality parameters,
then the models were used to define reference nutrient concentrations expected in the
absence of anthropogenic land use. This research is needed to determine reference water
quality values for the Lower Mekong River basin that can support management practices
and increase the understanding of tropical aquatic systems.

2. Materials and Methods
2.1. Study Area

The Mekong River is one of the most important rivers of the world. It is the 12th
longest in the world and the 3rd longest in Asia, and the second most biodiverse river of
the world [24]. In this study, we focus on the Lower Mekong Basin located in Southeast
Asia, which includes the countries of Laos, Cambodia, Thailand, and Vietnam (Figure 1).
However, not enough data were available for Vietnam, so we could not include it in the
analyses. The climate of the Lower Mekong Basin is tropical, with a dry season from
December to May and a wet season from June to November.
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Figure 1. Land use cover in Cambodia, Laos, and Thailand in 2017. The watersheds we analyzed in
this study are shown with bold colors, while areas outside of the watersheds are shaded. Watershed
numbering corresponds to labels in Figures 3–6.

Most forested areas are in Laos and Cambodia, although high rates of deforestation
have recently occurred [9]. Lowland areas are dominated by rice cultivation [17]. Most
people live in urban areas, with lower population densities in agricultural areas. The main
cities are located along the mainstream of the Mekong River, and 40% of the population
live along the riverbank [25].

Since 2010, dam development has increased substantially in the Lower Mekong
Basin. In Cambodia, most sites we selected were undammed (Neak Luong, Backprea,
PhnomKrom, Tonle Sap, and the Mekong mainstream). In Laos, SeBangFai, BenKengDone,
and HouayMakiHiao were undammed, but all others were located near dams. In Thailand,
only BanSom was undammed, and all other sampling stations were located either upstream
or downstream of dams (for the full sites list see next section and Supplementary Material
1 and 2).
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2.2. Data Collection

We analyzed water quality data available from the Water Quality Monitoring Network
and the Fisheries Program of the Mekong River Commission (MRC). Stations were spread
throughout the lower Mekong Basin, with nine stations in Laos, eight in Cambodia, and
eight in Thailand (Figure 1). In Cambodia, the selected stations were Backprea (1), Kampong
Thom (2), Kampong Toul (3), Kampong Thmar (4), Mekong (5), Neak Luong (6), Phnom
Krom (7), and Tonle Sap (8). In Laos, the selected stations were Ban Hat Kham (9), Ban Keng
Done (10), Houay Mak Hiao (11), Nam Houm Dam (12), Nam Ngum (13), Nam Souang
(14), Se Bang Fai (15), Sedone Bridge (16), Thaleth Keokou (17). In Thailand, the selected
stations were Ban Chai Buri (18), Ban Ku Phra Kona (19), Ban Som (20), Bad Tan Ton (21),
Chiang Rai (22), Lam Dom Noi (23), Lam Pao Dam Site (24), Nam Kae (25), (Figure 1).
These stations were selected because their watersheds were non-overlapping. We also
selected one watershed for the entire Tonle Sap Basin and one watershed encompassing the
Mekong River upstream of Phnom Penh (Figure 1). The non-overlapping watersheds were
used in regression analyses to establish land use effects on water quality parameters and
reference values (see next sessions). We report the Mekong and the Tonle Sap watersheds
only for the assessment of land use changes trough time, and for a characterization of water
quality parameters in relation to reference values.

Water quality collections included nutrients (nitrogen and phosphorus chemical con-
stituents), total suspended solids, and dissolved oxygen, and were conducted by the MRC
in partnership with each member country by collecting grab water samples between the
13th and 18th day of each month (MRC, 2015). We selected data available from the year
2000 to 2017 to match available land use data. Mean concentration of the water quality
parameters were measured for the dry season (December to May) and rainy season (June
to November) of each year. The final dataset included between 100 and 297 observations
for each water quality parameter.

Water quality analyses were completed following the Standard Methods [26] or the
national standards, complying with the requirements of method validation of ISO/IEC
17025-2005. Total suspended solids (TSS) were measured using a 0.45 µm pore size glass
fiber filter following the standard method. Dissolved inorganic nitrogen (NO3

−) was ana-
lyzed by using the 4500- NO3

− standard method, (minimum detection limit of 0.001 mg/L).
Ammonium (NH4

+) was measured following the 4500- NH4
+-standard method (minimum

detection limit of 0.002 mg/L). Phosphorus (PO4
3−) and total phosphorus (TP) concen-

trations were measured using the stannous chloride method (minimum detection limit of
0.003 mg/L). Dissolved oxygen (DO mg/L) was measured by a calibrated oxygen probe.

2.3. Watershed Delineation and Land Use Characterization

For each water quality sampling station, we delineated upstream watersheds using a
global 90-m resolution Digital Elevation Model (DEM) [27]. We used ArcGIS 10.6 Spatial
Analyst hydrology tools [28] to perform standard hydrological image pre-processing
steps prior to watershed delineation [29]. These included filling pits, calculating flow
direction within an eight-cell neighborhood, and calculating flow accumulation. We then
used the ArcGIS 10.6 Watershed Tool in Spatial Analyst to delineate all upslope cells in
the watershed.

For each watershed we calculated the proportion of land cover categories (crop, rice,
flooded forest, upland forest, grassland, plantation, urban) and population density (number
of people per km2) from 2000 to 2017 using an annual timestep. Crop refers to all non-
plantation crops excluding rice, and includes cassava, mangoes, maize, sweet potatoes,
groundnuts, soybeans, sesame seeds, dry beans, and pepper. Total forest and flooded
forest cover were calculated using annual-resolution forest cover from [9], which were
temporally smoothed using a median filter to ensure realistic changes from one year to
the next. We used percentage of forest and flooded forest only to analyze their trends
during time, but those percentages were not used in the reference conditions estimation,
where we only included anthropogenic land uses (see next section for reference conditions
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estimation). The additional land cover types were downloaded from the Regional Land
Cover Monitoring System [30]. Fully urbanized land cover types were rare in this study
area. Therefore, we used the Gridded Population of the World dataset version 4 [31], which
provided gridded population estimates at 1 km resolution for five-year increments (2000,
2005, 2010, 2015, 2020). For the intervening years, we estimated the population by linearly
interpolating between the five-year start and endpoints.

For each of the six watersheds, we mapped the proportion of each land cover type
within the watershed at an annual-resolution from 2000 to 2017, except for the gridded
population data which was mapped as a population count in 1-km grid cells. In addition
to calculating land cover changes through time within each watershed, we also determined
whether dams were present in each watershed. We first overlaid the Global Reservoir and
Dam (GRanD) v1.01 [32] to determine the presence of large dams. Due to the lack of data
on smaller dams and to ensure timeliness of the data, we used the Esri World Imagery [33]
and searched every watershed to determine whether dams were present. If dams were
present on the mainstem of the river in which water quality samples were collected, we
categorized the watershed as “dammed”, regardless of dam size.

2.4. Statistical Analyses

We correlated the percentage of land use in each category with water quality parame-
ters (TSS, TN, TP, DO, NO3

−, NH4
+, PO4

3−). To define reference values for water quality
parameters in the absence of anthropogenic activity, we developed multiple regression
models and used stepwise variable selection to relate water quality parameters to the per-
centage of anthropogenic land use categories (crop, rice, grassland, plantation, urban) and
population density, in the twenty-three non overlapping (independent) watersheds. Then,
we identified the intercept value where anthropogenic activity equals zero and confidence
intervals around the estimates to define reference values in the absence of anthropogenic
influence. We ran separate models for the wet and dry seasons. Water quality data were
log transformed to be normally distributed for parametric tests. This is the best-model
regression approach used by [19] in temperate regions and by [23] in the tropics. Finally,
we assessed nutrient limitation using mean nutrient concentration values and the Redfield
ratio, commonly used to express nutrient limitation [34], where a N:P ration below 7:1 by
mass considered nitrogen limited and above phosphorus limited [35]).

3. Results

Land use changed from 2000 to 2017 in the 30 watersheds that we analyzed for this
study (Figure 1). In general, urban population and the percentage of crop, rice, and
plantations increased, while upland forest and flooded forest decreased (Figure 2).

We found that TSS was positively correlated to population and flooded forest, while
negatively correlated to grassland and upland forest. TN was positively correlated to
population and crop, and negatively correlated to upland forest, rice, and grassland. TP
was positively correlated to population, flooded forest, and crop, and was negatively
correlated to upland forest. DO was positively correlated to upland forest and negatively
correlated to population, flooded forest, and crop. NO3

− was positively correlated to
population and crop and negatively correlated to upland forest and rice. NH4

+ was
positively correlated with population and crop and negatively correlated to upland forest
and grassland. We found no significant correlation for PO4

3− (Supplementary Material
3 and 4).

Tables 1 and 2 report best multiple regression models with anthropogenic land uses
and population density, for the dry and wet season respectively, from which we estimated
reference water quality parameters reported in Table 3.
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Figure 2. Land use changes in study watersheds of Cambodia, Laos, Thailand, and Vietnam from 2000 to 2017. Note that y
axes differ among panels.

Table 1. Multiple regression models with anthropogenic drivers in the dry season.

Dry Season

Dependent Variable Observations (n) Independent Variable Estimate Standard Error p-Value Adj. R2

Log[TSS] (mg/L) 297 Intercept 1.24 0.05 <0.001 0.13
Population 0.01 0.00 <0.001

Crop −8.72 0.18 <0.001
Rice −3.36 0.77 <0.001

Urban −40.07 14.49 0.01
Log[TN] (mg/L) 204 Intercept −0.57 0.05 <0.001 0.26

Rice −3.71 0.51 <0.001
Population 0.004 0.00 <0.001

Urban −41.6 10.35 <0.001
Grassland 4.41 2.105 0.05

Log[TP] (mg/L) 297 Intercept −1.60 0.040 <0.001 0.21
Population 0.01 0.001 <0.001

Rice −3.06 0.61 <0.001
Crop −0.58 0.15 <0.001

Log[DO] (mg/L) 296 Intercept 0.87 0.01 <0.001 0.20
Urban 22.47 2.84 <0.001
Rice 0.77 0.14 <0.001

Grassland −1.87 0.49 <0.001
Population −0.001 0.00 <0.001
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Table 1. Cont.

Dry Season

Dependent Variable Observations (n) Independent Variable Estimate Standard Error p-Value Adj. R2

Log[NO3
−] (mg/L) 296 Intercept −1.30 0.05 <0.001 0.27

Rice −5.04 0.61 <0.001
Population 0.01 0.00 <0.001
Grassland 8.12 2.21 <0.001

Urban −46.54 12.87 <0.001
Log[NH4

+] (mg/L) 297 Intercept −1.55 0.05 <0.001 0.31
Rice −3.96 0.48 <0.001

Population 0.01 0.00 <0.001
Urban −46.11 9.69 <0.001

Plantation 0.22 0.11 0.05
Log[PO4

3−] (mg/L) 111 Intercept −2.10 0.05 <0.001 0.03
Urban 54.36 25.20 0.05

Table 2. Multiple regression models with anthropogenic drivers in the wet season.

Wet Season

Dependent Variable Observations (n) Independent Variable Estimate Standard Error p-Value Adj. R2

Log[TSS] (mg/L) 285 Intercept 1.98 0.06 <0.001 0.263
Crop −1.49 0.15 <0.001

Population 0.01 0.00 <0.001
Plantation −0.60 0.14 <0.001

Log[TN] (mg/L) 187 Intercept −0.51 0.04 <0.001 0.166
Population 0.00 0.00 <0.001

Rice −1.72 0.36 <0.001
Grassland 6.00 1.55 <0.001

Urban −18 7.29 0.05
Log[TP] (mg/L) 284 Intercept −1.41 0.04 <0.001 0.255

Population 0.01 0.00 <0.001
Crop −0.74 0.14 <0.001

Urban 39.79 10.68 <0.001
Log[DO] (mg/L) 281 Intercept 0.88 0.01 <0.001 0.280

Crop −0.23 0.02 <0.001
Rice 0.79 0.13 <0.001

Urban 21.10 3.00 <0.001
Grassland −2.76 0.57 <0.001

Log[NO3
−] (mg/L) 285 Intercept −0.90 0.06 <0.001 0.167

Plantation −0.42 0.13 <0.001
Grassland 6.68 1.89 <0.001
Population 0.00 0.00 0.001

Log[NH4
+] (mg/L) 285 Intercept −1.42 0.03 <0.001 0.166

Rice −2.50 0.45 <0.001
Population 0.00 0.00 <0.001

Urban −27.82 8.85 0.001
Log[PO4

3−] (mg/L) 100 Intercept −1.90 0.04 <0.001 0.018
Urban 34.94 20.66 0.05

Table 3. Baseline reference values for the dry and wet season, calculated with anthropogenic models (also reported).
CI95_low and CI95_high refer to the lower and higher 95% confidence interval, respectively.

Dry Season Reference Value CI95_low CI95_high Independent Variables

TSS (mg/L) 17.5 14.1 21.9 Crop+Rice+Population+Urban
TN (mg/L) 0.266 0.211 0.336 Rice+Grassland+Population+Urban
TP (mg/L) 0.0252 0.0211 0.030 Rice+Crop+Population
DO (mg/L) 7.48 7.01 7.88 Crop+Rice+Grassland+Population+Urban

NO3
− (mg/L) 0.051 0.040 0.064 Rice+Grassland+Population+Urban

NH4
+ (mg/L) 0.028 0.023 0.035 Rice+Plantation+Population+Urban

PO4
3− (mg/L) 0.008 0.006 0.010 Urban
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Table 3. Cont.

Wet Season Reference Value CI95_low CI95_high Independent Variables

TSS (mg/L) 98.1 75.2 127.8 Crop+Plantation+Population
TN (mg/L) 0.313 0.263 0.372 Rice+Grassland+Population+Urban
TP (mg/L) 0.039 0.033 0.046 Crop+Population+Urban
DO (mg/L) 7.503 7.090 7.941 Crop+Rice+Grassland+Urban

NO3
− (mg/L) 0.126 0.095 0.168 Plantation+Grassland+Population

NH4
+ (mg/L) 0.038 0.033 0.044 Rice+Population+Urban

PO4
3− (mg/L) 0.013 0.010 0.015 Urban (p = 0.094)

Either urban percentage or population density appeared in all models indicating how
urbanization and population density are important drivers of nutrient concentration increases.
Figures 3 and 4 report reference values (horizontal lines in the figure) for TSS, TN, TP, and
DO for the dry and wet season for all study watersheds. They also show mean and median
baseline water quality parameters from 2000 to 2017. In the dry season (Figure 3), TSS was
higher than reference conditions in Cambodia and close to reference in Laos and Thailand,
with two sites below reference conditions in Laos (Nam Houm Dam and Nam Ngum) and
one site below reference in Thailand (Ban Chai Buri). In the wet season (Figure 4), TSS
values were close to reference in Cambodia, but they were lower than reference at four
sites in Laos (Houay Mak Hiao, Nam Houm Dam, Nam Ngum, Nam Souang) and in all
sites in Thailand except for Chiang Rai.

TN concentrations were higher than the reference value in three sites in Cambodia, but
only in the dry season, and were on the reference range in the wet season. In Laos, median
values show that TN was higher than reference, in all sites, particularly at Houay Mak
Hiao, Nam Houm Dam, and Se Bang Fai in the dry season. In Thailand, TN concentrations
were higher than reference values in Ban Som and Ban Ku Phra Kona for both dry and
wet seasons. Some sites in all three countries had higher TP concentrations compared to
reference values (especially Backprea, Phnom Krom, and Tonle Sap in Cambodia, Houay
Mak Hiao and Nam Ngum in Laos, and Ban Som and Chiang Rai in Thailand) and
Cambodia had only one site near reference TP concentrations (Kampon Toul). Laos and
Thailand had more sites in the range of reference values for TP. DO was close to reference
values at all sites in the dry and wet seasons except for Houay Mak Hiao and Nam Ngum
in Laos.

Figures 5 and 6 show watershed reference values for NO3
−, NH4

+, and PO4
3− for

the dry and wet seasons, respectively. In Cambodia, water concentrations of NO3
−,

NH4
+, PO4

3− were much closer to reference values than in Laos and Thailand, but sites in
Cambodia still exceeded reference conditions, especially in Backprea, Phnom Krom, and
Tonle Sap. In Laos, the site with the highest NO3

− and NH4
+ concentrations was Houay

Mak Hiao. In general, Laos sites fell above reference conditions for NH4
+ and PO4

3− but
closer or sometimes below reference for NO3

−. In Thailand, several sites had higher NO3
−,

NH4
+, PO4

3− than reference both in the dry and in the wet season (Ban Ku Phra Kona, Ban
Som, Chiang Rai).

When assessed by the Redfield ratio, all rivers in Cambodia were nitrogen limited,
while in Thailand and Laos nutrient limitation varied, with some nitrogen limited sites and
some phosphorus limited sites.
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Figure 3. Mean TSS, TN, TP, and DO concentrations for the dry season in Cambodia, Laos, and Thailand. Black solid
horizontal lines represent reference values with dotted lines corresponding to the 95% confidence interval.
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Figure 4. Mean TSS, TN, TP, and DO concentrations for the wet season in Cambodia, Laos, and Thailand. Black solid
horizontal lines represent reference values with dotted lines corresponding to the 95% confidence interval.
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Figure 5. Mean NO3
−, NH4

+, PO4
3− concentrations for the dry season in Cambodia, Laos, and Thailand. Black horizontal

lines report reference values and dotted lines correspond to the 95% confidence interval.
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Figure 6. Mean NO3
−, NH4

+, PO4
3− concentrations for the wet season in Cambodia, Laos, and Thai land. Black horizontal

lines report reference values and dotted lines correspond to the 95% confidence interval.

4. Discussion
4.1. Effect of Land Use in Water Quality Parameters

In this study we show that deforestation, agriculture, and urbanization pressure have
increased in the last 17 years in the Lower Mekong Basin, and these changes in land use
have led to the degradation of water quality, particularly with respect of TSS, TN, TP, DO,
NO3

−, NH4
+, and PO4

3− concentrations. Agriculture and the use of fertilizers are driving
changes in water quality, together with the increasing urbanization and population density,
lack of proper sewage treatment, and inadequate sanitation facilities common in areas as
tropical developing countries [36]. We found differences between the dry and wet season
for water quality parameters, but in general all explanatory models included agricultural
activity (either rice, crop, or plantation), urbanization and/or population density as drivers
of change in water quality.

These findings support results from temperate rivers [37] and some tropical rivers [38],
showing that land use changes into agriculture are major drivers of water quality degrada-
tion. However, our results differ from other highly urbanized tropical regions in Brazil [23]
where urbanization was the strongest driver of nutrient concentrations in rivers, and non-
intensive subsistence-level agriculture did not increase water nutrient concentrations. Most
fertilizer use occurs in Europe and the United States, although fertilizers are increasing in
Asia [39], which is increasingly replacing subsistence cultivations with intensive agricul-
tural activities [17]. Interestingly, we found that NO3

− and TN were positively correlated to
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agriculture (crops) but were negatively correlated to rice paddies, showing that traditional
rice cultivation was not associated with an increase of nitrogen concentration in our sites.
This was also found by [17]. However, the percentage of rice paddy cultivation at our sites
was small, compared to other crops land use (Figure 1).

In general, water quality parameters were closer to reference values in Cambodia
than they were in Laos and Thailand. Cambodia had higher TP concentrations compared
to reference values, while Laos and Cambodia had higher TN, NH4

+, and NO3
− than

reference values. TSS was variable in our study, mirroring results by [17]. In general, TSS
varied more from reference conditions during the wet season, and the sites that showed
larger departure from the reference conditions where those with a dam either upstream or
downstream, while dam free rivers had TSS values closer to the reference values.

4.2. Defining Baseline Reference Water Quality Parameters

Tropical countries are rapidly developing, increasing urbanization and agricultural
land cover that can affect current and future water quality. In this study, we generate a
first time estimate of reference conditions for watersheds in the absence of anthropogenic
impacts for which policies could be developed to improve water quality.

The approach we used has been commonly applied to establish reference water quality
parameters in temperate areas of the United States [19,40,41] and Europe [42], as well as in
tropical rivers of Venezuela [38] and Brazil [23], and tropical reservoirs in Brazil [43]. To
our knowledge this is the first study identifying reference conditions for water quality for
tropical rivers of Southeast Asia. The reference values of this study for TN and TP were
lower than those found in rivers in Brazil [22,23], but higher than what was reported for
Venezuela [38] and in the range of what was found by [43]. These results show that there is
variability in reference nutrient concentrations among tropical areas. Reference conditions
in this area could be different than tropical rivers in South America due to different soil or
geological characteristics, determining different baseline reference conditions. Reference
values in this study were in the range of those reported by [19] in temperate areas but were
near the low end of the range. The paucity of studies on reference nutrient concentration for
tropical rivers and lakes shows that more research is needed to understand how reference
values and nutrient ecoregions vary within and between tropical and temperate regions.
Reference conditions are also needed to inform water quality monitoring programs for
tropical developing countries.

The MRC routinely monitors water quality parameters which indicate fairly-good
status of water quality in the Lower Mekong Basin, although the indexes used by MRC
are based on the Canadian Water Quality Index and may not be appropriate for tropical
systems. A handful of studies in the Lower Mekong Basin show increasing water quality
changes that have caused degradation [14,15], and increased nutrient fluxes [44]. Those
studies assess water quality based on long-term average loads or nutrient fluxes [45],
but no well-defined standards have been determined to assess how much current water
quality parameters have been impaired from reference conditions. Reference parameters
are needed to monitor water quality and ecosystem integrity, decreasing water quality and
nutrient enrichment can adversely affect aquatic life and human health.

5. Conclusions

Preserving the ecological integrity of the Lower Mekong River is important to sustain
the livelihoods of the population living within its basin. Our study showed that:

• Watersheds in the Lower Mekong Basin experienced increasing deforestation, agricul-
tural expansion, urban development, and population density from 2000 to 2017.

• These land use changes have decreased water quality. Many sites are impaired in
comparison with reference conditions and nutrient concentrations have increased. In
Cambodia, TN, NH4

+, and NO3 concentrations were close to reference conditions but
TP values were higher than reference. In Laos and Thailand TN, NH4

+, NO3, and TP
concentrations were higher than reference conditions.
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• In several sites in Laos and Thailand, TSS are decreasing in the wet season. This was
not observed in Cambodia, where most study sites were undammed.

• All rivers in Cambodia were nitrogen limited when assessed by the Redfield ratio,
indicating that TP is being exported by these rivers more than algal demand relative
to total nitrogen. In some sites of Thailand and Laos, nutrient limitation shifted from
nitrogen to phosphorus.

This study presents baseline water quality parameters specific for the Lower Mekong
Basin, to support water management agencies planning effective monitoring strategies,
including proper fertilizer management and control, development of sewage treatment
and sanitation infrastructures, that should be implemented to avoid further water quality
degradation in the future. We found that the percentage of upland forest was negatively
correlated to all nutrient concentrations, showing that maintaining upland forest is im-
portant to preserve water quality. Further research could characterize specific nutrient
ecoregions for the Mekong Basin, including soil, vegetation, and geological characteristics
of the basin.
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.3390/w13141948/s1, Supplementary Material 1: Watershed-station names and mean (2000–2017) wa-
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Supplementary Material 2: Watershed-station names and mean (2000–2017) water quality parameters
± standard deviation in the wet season. “n” refers to number of observations. Supplementary
Material 3: Correlation analysis between land use categories and water quality parameters in the
dry season for the watersheds of our study in the Lower Mekong Basin. Supplementary Material 4:
Correlation analysis between land use categories and water quality parameters in the wet season for
the watersheds of our study in the Lower Mekong Basin.
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