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Abstract: Water shortage and soil salinization are the main issues threatening the sustainable de-
velopment of agriculture and ecology in the Hetao Irrigation District (HID). The application of
water-saving practices is required for sustainable agricultural development. However, further study
is required to assess the effects of these practices on water and salt dynamics in the long term. In this
study, the impacts of different water-saving practices on water and salt dynamics were investigated
in the HID, Northwest China. The SAHYSMOD (integrated spatial agro-hydro-salinity model) was
used to analyze the water and salt dynamics for different water-saving irrigation scenarios. The
results indicate that the SAHYSMOD model shows a good performance after successful calibration
(2007–2012) and validation (2013–2016). The soil salinity of cultivated land in the middle and up-
per reaches of the irrigation district decreased slightly, while that in the lower reaches increased
significantly over the next 10 years under current irrigation and drainage conditions. It is predicted
that if the amount of water diverted is reduced by up to 15%, the maximum water-saving volume
could reach 650 million m3 yr–1. For the fixed reduction rate of total water diversion, the prioritized
measure should be given to reduce the amount of field irrigation quota, and then to improve the water
efficiency of the canal system. Although a certain amount of water can be saved through various
measures, the effect of water saving in the irrigation district should be analyzed comprehensively,
and the optimal water management scheme should be determined by considering the ecological
water requirement in the HID.

Keywords: SAHYSMOD; water and salt dynamics; spatial change; water-saving irrigation; ecological
water requirement

1. Introduction

Water shortage and soil salinization are the key factors negatively affecting the sustain-
able development of agriculture and ecology in arid and semi-arid areas [1]. In recent years,
with the vigorous promotion of a series of water-saving irrigation measures, the shortage of
water resources in irrigation districts has been alleviated to a certain extent. However, water
saving also causes corresponding changes in the water and soil environment of farmland
in irrigation districts. These changes may have a certain impact on regional-scale water
and salt transport and the downstream ecological environment [2–4]. Some studies have
shown that the dynamics of soil water and salt depend on the balance of water and salt in
the region and are also affected by natural and man-made conditions. Therefore, accurate
modeling of the regional water and salt balance is essential for developing appropriate
irrigation and drainage management strategies in arid and semi-arid areas [5].

Research on the utilization, management, and regulation of water and soil resources under
water-saving irrigation conditions has attracted increasing attention in recent years, and a large
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number of studies have been carried out on water-saving irrigation, soil salinization evolution
characteristics, influencing factors, and farmland water and salt transport [6–8]. However,
the existing studies on the dynamic change and main influencing factors of salinization in
irrigation districts mainly focus on the change in salinized land area or the characteristics of soil
salinity change at the field scale level over a certain time. However, the investigations of the
quantitative change of soil salinity and the analysis of influencing factors for long time series and
large spatial scales are still lacking. Research on soil water and salt transport is mainly carried
out at the field and regional scales. At present, a number of agro-hydrological models have
been proposed for soil and groundwater salinization management, such as HYDRUS [9,10],
SWAP [11], SALTMOD [12–15], WASH_1D/2D [16], and CROPWAT [17], which are easily
available or estimated with reasonable accuracy in field scales. However, these models are not
applicable at larger spatial scales of soil and groundwater salinity. Moreover, it is difficult to
obtain the large and high-frequency in-situ water and salt measurement data at the regional
scale. The regional water and salt transport system is a complex process with multi-factor
participation, multi-level driving, and multi-process coupling, which is much more complex
than the field scale.

In order to better study water and salt transport at the regional scale, some studies
proposed the use of regional water and salt models, model coupling, and a combination
of modeling and GIS, based on the principle of regional water and salt balances [1,18,19].
The SAHYSMOD model is a spatially distributed watershed-scale soil salinity model [20],
which performs well in simulating the long-term changes of soil salinity in root zones and
aquifers under different management practices. It was selected for wide application and
tested because of its spatially distributed structure, the majority of soil salinity processes,
and the wide range of options for policy enactment and different agricultural management
practices. The model has been successfully applied and tested to simulate the water
and salt dynamics under different management scenarios of the world in many previous
studies [21–27]. Akram et al. (2009) [21] simulated the groundwater levels and soil salinity
changes using the SAHYSMOD model and then evaluated the performance of different
bio-drainage system designs. Desta (2009) [22] successfully used SAHYSMOD to perform
spatial modeling and timely prediction of salinization in a GIS environment in the Korat
area of northeast Thailand. Singh and Panda (2012) [23] analyzed the effect of various
water management scenarios on the water and salt balances in the Haryana State of India
by the SAHYSMOD model.

It is key to regulate the movement of soil water and salt to correctly understand the
relationship between water and salt and laws of their movements under the condition of
water saving, especially in the arid and semi-arid irrigation areas where water resources
are scarce, and salinization is obvious. The study area, the upper and lower reaches of the
Hetao Irrigation District (HID), are characterized by differences in the planting structure,
farmland management measures, and other aspects. In addition, a certain amount of
water and salt exchange exists in different sub-irrigation districts. Previous studies on
water and salt dynamics only scarcely considered the continuity of groundwater flow in
the aquifer and the relationship between water and salt movement in different regions.
Due to the differences in topography, irrigation and drainage, climate conditions, etc., the
soil salinity dynamics in the cultivated land and salt wasteland also vary in the different
sub-irrigation districts of the HID. In this study, considering the spatial and temporal
variability of irrigation, groundwater depth, soil salinity, crop planting structure, hydraulic
conductivity, and other spatial variabilities, we combined SAHYSMOD and GIS to study
the water and salt dynamics at a large spatial scale under different water-saving schemes,
so as to further understand the influence of water saving on the water and salt dynamics
at a regional scale and to provide data support and theoretical method for choosing the
appropriate water-saving scale and technical measures. The objectives of this study were
to: (i) Calibrate and verify the model parameters suitable for the region, (ii) simulate
long-term water and salt dynamics under various scenarios and quantify the trend of soil
salinity dynamics in the future under different management conditions, and (iii) propose
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appropriate irrigation and drainage water management practices for the control of soil and
groundwater salinization based on the simulation results.

2. Materials and Methods
2.1. Study Area

The HID is an important food production area, located in the western arid areas
of the Inner Mongolia autonomous region of Northwest China (Figure 1). The study
area has a typically arid and semi-arid continental climate, and the mean annual rainfall
and annual pan evapotranspiration are approximately 130–210 mm and 2100–2300 mm,
respectively [7,28]. The ground elevation ranges 1007–1050 m, covering a total area of
1.12 × 106 ha with 5.7 × 105 ha under irrigation, of which 5.25 × 105 ha are cropland [2].
The irrigation water mainly comes from the Yellow River, which has an average salt
concentration of approximately 0.85 dS/m. The water flows into the district through
general irrigation canals that run southwest to northwest alongside the river [29]. The
main soil textures in the study area are silt sand, sandy loam, and loam. The crop-growing
season is from April to October, and spring wheat, spring maize, and sunflowers are the
main crops in the HID.

Figure 1. Location of the study area.

2.2. SAHYSMOD Model Description
2.2.1. Technical Details of SAHYSMOD

SAHYSMOD is a spatial agro-hydro-salinity simulation model that can be used to
predict and analyze long-term water and salt dynamics under different geohydrologic
conditions, varying water management options, including the re-use of groundwater for
irrigation by pumping from wells (conjunctive use), and several crop rotation schedules.
The aquifer may be unconfined or semiconfined. Optionally, the responses of farmers can be
simulated by adjusting agriculture and irrigation to waterlogging and salinity. The model
combines the agro-hydro-salinity model SaltMod and an adjusted/extended polygonal
groundwater model SGMP [30]. The SaltMod model calculates the downward and/or
upward water fluxes in the soil profile for each polygon depending on the fluctuation
of the groundwater table. The SGMP calculates the groundwater flows into and out of
each polygon and the groundwater levels of each polygon depending on the upward
and/or downward water fluxes. The above two parts interact as they influence each other.
The third part is a salt balance model, which runs parallel to the water balance model
and determines the salt concentrations in the soil profile, and of the drainage, well, and
groundwater [27].
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2.2.2. Principles of SAHYSMOD

Oosterbaan, the developer of the two models, upgraded the SALTMOD model to
SAHYSMOD to enable simulation in the horizontal dimension. SALTMOD is a point-based
model, with a vertical 1 D extension to address solute transport in the Z-axis but lacks
the possibility of associating the horizontal relationship of points in the plane. In contrast,
SAHYSMOD can be considered as a 2D model, which considers spatial variations by a
nodal network of polygons [20].

The SAHYSMOD model permits division of the study area into a maximum of 240
internal and 120 external polygons with a minimum of 3 and a maximum of 6 sides each.
The spatial variations in cropping, drainage, and groundwater of the study area are defined
by a nodal network of rectangular polygonal configurations, the centroid of each polygon
is taken as the representative of the whole unit grid, and each grid is treated as a separate
soil unit. According to the climate conditions, crop growth, irrigation, or fallow period,
a year can be divided into 1–4 simulation seasons, and the length of each season can be
determined according to its continuous month. In the vertical direction, the soil profile is
divided into four layers: Surface reservoir, root zone, transition zone, and aquifer (Figure 2).
Each layer has a water and salt balance equation, which is based on the water balance
equation of each layer and its salt content. Groundwater flow is determined based on the
finite difference method.

2.2.3. Data Required

The SAHYSMOD model was primarily developed to predict long-term trends, which
are based on seasonal input data and returns seasonal outputs. The input data are used
to relate surface water hydrology (e.g., rainfall, potential evapotranspiration, irrigation,
reuse of drainage water, and runoff) to groundwater hydrology (e.g., upward seepage,
groundwater pumping, capillary rise, and drainage). The output data comprise hydrologi-
cal and salinity aspects. In this study, the input data for the model included climatic data,
soil properties, crop parameters, and irrigation and drainage system layouts. The required
data per polygon were polygonal characteristics, hydraulic conductivity, and soil porosity.
The further needed data were the leaching efficiency of the root zone, transition zone,
and aquifer zone, parameters of the drainage system, and capillary rise factors. Seasonal
data encompassed rainfall, irrigation, and evapotranspiration. These data were mainly
collected from water and salt monitoring tests, soil sampling, and irrigation and drainage
management at the Hetao Irrigation District Administration Bureau and surrounding
experimental stations.

Figure 3 illustrates the input data extraction map of the grid center points in the study
area. Groundwater was abstracted mainly through a number of shallow tube wells. The
temporal dynamics of the groundwater table were monitored through a network of 248
observation wells distributed in the study area, and the monitoring frequency was once per
5 days. Among the 248 groundwater observation wells in the irrigation district, 91 wells
synchronously monitored the groundwater salinity at a 50-day frequency. The irrigation
amount per unit area was obtained by dividing the total water diversion volume of the final
channel in the control area by the irrigation area of the control area, and the water diversion
data of the channel were the monitoring values of the irrigation district administration.
Canal water quality had an EC of 0.85 dS m−1. The surface elevation and land-use data
were obtained using a DEM elevation map and interpretation of remote sensing data.
ArcGIS built-in tools were used to obtain average input values of groundwater level,
rainfall, and salt content in the center of each polygon.



Water 2021, 13, 1939 5 of 21

Figure 2. Soil reservoirs with hydrological inflow and outflow components. Note: Pp is the amount
of water vertically reaching the soil surface, such as precipitation and sprinkler irrigation; Ii is
the irrigation water supplied by the canal system; Ig is the gross irrigation inflow including the
natural surface inflow and the drain and well water used for irrigation, but excluding the percolation
losses from the canal system; I0 is the amount of irrigation water leaving the area through the canal
system (bypass); Eo is the amount of evaporation from open water; Era is the amount of actual
evapotranspiration from the root zone; λi is the amount of water infiltrated through the soil surface
into the root zone; λ0 is the amount of water ex-filtrated through the soil surface from the root zone;
the term λ0 is not shown in Figure 2 as it can occur only when the water table is above the soil surface;
So is the amount of surface runoff or surface drainage leaving the area; Lc is the percolation loss from
the irrigation canal system; Lr is the amount of percolation losses from the root zone; VR is the amount
of vertical upward seepage from the aquifer into the transition zone; VL is the amount of vertical
downward drainage from the saturated transition zone to the aquifer; Rr is the amount of capillary
rise into the root zone; Gw is the amount ground water pumped from the aquifer through wells; Gd is
the total amount of subsurface drainage water; Gi and Go are the horizontally incoming/outgoing
ground water flow into a polygon through the aquifer; Fw is the fraction of the pumped well water
Gw used for irrigation and Gu is the quantity of subsurface drainage water used for irrigation. FwGw

and Gu were negligible and were set equal to zero in this study. ∆Ws is the change in the amount of
water stored in the surface reservoir.

Meteorological data from the period 2007–2016 were collected from the local meteoro-
logical station. The daily reference evapotranspiration (ET0) was calculated by the FAO
Penman–Monteith method [31], and then the potential crop evapotranspiration (ETc) was
determined by the crop coefficient approach [7,32]. Finally, the planting area proportion
and evapotranspiration of different crops were used to calculate the seasonal potential
crop evapotranspiration [15]. The soil sample collection sites for the model were based on
the salt monitoring points in the study area. At each observation point, five samples were
taken from five different depth intervals: 0–20, 20–40, 40–60, 60–80, and 60–90 cm.
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Figure 3. Input data extraction map of grid center points in the study area.

2.2.4. Grid Generation in the Study Area

The study area was subdivided into 299 square polygons (216 internal and 83 external)
via a nodal network, each 7.8 × 7.8 km in size, on a scale of 1:10,000. Each node was
considered a separate unit and the centroid was taken as representative of the entire
polygonal area. The external nodes are the boundary conditions that act as head-controlled
boundaries for the internal nodes. The whole year was divided into three simulation
seasons, namely the summer irrigation period (May to September), the autumn irrigation
period (October to November), and the non-growing period (December to April). Figure 4
shows the nodal network configuration of the SAHYSMOD model, and the theoretical
details of water and salt movement in SAHYSMOD are provided in [30].

Figure 4. Nodal network polygonal configuration of the SAHYSMOD model.
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3. Results and Discussion
3.1. Calibration and Validation of SAHYSMOD

Before SAHYSMOD can be used to study the long-term effects of various water
management scenarios on water and salt dynamics, it needs to be calibrated and validated
for a certain number of years. In this study, the model was calibrated for a six-year
period, from April 2007 to April 2012, and subsequently validated using the observed salt
concentration of the drainage water, groundwater depth, and drain discharge data for a
four-year period, from April 2013 to April 2016. The calibrated SAHYSMOD was then used
to simulate the water and salt dynamics under different water management conditions.
Tables 1 and 2 list the input parameters required by the SAHYSMOD model.

Table 1. Seasonal input data of SAHYSMOD model.

Seasonal Data Value Data Sources

1. Duration of seasons (months)
Season 1 (May–September) 5 M

Season 2 (October–November) 2 M
Season 3 (December–April) 5 M

2.Water balance components
Irrigated area fraction in season 1/season 2/season 3 0.57/0.57/0 R

Rainfall in season 1/season 2/season 3 (m) 0.119/0.010/0.011 M
Irrigation in season 1/season 2/season 3 (m) 0.011–0.506/0.014–0.262/0 M

Seasonal potential evapotranspiration (m) 0.652–0.694/0.103–0.109/0.062–0.110 M
Salinity of irrigation water season 1/season 2/season 3 (dS m–1) 1.02 M

Seasonal runoff (m) 0 M
Rootzone storage efficiency for rainfall and irrigation 0.8 M/G

Pumped well water from aquifer (m) 0 M

Note: Where the rainfall and potential evapotranspiration in different seasons are calculated by daily data, they change day by day; the
irrigation salinity is assumed to be uniform across the region.

Table 2. Summary of input parameters required by SAHYSMOD.

Polygonal Data Value Data Sources

1.Overall system parameters
bottom level of the aquifer 0 M

Thickness of the surface reservoir (m) 0 M
Thickness of the root zone (m) 1 M

Thickness of the transition zone (m) 4 M
Thickness of the aquifer zone (m) 90 M

Index for phreatic or semi-confined aquifer (0 = phreatic,
1 = semi-confined) 0 M

2.Soil and aquifer properties
Total porosity of the root zone (Ptr) 0.48 G

Total porosity of the transition zone (Ptx) 0.48 G
Total porosity of the aquifer zone (Ptq) 0.4 G
Effective porosity of the root zone (Per) 0.07 G

Effective porosity of the transition zone (Pex) 0.07 G
Effective porosity of the aquifer zone (Peq) 0.1 G

Leaching efficiency of the root zone (Flr) 0.85 G/C
Leaching efficiency of the transition zone (Flx) 0.65 G/C

Leaching efficiency of the aquifer zone (Flq) 0.9 G/C
Horizontal hydraulic conductivity of the aquifer zone (m/day) 6.08–13.66 M
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Table 2. Cont.

Polygonal Data Value Data Sources

3.Initial and boundary conditions
Initial salt concentration of soil moisture in the root zone (dS m–1) 5.47-6.99 M

Initial salt concentration of soil moisture in the transition zone (dS m–1) 4.14–5.70 M
Initial salt concentration of soil moisture in the aquifer zone (dS m–1) 3.86–6.75 M/K

Initial groundwater level with respect to reference level (Hw) (m) 1005–1211 M/K
Constant inflow condition into the aquifer (m yr–1) 0 M/G

Constant outflow condition into the aquifer (m yr–1) 0.1 M/G
Critical depth of the groundwater table for capillary rise (m) 2.3–2.5 M

Drain depth (m) 1.5 M
Drain spacing (m) 100 M

Note: Where M represents the parameters obtained by the actual measurement or calculation of investigation data, C represents the
parameters obtained by the model calibration, R represents the parameters obtained by remote sensing interpretation, K represents the
parameters obtained through spatial interpolation, and G is defined by the related references.

In the SAHYSMOD model input data requirements, some spatially distributed input
datasets, such as the leaching efficiency of the root zone (Flr), transition zone (Flx), aquifer
(Flq), and horizontal hydraulic conductivity of the aquifer (Kaq), are difficult to observe on
a watershed scale. Thus, these soil hydraulic input parameters need to be determined by
calibration. Kaq was determined by spatial interpolation of the measured data. Flq was
determined by running trials with the model using different values of Flq and choosing the
value that produced the salt concentration of the groundwater with the actual measured
values. Other parameters affecting the rootzone storage efficiency and drainage rate of soil
salinity could be determined by referring to relevant regional experience values or relevant
literature [15], including the values of Flx and Flr.

3.1.1. Determining Kaq

In the SAHYSMOD model, the aquifer plays an important role in horizontal exchanges.
In previous studies, the parameter calibration method was usually used to determine the
value of Kaq. Huang et al. (2020) [33] used this method to determine a Kaq of 10 m/day
in the Yinbei irrigation district of Ningxia, while the spatial variability of Kaq was not
considered. One study showed that the groundwater depth is sensitive to Kaq, and that
the groundwater depth increases with an increase in Kaq [26]. This was also consistent
with the research conclusion of Singh and Panda (2012) [24].

In this study, the spatial variation of aquifer properties was considered, and the spatial
interpolation method was used to determine Kaq. According to the evenly distributed
borehole data in the study area, the hydrogeological parameter Kaq determined by the
pumping test was taken as the basic data, and the ordinary kriging method was used for
spatial interpolation. Then, the Kaq value of each grid center point was extracted based on
the GIS data extraction function. Figure 5 shows the Kaq spatial interpolation results in the
study area. Kaq decreases from south to north in the HID and varies 3–13 m/day.
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Figure 5. Spatial interpolation results of the horizontal hydraulic conductivity of the aquifer (Kaq).

3.1.2. Determining Flq

The leaching efficiency of the aquifer (Flq) is defined as the ratio of the salt concentra-
tion of the water outflowing from the aquifer to the average concentration of the water in
the aquifer when saturated, and the values range from 0.01 to 2.0 in the SAHYSMOD model,
firstly, simulating the groundwater salt concentration based on the arbitrary values of 0.4,
0.6, 0.8, 1.0, 1.2, and 1.4 for aquifer zones. Then, the simulated values of the groundwater
salt concentration were compared with the measured values (Figure 6). Finally, the value
of Flq was determined according to the best-matched measured values of Flq.

Figure 6. Calibration of the leaching efficiency in the aquifer zone (Flq) for SAHYSMOD.
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The polygonal grids 29, 33, 140, and 183 were randomly selected to calibrate Flq. The
simulation results show that the measured groundwater salinity value was 0.8–1.2 of the
aquifer leaching rate, which is closer to 1.0. Thus, the Flq value of 1.0 was chosen and
used in all subsequent calculations. Yao et al. (2017) [26] found that the Flq of 1.2 in the
aquifer corresponded well with the actually measured data in the Jiangsu rainfed farmland
experimental area. Using SAHYSMOD, it was found that the higher the Flq value, the
higher the groundwater salinity. However, it is obvious that the groundwater depth and
drainage are insensitive to Flq [25].

3.1.3. Error Analysis

To evaluate the goodness of fit of the calculated and observed state variables, the mean
relative error (MRE), relative error (RE), and the root mean square error (RMSE) were used
in this study. These indicators [34,35] were defined as follows:

RMSE =

√
∑N

i=1(Pi−Oi)
2

N
(1)

MRE =
1
N ∑N

i=1
(O i−Pi)

Oi
×100% (2)

RE =
|Pi−Oi|

Oi
×100% (3)

where N is the total number of observations, Oi is the observed value for observation i, and
Pi is the calculated or simulated value for observation i(i = 1 to N).

The calibrated and validated SAHYSMOD model was applied to the following study.
The polygonal grids 14 and 29 were randomly selected to compare and analyze the simu-
lated and predicted groundwater depths of the grids, and the statistical index analysis is
shown in Table 3. The RMSE of the annual variation range of the groundwater depth in the
polygonal grids 14 and 29 was 0.17 and 0.29 m, respectively, and the MRE was 1.35% and
4.52%, respectively, for the calibration period. The RMSE of the annual variation range of
groundwater depth was 0.22 and 0.28 m, respectively, and the MRE was 8.14% and 4.36%,
respectively, for the validation period.

Overall, the simulated values of the annual average groundwater depth were close to
the measured values, while the values varied significantly for different seasons, which may
be due to autumn irrigation and freeze–thaw in the irrigation district. The freeze–thaw
period of the HID mainly occurs from late November to May of the following year. Part of
the autumn irrigation water begins to freeze in the upper soil layer in late November and
does not reach the aquifer; thus, part of the groundwater in season 3 is from the freeze–thaw
period of season 2 (autumn irrigation period) due to the later ablation. The model does not
consider this freeze–thaw problem and, therefore, the simulated groundwater depth value
in season 2 is slightly less than the measured value, and the simulated value in season 3 is
higher than the measured value.

The water discharge in each season is also greatly affected by autumn irrigation
and the freeze–thaw period. During the growth period, a part of the water discharge
may come from the freeze–thaw of the previous year’s autumn irrigation, which would
lead to the measured value of the water discharge in the growth period being greater
than the simulated value. Therefore, the annual drainage was adopted in this study for
comparative analysis (Table 4). The RE was between 0.30% and 9.08% for the calibration
and validation period.
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Table 3. Comparison of measured and simulated groundwater depth.

Polygonal
Number

Date
Groundwater Depth

Observation
(m)

Simulation
(m)

RMSE
(m)

MRE
(%)

Nodal
network 14

Calibration
period

(2007–2012)

Season 1 1.90 1.63 0.39 14.54
Season 2 1.15 0.94 0.55 18.54
Season 3 1.72 2.17 0.71 −26.30
Annual
average 1.59 1.61 0.17 −1.35

Validation
period

(2013–2016)

Season 1 1.77 1.70 0.11 3.94
Season 2 1.29 1.20 0.36 7.64
Season 3 1.61 2.16 0.72 −34.04
Annual
average 1.56 1.69 0.22 −8.14

Nodal
network 29

Calibration
period

(2007–2012)

Season 1 2.00 1.54 1.21 23.30
Season 2 0.96 0.93 0.27 2.58

Season 3 1.75 2.03 0.77 −15.88
Annual
average 1.57 1.50 0.29 4.52

Validation
period

(2013–2016)

Season 1 2.10 1.62 1.00 22.83
Season 2 1.17 1.13 0.45 4.22
Season 3 1.72 2.03 0.86 −18.08
Annual
average 1.67 1.59 0.28 4.36

Table 4. Comparison of measured and simulated annual discharge.

Date Observation
(108 m3 yr–1)

Simulation
(108 m3 yr–1) RE (%)

Calibration
period

2007 5.17 5.63 9.08
2008 6.28 6.12 2.52
2009 4.97 5.34 7.53
2010 5.52 5.68 3.02
2011 5.00 4.82 3.53
2012 7.30 7.28 0.24

Validation
period

2013 5.96 6.05 1.56
2014 7.45 7.47 0.30
2015 6.13 6.17 0.70
2016 6.25 6.20 0.76

Grid 196 is located near the outlet of the main drainage ditch in the irrigation district
and its conductivity was taken as representative for the drainage water salinity in the HID.
Table 5 shows statistics comparing simulated and measured drainage water salinity. The RE
was between 0.05% and 12.48% for the calibration period, and between 1.70% and 14.83%
for the validation period. As the drainage water salinity is greatly affected by external
interferences, there is a big difference between the simulated and measured values in some
of the years simulated. However, overall, the average RE of the drainage conductivity was
7.07% for the calibration and validation periods, i.e., within the acceptable range.

Generally, the model produced a good simulation effect after calibration and validation
and achieved a reliable verification for local conditions. The model could thus be applied
for further studies to simulate and analyze the water and salt dynamics.
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Table 5. Statistics comparing simulated and measured drainage water salinity.

Date Observation
(dS m–1)

Simulation
(dS m–1) RE (%)

Calibration
period

2007 4.45 4.36 2.11
2008 4.47 3.91 12.48
2009 4.47 4.47 0.05
2010 4.34 3.94 9.22
2011 3.94 4.08 3.54
2012 3.92 3.71 5.40

Validation
period

2013 3.86 3.79 1.70
2014 2.67 3.03 13.37
2015 3.28 3.46 5.62
2016 2.55 2.93 14.83

3.2. Scenario Setting

Scenario 1: Schemes for reducing total water diversion from the canal head.
Assuming that the current planting structure, the fraction of lined to the total length

of the canal, and field water-saving measures remain constant, four schemes were set to
reduce the total water diversion by –5%, –10%, –15%, and –20%, respectively.

Scenario 2: Schemes for improving the water efficiency of the canal system.
The water efficiency of the canal system ( ) reflects the utilization efficiency of water

from the canal head to the field at all levels of the canals. Keeping the total water diversion
and other conditions constant, η was increased by 10% and 20% (η = 0.592, and 0.646),
based on the current η in each sub-irrigation district.

Scenario 3: Different water-saving combination schemes.
In this scenario, it was assumed that the planting structure and field water-saving

measures remain constant, that is, the irrigation water quantity of the last canal entering
the field is constant (IAA and IAB inputs). Considering the total water diversion and
the water efficiency of the canal system, six different values of η were set, respectively;
that is, η was increased by 5.3%, 10.0%, 17.6%, 20%, and 25% based on the existing water
efficiency of canal system water-use coefficient. Accordingly, the total water diversion
could be reduced by 5.0%, 9.0%, 15.0%, 16.7%, and 20%, respectively. The five different
water-saving combination schemes are listed in Table 6.

Table 6. Combination of different water-saving schemes.

Scenario Water Efficiency of the
Canal System (η)

Total Water Diversion
from the Canal Head (W)

Scenario 1 0.566 (+ 5.3%) −5.0%
Scenario 2 0.592 (+ 10.0%) −9.0%
Scenario 3 0.632 (+ 17.6%) −15.0%
Scenario 4 0.646 (+ 20.0%) −16.7%
Scenario 5 0.673 (+ 25.0%) −20.0%

3.3. Scenario Simulation
3.3.1. Current Irrigation and Drainage Management Scheme

Figure 7 shows the changes in drainage quantity and drainage water salinity, and the
soil salinity dynamics of the cultivated land and salt wasteland under current water man-
agement conditions based on the calibrated and validated SAHYSMOD model. As can be
seen, the annual drainage volume of the total irrigation area first decreased and then gradu-
ally stabilized over the next 10 years, with average annual drainage of 531 million m3·yr–1.
However, the salt concentration of the drainage water increased only slightly.
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Figure 7. Changes in drainage quantity, drainage water salinity, soil salinity dynamics of cultivated land, and salt wasteland
under the existing irrigation and drainage mode.

Grids 44, 77, 109, 141, 155, and 179 were selected to represent different irrigation areas.
As shown in Figure. 7, the root zone salinity of grids 44, 77, and 109, which are located
in the middle and upper reaches of the irrigation area, slightly decreased or remained
basically stable for cultivated land. However, the root zone salinity of grids 141, 155, and
179, which are located in the lower reaches of the irrigation area, increased significantly.
This is consistent with the spatial variation of soil salinity in the HID. Salinization in the
lower reaches of the irrigation area is more serious due to poor drainage and shallower
groundwater depths. The root zone salinity of the cultivated land significantly fluctuated
seasonally, and the soil salinity value showed an obvious decreasing trend in the autumn
irrigation period. The salinity of the salt wasteland showed a continuously increasing
trend, which is consistent with the results of a previous study [15]. The water table of
the salt wasteland is deeper than in the neighboring irrigated land, with the result that it
attracts the groundwater from the irrigated area, thus the salts from the cultivated fields
are removed and collected in the wasteland, which becomes very salty.

3.3.2. Schemes for Reducing Total Water Diversion from the Canal Head

In this scenario, all other parameters remained constant and the influence of water
and salt dynamics on the total water diversion from the canal head was studied. Figure 8
shows that with a decrease in the total water diversion from the canal head, the annual
drainage volume decreased while the drainage water salinity visibly increased. When the
total water diversion was reduced by 20%, the annual drainage volume decreased from
531 million m3·yr–1 to 397 million m3·yr–1 and the drainage water salinity increased from
3.31 dS m–1 to 3.71 dS m–1 over the next 10 years. Furthermore, the soil salinity of the
cultivated land significantly fluctuated seasonally, and the salinity of the cultivated land
increased with the decrease in total water diversion during the same time. This is because,
under the condition that the current fraction of the lined to the total length of the canal
remains constant, the leakage of the canal system and the amount of water discharged
from the last channel into the field was reduced, which led to a decrease in groundwater
recharge and annual drainage volume. Accordingly, the amount of autumn irrigation
for salt leaching also decreased; thus, the desalination effect was not obvious. The soil
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salinity of the salt wasteland continuously increased and was less affected by the amount
of water diverted. After the end of the simulation period, taking grid 77 as an example,
the soil salinity of W1, W2, W3, and W4 increased by 31.26%, 39.04%, 50.16%, and 56.84%,
respectively. The annual drainage salinity of the four schemes increased by 15.48%, 18.43%,
21.47%, and 24.49%, respectively. The annual salt discharges are 89.22 t·yr–1, 85.11 t·yr–1,
82.13 t·yr–1, and 76.13 t·yr–1, respectively. From the point of view of salt discharge in the
irrigation area and soil salt control in the cultivated land, the W1 scenario is the best, but
this scheme needs the largest total water diversion from the canal head.

Figure 8. Variation of the annual drain discharge, drainage water salinity, and soil salinity dynamics of the cultivated land
and salt wasteland under different water diversion quantities.

3.3.3. Schemes for Improving the Water Efficiency of the Canal System

In this scenario, all other parameters were kept constant and different water efficiency
of the canal system was set. When the total water diversion from the canal head was fixed,
improving the water efficiency of the canal system reduced the leakage of the channel
and the amount of groundwater supplied through the channel, while the irrigation water
quantity of the last stage channel entering the field increased. Thus, the annual drainage
and groundwater depth are affected by the leakage of the canal system and field. Figure 9
shows that the annual drainage volume first decreased and then gradually stabilized with
the passage of time. In the early stage of the simulation, the drainage decreased greatly,
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while it gradually became stable in the later stage. This indicates that the leakage of the
canal system has a great influence on the drainage volume of the irrigation area, while the
influence of the drainage amount of the irrigation area from an increasing water efficiency
of the canal system decreased when η was improved to a certain extent. This is mainly
due to the gradual stabilization of the groundwater depth with the passage of time. The
drainage water salinity increased with the improvement of η because the high η resulted in
a small leakage from the irrigation canals and large irrigation water quantities entering
the field. A larger autumn irrigation leaching salt will lead to a higher drainage water
salinity. Simultaneously, the root zone salinity of the cultivated land significantly fluctuated
seasonally and decreased with the improvement of η in the same period due to the larger
autumn irrigation leaching salt. Thus, the water efficiency of the canal system has a great
influence on controlling the root zone salinity of the cultivated land. After the end of the
simulation period, taking grid 77 as an example, when the η = 10%, the soil salinity of
cultivated land increased by 7.8%, the annual drainage water salinity increased by 11.1%,
and the annual salt discharge was 95.15 t·yr–1; When η = 20%, the soil salinity of cultivated
land decreased by 6.5%, the annual drainage salinity increased by 17.1%, and the annual
salt discharge was 99.49 t·yr–1. From the point of view of salt discharge in the irrigation
area and soil salt control in cultivated land, the scenario of η = 20% is the best.

Figure 9. Variation of the annual drain discharge, drainage water salinity, and soil salinity dynamics of cultivated land and
salt wasteland under different water efficiency of the canal system.
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3.3.4. Different Water-Saving Schemes

As shown in the previous two sections, the leakage of water from the canal and the
irrigation water quantity of the last canal entering the field will change according to the
reduction of the total water diversion from the canal head and improvement of the water
efficiency of the canal system. In this scenario, the irrigation water quantity of the last
canal entering the field is constant, the η was improved, and the total water diversion
from the canal head was decreased. Figure 10 shows the variation in the water and salt
dynamics under different water-saving schemes. During the same period, the higher η

was, the greater the annual drain discharge became. Scenario 6 had the highest η and the
smallest annual drain discharge of 336 million m3·yr–1, while scenario 1 had the lowest η
and the largest annual drain discharge of 495 million m3·yr–1. It can also be seen that the
drainage water salinity increased with the increase of η at a constant field irrigation water
quantity. When the irrigation quota was constant, and the field leakage was also constant,
the annual drain discharge and groundwater depth were mainly affected by the leakage
of the canal system. It can be seen that the difference in soil salinity was relatively small
when the irrigation water quantity of the last canal entering the field was constant. Thus,
the field irrigation quota played a significant role in controlling the root zone salinity.

Figure 10. Variation of the annual drain discharge, drainage water salinity, and soil salinity dynamics of cultivated land and
salt wasteland under different water-saving schemes.

After the simulation period, the increment and decrement of soil salinity of the
cultivated land in the six schemes of F1, F2, F3, F4, F5, and F6 are +22.35%, +22.35%,
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+20.13%, +17.9%, +14.7%, and −5.78%, respectively. The increment and decrement of
annual drainage water salinity are +18.5%, +23.8%, +33.8%, +36.8%, +44.1%, and −53.2%,
respectively. The annual salt discharges in the irrigation area are 153.67 t·yr–1, 148.70 t·yr–1,
140.34 t·yr–1, 138.71 t·yr–1, 136.90 t·yr–1, and 135.45 t·yr–1. From the perspective of salt
control of cultivated land in the soil layer, F6 has the best effect, while from the perspective
of salt discharge in the whole irrigation area, F1 has the best effect. The main reason
is that the salt salinity of the irrigation area can only be discharged with drainage. The
drainage water salinity in scheme F1 is relatively small, but the total water diversion from
the canal head is large. Therefore, the annual salt discharge in the irrigation area is the
largest in scheme F1. The soil salinity of cultivated land is related to irrigation quantity,
groundwater level, and so on. When the total water diversion from the canal head is large,
the groundwater table will rise, and then the soil salinity can be accumulated easily in the
upper layer of soil under a high temperature and strong evapotranspiration. Therefore, the
soil salinity of the F1 scheme is higher.

3.3.5. Comparative Analysis of Different Schemes

Based on the actual situation of the irrigation district, the water diversion amount,
field irrigation water quantity, canal system leakage water volume, and annual drain
discharge under the current conditions were taken as the benchmark. The effects of the
different schemes were compared and analyzed and, based on the results, appropriate
water-saving strategies and measures are put forward. Table 7 presents the comparison of
the calculation results of the different water-saving schemes. In summary, based on the
current conditions, if the HID continues to save water in the future, and considering the
minimum ecological water demand (562 million m3·yr–1) and ecological water supplement
conditions to maintain the existing water surface area of Wuliangsuhai downstream of
the HID, the water diversion amount in the future could be reduced by up to 15%, that
is, the net water diversion amount of the HID needs at least 3663 million m3·yr–1, and the
maximum water-saving volume could reach 650 million m3·yr–1.

When the total amount of water diversion is decreased by less than 5% (low level),
5–10% (medium level), and 10–15% (high level) based on the current situation, the minimum
net water volume required in the HID is 4.094, 3.879–4.094, and 3.663–3.879 billion m3·yr–1,
respectively. The total water diversion from the head that can be saved is 215, 215–431, and
431–646 million m3·yr–1, respectively. The annual drain discharge would be 494–499, 460–499,
and 401–467 million m3·yr–1, and the ecological water supplement amount of Wuliangsuhai
would be 93–98, 93–132, and 126–191 million m3·yr–1, respectively. If the field irrigation
amount is kept unchanged, η needs to increase by 5.3% (0.566), 5.3–10% (0.566–0.592), and
10.0–17.6% (0.592–0.632), respectively. When the reduction of the total water diversion is not
large, the improvement of field water-saving technology or the adjustment of the crop planting
structure can be given priority to reduce field irrigation water. When the total water diversion
is greatly reduced, the field water-saving and canal lining engineering measures must be
considered comprehensively.
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Table 7. Comparison of calculation results of different water-saving schemes.

Scenarios
Total Water

Diversion from
the Canal Head

(108 m3·yr–1)

Leakages from
Irrigation Canal

(108 m3·yr–1)

Irrigation
Quantity

(108 m3·yr–1)

Drain Discharge
(108 m3·yr–1)

Salt
Concentration of

the Drainage
Water (ds·m–1)

Water
Replenishment

Required by
Wuliangsuhai
(108 m3·yr–1)

Amount of Salt
Introduced
(104 t·yr–1)

Amount of Salt
Discharge
(104 t·yr–1)

Amount of Salt
Accumulated

(104 t·yr–1)

Current conditions 43.10 19.91 23.19 5.31 3.31 0.61 258.59 94.88 163.71

Schemes for reducing total water
diversion from the canal head

W–5% 40.94 18.92 22.03 4.99 3.42 0.93 245.66 89.22 156.44
W–10% 38.79 17.92 20.87 4.67 3.42 1.26 232.73 85.11 147.62
W–15% 36.63 16.92 19.71 4.34 3.61 1.58 219.80 82.13 137.67
W–20% 34.48 15.93 18.55 3.97 3.70 1.96 206.87 76.37 130.50

Schemes for improving the water
efficiency of the canal system

η + 10% 43.10 17.59 25.51 5.23 3.42 0.70 258.59 95.15 163.44
η + 20% 43.10 15.27 27.82 5.15 3.70 0.77 258.59 99.49 159.10

Different water-saving combination
schemes

Scenario 1 40.94 17.75 23.19 4.94 3.51 0.98 245.66 91.99 153.67
Scenario 2 39.22 16.01 23.21 4.60 3.63 1.32 235.32 86.62 148.70
Scenario 3 36.63 13.46 23.18 4.01 3.93 1.91 219.80 79.46 140.34
Scenario 4 35.90 12.72 23.18 3.81 4.03 2.11 215.40 76.70 138.71
Scenario 5 34.48 11.29 23.19 3.36 4.25 2.56 206.87 69.97 136.90
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4. Conclusions

This paper proposes a method combining the SAHYSMOD model and GIS to predict
the water and salt dynamics in large regions under different water-saving schemes. The
model produced good simulation outputs after calibration (6 years) and validation (4 years)
and comprehensively considers regional spatial variability and simulates regional water
and salt dynamic changes under different irrigation and drainage management conditions.
Comparing and analyzing the effects of different water-saving scenarios, the following
conclusions were drawn.

Under existing irrigation and drainage conditions, the annual drain discharge will first
decrease and then gradually stabilize over the next 10 years, with average annual drainage
of 531 million m3·yr–1. However, the drainage water salinity will slightly increase. The soil
salinity in the middle and upper reaches of the irrigation district decreased slightly in the
simulation, while that in the lower reaches of the irrigation district increased significantly.

In the future, if the total water diversion from the canal head in the HID continues
to decrease, considering the minimum ecological water demand (562 million m3·yr–1)
and ecological water supplement conditions to maintain the existing water surface area
of Wuliangsuhai downstream of the HID, the water diversion amount in the future
could be reduced by up to 15%, that is, the net water diversion amount of the HID
needs at least 3663 million m3·yr–1, and the maximum water-saving volume could reach
650 million m3·yr–1. If the field irrigation amount remains unchanged, η can be increased
by 17.6% (0.632).

The influence of canal system leakage on the annual drain discharge is greater than
that of field leakage. For the fixed reduction rate of total water diversion, when the soil
salinity in the root zone of cultivated land meets the demand, in order to maximize the
amount of drainage water and drained salt of the whole irrigation area, the prioritized
measure should be given to reduce the amount of field irrigation quota, and then to improve
the water efficiency of the canal system.

Based on a comparative analysis of the different water-saving schemes, we conclude
that the amount of salt introduced, discharged, and accumulated in the irrigation district
decreases with a decrease in total water diversion, but the salt concentration of the drainage
water will increase, which will have an impact on the salinity of the Wuliangsuhai water
body. Although a certain amount of water can be saved through various measures, the
minimum ecological water demand required to maintain the existing water surface area
and salinity in Wuliangsuhai Lake downstream of the HID should be considered compre-
hensively, and the optimal water management scheme should be determined based on the
analysis of the actual ecological water supplement conditions in the HID.
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