
 

Assessing the Effect of Changing Ambient Air Temperature on Water 

Temperature and Quality in Drinking Water Distribution Systems 

 

 

Supplemental Material 

 

 

 

 

 

 

Yuchuan Lai and David A. Dzombak 

 

 

 

Department of Civil and Environmental Engineering 

Carnegie Mellon University 

Pittsburgh, PA 15213 

 



 1 

Table of Contents 

Section A. Ambient air temperature observations and projections ................................................. 2 

A-1. Historical ambient air temperature records......................................................................... 2 

A-2. The location-specific temperature projections using the G-ARIMA model ....................... 5 

A-3. Alternatives for acquiring future air temperature – downscaled GCM projections ............ 6 

A-4. Interpretation of ambient air temperature observations and projections ............................ 6 

Section B. Estimating drinking water temperature ......................................................................... 9 

Section C. Estimating temperature-related drinking water quality parameters ............................ 12 

C-1. Estimating chlorine bulk decay rate .................................................................................. 12 

C-2. Estimating TTHM formation ............................................................................................ 14 

C-3. Estimating bacterial activity ............................................................................................. 16 

References ..................................................................................................................................... 19 

 



 2 

Section A. Ambient air temperature observations and projections 

The ambient air temperature observations and projections utilized in this work include the city-

level historical observations compiled in Lai and Dzombak (2019) and location-specific 

temperature projections using an integrative technique with the autoregressive integrated moving 

average (ARIMA) model and global climate model (GCM) simulations (i.e., G-ARIMA model) 

developed in Lai and Dzombak (2021). General background information about the historical 

observations and projections is provided in this section. Further details and descriptions about the 

observations and the projections can also be found in previous work (Lai and Dzombak 2019, 

2020, 2021). Alternatively, it is possible to apply downscaled GCM projections (e.g., Mearns et 

al. 2017; Pierce et al. 2014) for assessing future temperature changes. While some background 

information about the GCM projections is provided in this section, downscaled climate model 

projections and use of other regional climate projections were not applied in this work as the 

main focus was to assess the effect of air temperature change on water temperature and water 

quality in drinking water distribution systems (DWDS). 

A-1. Historical ambient air temperature records 

The historical air temperature records employed for the analyses in this work were obtained from 

Lai and Dzombak (2019), where long-term historical city-level observations starting as early as 

1870s were compiled for 93 U.S. cities, including Washington, D.C., from U.S. federal agency 

sources. Two cities (Kansas City, MO and Marquette, MI) were removed the analyses because of 

weather station changes during critical periods of assessment for the particular analyses 

conducted, as will be further discussed. The compiled historical records for the cities were 

produced by combining records from local weather stations in each city based on the criteria 
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described in Owen et al. (2006), as cities can have multiple weather stations with different spatial 

locations during their historical periods of record [discussions about the limitations of such 

compilation are provided in Lai and Dzombak (2019)]. The original historical data used in the 

compiled point observations were from the Global Historical Climatology Network-daily 

database (GHCN-D; Menne et al. 2012). 

The list of the 93 U.S. cities is provided in Table S1. These 93 cities were selected based on the 

length of existing temperature records, i.e., a data record starting earlier than 1900 and the 

percentage of years with missing values (a year was considered as “missing” if more than 10 

daily data for that year are missing) during the period of record is below 5%.  

Table S1. List of the U.S. cities used for the analyses. The IDs belong to the current weather stations 

for the individual cities and were assigned by GHCN. 

# Name GHCN ID Latitude Longitude # Name GHCN ID Latitude Longitude 

1 Abilene USW00013962 32.4106 -99.6822 48 Lander USW00024021 42.8153 -108.7261 

2 Albany USW00014735 42.7431 -73.8092 49 Lansing USW00014836 42.7803 -84.5789 

3 Albuquerque USW00023050 35.0419 -106.6156 50 Los Angeles USW00093134 34.0511 -118.2353 

4 Amarillo USW00023047 35.2333 -101.7089 51 Louisville USW00093821 38.1811 -85.7392 

5 Atlanta GA USW00013874 33.63 -84.4417 52 Lynchburg USW00013733 37.3208 -79.2067 

6 Augusta USW00003820 33.3644 -81.9633 53 Madison USW00014837 43.1406 -89.3453 

7 Baltimore USW00093721 39.1836 -76.6542 54 Marquette USW00094850 46.5311 -87.5483 

8 Bismarck USW00024011 46.7708 -100.7603 55 Memphis USW00013893 35.0564 -89.9864 

9 Boise USW00024131 43.5667 -116.2406 56 Meridian USW00013865 32.3347 -88.7442 

10 Boston USW00014739 42.3606 -71.0106 57 Middletown 

Harrisburg 

USW00014711 40.1936 -76.7633 

11 Cedar Rapids USW00014990 41.8833 -91.7167 
 

   

12 Charlotte USW00013881 35.2236 -80.9553 58 Milwaukee USW00014839 42.955 -87.9044 

13 Chattanooga USW00013882 35.0311 -85.2014 59 Minneapolis USW00014922 44.8831 -93.2289 

14 Cheyenne USW00024018 41.1519 -104.8061 60 Mobile USW00013838 30.6264 -88.0681 

15 Chicago USW00094846 41.995 -87.9336 61 Moline USW00014923 41.4653 -90.5233 

16 Colorado Springs USW00093037 38.81 -104.6883 62 Montgomery USW00013895 32.2997 -86.4075 

17 Columbia SC USW00013883 33.9486 -81.1186 63 Nashville USW00013897 36.1189 -86.6892 

18 Columbus OH USW00014821 39.9914 -82.8808 64 New York USW00094728 40.7789 -73.9692 

19 Concord USW00014745 43.1953 -71.5011 65 Norfolk VA USW00013737 36.9033 -76.1922 

20 Concordia USW00013984 39.5514 -97.6508 66 North Platte USW00024023 41.1214 -100.6694 

21 Corpus Christi USW00012924 27.8 -97.4 67 Oklahoma City USW00013967 35.3889 -97.6006 

22 Dallas Fort Worth USW00003927 32.8978 -97.0189 68 Omaha USW00014942 41.3103 -95.8992 

23 Denver USW00003017 39.8328 -104.6575 69 Pensacola USW00013899 30.4781 -87.1869 

24 Des Moines USW00014933 41.5339 -93.6531 70 Philadelphia USW00013739 39.8683 -75.2311 

25 Detroit USW00094847 42.2314 -83.3308 71 Phoenix USW00023183 33.4278 -112.0039 

26 Dodge City USW00013985 37.7608 -99.9683 72 Pittsburgh USW00094823 40.4847 -80.2144 

27 Dubuque USW00094908 42.3978 -90.7036 73 Portland ME USW00014764 43.6497 -70.3003 

28 Duluth USW00014913 46.8369 -92.2097 74 Raleigh USW00013722 35.8922 -78.7819 

29 Eau Claire USW00014991 44.8664 -91.4878 75 Rochester NY USW00014768 43.1167 -77.6767 

30 Erie USW00014860 42.08 -80.1825 76 Roswell USW00023009 33.3075 -104.5083 
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# Name GHCN ID Latitude Longitude # Name GHCN ID Latitude Longitude 

31 Eureka USW00024213 40.8097 -124.1603 77 Sacramento USW00023271 38.5553 -121.4183 

32 Evansville USW00093817 38.0442 -87.5206 78 Salt Lake City USW00024127 40.7781 -111.9694 

33 Fargo USW00014914 46.9253 -96.8111 79 San Antonio USW00012921 29.5442 -98.4839 

34 Flagstaff USW00003103 35.1442 -111.6664 80 Sault Ste Marie USW00014847 46.4794 -84.3572 

35 Fort Smith USW00013964 35.3331 -94.3625 81 Savannah USW00003822 32.13 -81.21 

36 Fresno USW00093193 36.78 -119.7194 82 Seattle USW00024233 47.4444 -122.3139 

37 Grand Junction USW00023066 39.1342 -108.54 83 Shreveport USW00013957 32.4506 -93.8411 

38 Grand Rapids USW00094860 42.8939 -85.5447 84 Sioux Falls USW00014944 43.5878 -96.7289 

39 Green Bay USW00014898 44.4983 -88.1111 85 Spokane USW00024157 47.6217 -117.5281 

40 Havre USW00094012 48.5428 -109.7633 86 Springfield IL USW00093822 39.8447 -89.6839 

41 Helena USW00024144 46.6056 -111.9636 87 Springfield MO USW00013995 37.2353 -93.4003 

42 Houston USW00012960 29.98 -95.36 88 Tampa USW00012842 27.9619 -82.5403 

43 Huron USW00014936 44.3981 -98.2231 89 Topeka USW00013996 39.0725 -95.6261 

44 Indianapolis USW00093819 39.7075 -86.2803 90 Valentine USW00024032 42.8783 -100.55 

45 Jacksonville USW00013889 30.4844 -81.7019 91 Washington D.C. USW00013743 38.8483 -77.0342 

46 Kansas City USW00003947 39.2972 -94.7306 92 Williston USW00094014 48.1739 -103.6367 

47 La Crosse USW00014920 43.8789 -91.2528 93 Winnemucca USW00024128 40.9017 -117.8081 

 

After preliminary analyses, two cities (Kansas City, MO and Marquette, MI) were removed from 

the results presented in Figures 4 and 7 in the main text (consequently, 91 cities were included in 

the analyses), because of the compilation of the records for the two cities. For many of the 93 

cities listed in Table S1, the records were compiled from different weather stations (Lai and 

Dzombak 2021) and the most recent, active weather stations for the cities were relocated to the 

local airports in the 1940s. The analyses comparing the 1951-1970 and 2001-2020 level are 

therefore not affected by the station changes. However, the two cities (Kansas City, MO and 

Marquette, MI) had their stations changed in the 1970s, which leads to a sudden apparent 

decrease of temperature in the 1970s (because the weather stations were moved to less urban 

locations), causing the temperature estimates of the 2001-2020 level to be lower than the 1951-

1970 level. These two cities were therefore removed from the analysis results presented in the 

main text to avoid confusion. 
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A-2. The location-specific temperature projections using the G-ARIMA model 

The G-ARIMA model is an integrative technique to provide location-specific temperature and 

precipitation projections for the studied cities. The G-ARIMA model (Lai and Dzombak 2021) 

combines the ARIMA model and the results from the GCMs, which are the physics-based 

climate simulation models that integrate relevant physical processes such as energy balance 

considerations and atmospheric circulations (Eyring et al. 2016; Taylor et al. 2012). The ARIMA 

model is a common time series forecasting technique that can be used to produce forecasts based 

on past observations (Box and Jenkins 1970; Montgomery et al. 2016). The ARIMA model can 

be directly used to obtain near-term forecasts for the studied cities and the ARIMA-based city-

level statistical air temperature forecasts were produced by fitting and forecasting the city-level 

historical temperature observation series (Lai and Dzombak 2020). While the ARIMA model is a 

statistical forecasting technique and is consequently limited by a near-term forecasting period 

(mainly 2-20 years), the G-ARIMA model provides an option of incorporating the GCM-

projected climate change signal to the ARIMA model in order to facilitate regional temperature 

and precipitation projections (Lai and Dzombak 2021). The G-ARIMA model was developed as 

an alternative approach to acquire regional climate projections relative to the use of downscaled 

GCM projections (Lai and Dzombak 2021) and provides an alternative option to bring climate 

model projection results to the regional observation level. Further technical details and 

performance assessment for the ARIMA and the G-ARIMA models are provided in Lai and 

Dzombak (2020) and Lai and Dzombak (2021). 

The G-ARIMA daily model, similar to the ARIMA daily model developed in Lai and Dzombak 

(2020), was used to acquire statistical city-level temperature simulations for the projected period 

2051-2070. Historical observations up to the end of 2020 were used to fit the G-ARIMA daily 
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model and 50 sets of daily temperature projections were produced up to 2070. Median values 

were calculated among the 50 sets of daily temperature simulations for the period 2051-2070 to 

provide point forecasts (as average projection values) of ambient air temperature for estimating 

future water temperature in the 91 cities. 

A-3. Alternatives for acquiring future air temperature – downscaled GCM projections 

Although not applied in this work, it is worth noting that a common approach to obtain regional 

air temperature projections is to use GCMs and downscaling approaches for translating global 

projections to regional or city levels. The results of GCMs can be downscaled to regional scale 

with various downscaling methods, e.g., using the localized constructed analogs method or the 

LOCA projection (Pierce et al. 2014). The LOCA projections have been recommended for 

acquiring station-level projections (Kilgore et al. 2019) and have been utilized in the fourth 

National Climate Assessment report (USGCRP 2017). While it is informative and important to 

use other regional air temperature projections to assess future air temperature changes (and 

subsequent water temperature and water quality changes) in addition to the G-ARIMA 

projections, such work was not carried out, as the focus of this study was to evaluate the general 

effect of air temperature changes on water temperature and water quality in DWDS (instead of 

assessing the variations in future air temperature). The G-ARIMA projections were used because 

they were provided by fitting and projecting the utilized historical city-level observations and 

consequently better align with the historical observations. 

A-4. Interpretation of ambient air temperature observations and projections 

The spatial distribution of the estimated water temperature in Figure 4 of the main text and the 

estimated historical and future changes in water temperature and water quality parameters in 
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Figures 4 and 7 of the main text generally reflect the results of the air temperature observations 

and the G-ARIMA projections. As also discussed in the main text, the consistency between air 

temperature and water temperature is because that the estimated changes (in terms of changes on 

an annual average basis) in water temperature of DWDS are equal to the changes in air 

temperature based on the National Renewable Energy Laboratory (NREL) water temperature 

estimation model. In addition to the discussions presented for the results of estimated changes in 

water temperature and water quality parameters in Figures 4 and 7 of the main text, some further 

discussion of the utilized historical observations and G-ARIMA projections (including their 

limitations) are provided in this section. 

Among the 91 assessed cities, some cities, in contrast to many other cities, exhibit relatively 

stationary or slightly decreasing water temperature and consequent small changes in water 

quality parameters) between the two historical levels as presented Figures 4 and 7 of the main 

text. Such results are related to the location-specific historical air temperature changes at the 

assessed individual cities and possibly limitations of the observation data. As discussed in Lai 

and Dzombak (2019), although air temperature exhibits overall increases for many cities in the 

U.S., some cities exhibit relatively stationary or slightly decreasing historical temperature 

records, e.g., see part (b) of Figure 4 in the main text. As discussed previously, weather station 

changes for the assessed cities can affect the results as well. Although many cities have changed 

their local weather stations around 1940s and the results in the analyses conducted here were 

thus not affected by the station changes, interpretation of the results presented in the Figures 4 

and 7 of the main text for specific cities is subject to some limitations and uncertainties. As the 

goal of these analyses was to provide an overview of changes at different geographical areas and 
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climate conditions as mentioned in the main text, additional and more detailed analyses are need 

to evaluate particular cities.  

The G-ARIMA model provided temperature projections based on the compiled city-level 

historical observations and GCM-projected trend and is therefore subject to the limitations of the 

GCMs as well. Specifically, the G-ARIMA model can provide projections with substantial 

uncertainty, as the GCM climate change signal can exhibit a different historical trend from the 

city-level historical observations (Lai and Dzombak 2021). While an overview of possible future 

projected changes across the different regions and cities are presented in Figures 4 and 7 of the 

main text, evaluation of the specific cities is subject to limitations and uncertainties. Further 

detailed analyses including the validation using the local water temperature measurements are 

needed to evaluate particular locations presented in Figures 4 and 7 of the main text. 

Although not assessed and presented in this work, the G-ARIMA projections for the period 

2051-2070 would likely trend lower than the climate projections from the GCMs (e.g., the 

LOCA projections as described previously). As recent historical observations exhibit a limited 

increasing trend during the period 1998-2012 (Flato et al. 2014) and some cities may exhibit a 

less increasing or possibly decreasing trend for the recent records, the G-ARIMA model can 

adjust and reduce the GCM-projected future trend based on the recent historical trend exhibited 

in the city-level observations (Lai and Dzombak 2021). The GCMs, on the other hand, generally 

provide higher-than-observed temperature projections for the period 1998-2012 (Flato et al. 

2014) and thus the use of these climate model projections are subject to limitations as well. To be 

consistent with the use of the city-level observation data, the G-ARIMA projections were used to 

provide future air temperature estimation instead of using the downscaled climate model 

projections.  
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Section B. Estimating drinking water temperature 

As described and presented in Table 1 of the main text, the NREL model (Hendron and 

Engebrecht 2010) was utilized in this work to estimate the water temperature in drinking water 

distribution systems (DWDS). The NREL model of daily water temperature estimation is 

provided as (Burch and Christensen 2007; Hendron and Engebrecht 2010): 

𝑇𝑚𝑎𝑖𝑛𝑠,𝑑𝑎𝑦# = 𝑇𝑎𝑚𝑏,𝑎𝑣𝑔 + ∆𝑇𝑜𝑓𝑓𝑠𝑒𝑡 + ∆𝑇𝑚𝑎𝑖𝑛 ∙ 𝑠𝑖𝑛⁡(
2𝜋

365
(𝑑𝑎𝑦#− 15 − 𝑙𝑎𝑔) −

1

2
𝜋) (S1) 

where 𝑇𝑚𝑎𝑖𝑛𝑠,𝑑𝑎𝑦# is the daily water temperature estimate (ºC) in the distribution system (note 

that the original model is in ºF); 𝑇𝑎𝑚𝑏,𝑎𝑣𝑔 is the annual average air temperature (ºC) at the 

location; ∆𝑇𝑜𝑓𝑓𝑠𝑒𝑡  is an offset value to adjust annual average air temperature (also typically used 

for soil temperature estimation and given as 6ºF or 3.33ºC in this case by Hendron and 

Engebrecht 2010); the combination of⁡𝑇𝑎𝑚𝑏,𝑎𝑣𝑔 and ∆𝑇𝑜𝑓𝑓𝑠𝑒𝑡  can be regarded as an estimate of 

surface soil temperature; ∆𝑇𝑚𝑎𝑖𝑛 is the adjustment of water temperature in the drinking water 

distribution mains considering buried depths of pipelines; and the sinusoid term in Eq.(S1) is 

used for generating the observed sinusoid shape of daily temperature which is typically used for 

estimating soil temperature. 

Soil temperature is different at different depths and, as distribution mains have to be buried 

below frost lines (Rajani et al. 2012), the buried depths of drinking water pipelines are different 

across different locations. The NREL model utilizes the annual average air temperature at a 

particular location as a surrogate for the buried depth of the water mains at the location (e.g., the 

lower the annual average temperature, the colder the climate, and the deeper the buried depth). 

Thus, the NREL model replaces the soil depth parameter in a typical soil temperature equation 

with an input of annual average air temperature (Burch and Christensen 2007). The annual 
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average temperature is compared to a reference temperature of 44 ºF or 6.67 ºC, and thus for the 

∆𝑇𝑚𝑎𝑖𝑛 and 𝑙𝑎𝑔 terms are calculated as: 

∆𝑇𝑚𝑎𝑖𝑛 = [𝑘1 + 𝑘2(𝑇𝑎𝑚𝑏,𝑎𝑣𝑔
ℎ𝑖𝑠𝑡 − 6.67⁡º𝐶)]

∆𝑇𝑎𝑚𝑏,𝑚𝑎𝑥

2
 

  𝑙𝑎𝑔 = ⁡𝑘3 − 𝑘4(𝑇(𝐹)𝑎𝑚𝑏,𝑎𝑣𝑔
ℎ𝑖𝑠𝑡 − 6.67⁡º𝐶) (S2) 

where 𝑇𝑎𝑚𝑏,𝑎𝑣𝑔
ℎ𝑖𝑠𝑡  is the fixed historical annual average temperature of the region (ºC), ∆𝑇𝑎𝑚𝑏,𝑚𝑎𝑥 is 

annual maximum difference in monthly average temperature (ºC; calculated as the highest 

monthly average temperature minus the lowest monthly average temperature), and the four 

coefficients k1, k2, k3, and k4 are given as 0.4, 0.01, 35, and -1.0, respectively (Burch and 

Christensen 2007). Because the annual average air temperature is used in the NREL model rather 

than the buried depths of water mains, and buried depths for an existing system do not change, 

the long-term historical air temperature records (from the start of record to 2020) were used to 

estimate the fixed historical annual average temperature values 𝑇𝑎𝑚𝑏,𝑎𝑣𝑔
ℎ𝑖𝑠𝑡 . 

During the calibration of water temperature for the seven locations (see Figure 2 of the main 

text), the four coefficients k1, k2, k3, and k4 and ∆𝑇𝑜𝑓𝑓𝑠𝑒𝑡  values were adjusted using a relatively 

simple numeric optimization algorithm [the Broyden–Fletcher–Goldfarb–Shanno algorithm 

(Nocedal and Wright 2006); by minimizing the root mean square errors] to provide better 

estimation of DWDS water temperature. After calibration, the four coefficients k1, k2, k3, k4 and 

∆𝑇𝑜𝑓𝑓𝑠𝑒𝑡  values are 0.4, 0.032, 35, -1.7, and 3.4, respectively, for the analyses of the Washington 

D.C. DWDS. The root mean square errors were calculated as the errors between the monthly or 

weekly water temperature measurements and the corresponded monthly or weekly average water 

temperature estimates. 
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The local weather stations used for the ambient air temperatures to obtain water temperature 

estimates at the 12 residential sites from Abrams and Shedd (1996) are listed in Table S2. The 

site IDs are consistent to the original IDs used in Abrams and Shedd (1996).  

Table S2. The list of the 12 residential sites with water temperature measurements obtained from 

Abrams and Shedd (1996) and the corresponding weather stations used for air temperature records 

to obtain water temperature estimates. 

Sites Locations 

Site ID in 

Abrams and 

Shedd (1996) 

State GHCN ID 

Latitude of 

the weather 

station 

longitude 

of the 

weather 

station 

Weather station 

Hartford CT Hartford A1 CT USW00014740 41.9381 -72.6825 
HARTFORD BRADLEY 

INTL AP 

Tulsa OK (Site 1) Tulsa L1 OK USW00013968 36.1994 -95.8872 TULSA INTL AP 

New Britain CT 
New 

Britain 
L2 CT USW00014740 41.9381 -72.6825 

HARTFORD BRADLEY 

INTL AP 

Kennesaw GA Kennesaw S1 GA USC00092485 33.9881 -84.7475 DALLAS 7 NE 

Ellettsville IN Ellettsville S3 IN USC00120784 39.1742 -86.5214 
BLOOMINGTON 

INDIANA UNIV 

Piedmon OK Piedmon S4 OK USW00013967 35.3889 -97.6006 
OKLAHOMA CITY WILL 

ROGERS AP 

Tulsa OK (Site 2) Tulsa S5 OK USW00013968 36.1994 -95.8872 TULSA INTL AP 

Broken Arrow OK 
Broken 

Arrow 
S6 OK USW00013968 36.1994 -95.8872 TULSA INTL AP 

Tulsa OK (Site 3) Tulsa S7 OK USW00013968 36.1994 -95.8872 TULSA INTL AP 

Tulsa OK (Site 4) Tulsa S8 OK USW00013968 36.1994 -95.8872 TULSA INTL AP 

Texarkana AR Texarkana S9 AR USW00013977 33.4536 -94.0075 
TEXARKANA WEBB 

FLD 

Middletown CT Middletown S13 CT USW00014740 41.9381 -72.6825 
HARTFORD BRADLEY 

INTL AP 
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Section C. Estimating temperature-related drinking water quality parameters 

Estimation of historical and projected changes in the three temperature-related water quality 

parameters was based on the equations listed in Table 1 of the main text. Additional background 

information and details about the individual water quality parameters are discussed in this 

section. It should be noted that the methods for calculating the water quality parameters depend 

on different studies and both kinetic and empirical predictive models have been used for different 

parameters. The utilized models in this work for estimating chlorine decay, TTHM formation, 

and bacterial activity were selected based on their general applicability for multiple locations. 

Considering that the TTHM estimation model is an empirical predictive model and the estimated 

parameter coefficients are likely location-specific (in this case for Washington D.C.), the 

analyses with the 91 cities thus did not include assessment of the TTHM concentrations as also 

described in the main text. 

C-1. Estimating chlorine bulk decay rate 

Chlorine decay in DWDS is typically modeled as the addition of bulk decay and decay on the 

pipe wall, as also described in previous work such as Rossman et al. (1994). A commonly 

utilized modeling approach for chlorine bulk decay rate is a first-order decay model, while 

second-order models (Brown et al. 2011) and other work (Fisher et al. 2011) provide alternatives. 

Chlorine bulk decay rate can be correlated with initial chlorine concentrations, total organic 

carbon (TOC), and water temperature, and these parameters have been used in the literature 

(sometimes not all of them were included for a particular study) for the estimation of bulk decay 

rate (Brown et al. 2011). The temperature effect on bulk decay rate was assessed in this work. 

While the decay on the pipe wall can be affected by water temperature [with respect to biofilm 
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activity (Fisher et al. 2017)], such a temperature effect was not explicitly assessed because 

DWDS-specific information is needed. 

A typical expression for a first-order bulk decay model was utilized in this work, involving the 

use of TOC and water temperature information (Arevalo 2007; Powell et al. 2000). The 

expression for the bulk decay rate and chlorine residual (the chlorine decay on the wall is not 

considered in this case) are: 

𝐶𝑡 = 𝐶0 ∙ 𝑒
−𝑘𝑏𝑡 

  𝑘𝑏 = ⁡𝐹 ∙ 𝑇𝑂𝐶 ∙ 𝑒
−

𝐸

𝑅(𝑇+273) (S3) 

where 𝐶𝑡 is the chlorine concentration at time t or chlorine residual (mg/L), 𝐶0 is the initial 

chlorine concentration (mg/L), 𝑘𝑏  is the first-order bulk decay rate (in units such as hr-1 or day-1), 

𝐹 is a frequency factor, 𝐸 is the activation energy, 𝑅 is the ideal gas constant [F and E/R values 

were estimated as 1.8106 L/mg·hr and 6050ºC from a study of different utilities conducted by 

American Water Works Association (Arevalo 2007; Powell et al. 2000; Vasconcelos et al. 1996)], 

and T is water temperature (ºC). 

In addition to the use of Eq.(S3) for assessing chlorine residual when measurements for other 

parameters are available, the effect of temperature on bulk decay rate in Eq.(S3) follows the 

Arrhenius equation and the rate of chlorine bulk decay change for two different temperatures can 

be related [if TOC concentration stays at the same in Eq.(S3)] by: 

  𝑙𝑛⁡(
𝑘𝑏,𝑇2

𝑘𝑏,𝑇1
) =

𝐸

𝑅
(

1

𝑇1+273
−

1

𝑇2+273
) (S4) 

where 𝑘𝑏,𝑇1 and 𝑘𝑏,𝑇2 are bulk decay rates at temperature 𝑇1 and 𝑇2. 



 14 

For the estimation of chlorine residuals in Washington D.C., Eq.(S3) was used with the available 

monthly measurements of TOC concentrations. Only bulk decay was considered for estimating 

the chlorine residuals. The analyses of changes in chlorine bulk decay rates with water 

temperature estimates for the 91 cities were based on Eq.(S4), in order to assess directly the 

temperature effect on the chlorine bulk decay rates.  

C-2. Estimating TTHM formation 

A substantial number of studies have assessed and provided predictive models for disinfection 

byproduct (DBP) concentrations such as total trihalomethanes (TTHM) (Ged et al. 2015) and 

research is still on-going for improving the predictive capability of these models. Many empirical 

predictive regression models have been developed to provide quantitative estimates of TTHM 

(Brown et al. 2011), although these models are subject to some challenges (Chowdhury et al. 

2009). In general, TTHM formation is determined by factors including chlorine dosage, 

temperature, reaction time (water age) in treatment processes and distribution networks, organic 

content (typically using surrogate parameters like TOC and ultraviolet absorbance UV254), pH, 

and bromide concentrations in the water source (Brown et al. 2010). Due to the availability of  

monthly measurements of water quality parameters from the Washington D.C. Aqueduct 

(USACE 2019), the following empirical predictive model was utilized for predicting TTHM 

concentrations in the treated water for the two treatment plants of Washington D.C.: 

  𝑇𝑇𝐻𝑀 = 𝑘 ∙ 𝐶0
𝑎 ∙ 𝑇𝑏 ∙ 𝑇𝑂𝐶𝑐 ∙ 𝑝𝐻𝑑 ∙ 𝐵𝑟𝑒 (S5) 

where 𝐶0 is the chlorine concentration in finished water; T is the temperature of the treated 

water; TOC, pH, and Br (bromide concentration) are measurements for the water source; and a-e 

and k are reaction constants determined by model fitting of measurements. 
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Eq.(S5) was then utilized by fitting the monthly measurements of chlorine concentrations in the 

treated water, as well as TOC, pH, and bromide concentrations of the water source to predict the 

TTHM concentrations in the treated water. The values of a to e and k for the analyses of 

Washington D.C. DWDS are: 0.64, 0.76, 0.85, 1.30, 1.89, and 0.027, respectively. Water 

temperature observations and water temperature estimates were used to provide a separate 

prediction, as described in main text. 

If other parameters stay the same and reaction constant b is known, it is also possible to derive 

Eq.(S5) to estimate the effect of temperature on TTHM: 

  𝑙𝑛 (
𝑇𝑇𝐻𝑀𝑇2

𝑇𝑇𝐻𝑀𝑇1
) = ⁡𝑏 ∙ 𝑙𝑛 (

𝑇2

𝑇1
) (S6) 

The reaction constant b is potentially system specific and varies among reported studies (Brown 

et al. 2011; Chowdhury et al. 2009). An evaluation of different existing predictive models for 

TTHM with a common TTHM dataset by Ged et al. (2015) suggested a value of 0.48 for b from 

one of the most accurate TTHM models. In comparison, the values of b from the fitting of 

monthly measurements in Washington D.C. with Eq.(S5) were estimated as 0.76, indicating a 

greater effect from water temperature than the model identified by Ged et al. (2015). 

Considering that different parameters such as TOC and the reaction constants are subject to great 

spatial variation (Brown et al. 2011) and the empirical predictive models of Eq.(S5) and Eq.(S6) 

with the estimated coefficients may not be applicable for other locations or systems, the effect of 

water temperature on TTHM formation can also be assessed with an Arrhenius relationship with 

temperature as suggested by an early study (Kavanaugh et al. 1980). Specifically, Kavanaugh et 

al. (1980) showed that a 10ºC increase of temperature (within 10-30ºC) doubles the rate of 

TTHM formation – notably with a similar effect on chlorine bulk decay [if a 10ºC increase in 



 16 

water temperature leads to a doubling of chlorine decay rate, the E/R value is 5750 ºC for 

Eq.(S4), which is similar to the 6050ºC utilized]. Therefore, although changes in the rate of 

TTHM formation were not assessed for the 91 cities, it is expected that the percent changes in 

the TTHM formation rates will be similar to the percent changes in chlorine bulk decay rate as 

presented in Figure 7 of the main text. 

C-3. Estimating bacterial activity 

Both empirical predictive models and mechanistic models are available for describing the 

bacterial activity, as discussed in the main text and by studies such as Chowdhury (2012). In the 

empirical predictive models, the correlation coefficients between water temperature and bacterial 

activity vary in different studies (Chowdhury 2012) and are potentially location specific. These 

empirical models were thus not utilized for this study.  

A commonly utilized expression for describing the temperature effect on bacterial activity in 

mechanistic models [such as Servais et al. (1995), Dukan et al. (1996), and Digiano and Zhang 

(2004)] was used. This expression of temperature effect on bacterial activity was proposed in 

Billen et al. (1992) [based on the Monod equation] and is provided as (assuming no other effect 

on bacterial activity such as the suppressing effect from chlorine): 

  𝐴𝑐𝑡(𝑇) = 𝐴𝑐𝑡(𝑇𝑜𝑝𝑡) 𝑒𝑥𝑝 (−(
𝑇𝑜𝑝𝑡−𝑇

𝑇𝑜𝑝𝑡−𝑇𝑖
)
2

) (S7) 

where Act(T) is bacterial activity at temperature T (ºC), Topt is the optimal temperature for the 

bacteria community, and Ti is a shape parameter. Both Topt and Ti can be estimated with 

experiments. When both physiological direct response to sudden changes and gradual adaptation 
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of a bacteria community to seasonal changes of temperature are considered, a correlation of the 

two coefficients with water temperature can be utilized (Billen et al. 1992): 

𝑇𝑜𝑝𝑡 = 40 − (20 − 𝑇)/2 

  𝑇𝑖 = 18 − (20 − 𝑇)/2 (S8) 

Eq.(S7) was consequently utilized to provide estimates of bacterial activity for Washington D.C. 

and the other 90 cities. 

Temperature effects on water quality can be enhanced considering the interactions among 

different parameters, such as chlorine decay, DBP formation, and bacterial activity. As indicted in 

Eq. (S5), chlorine dosage and chlorine residual are key parameters for determining the TTHM 

formation and as well as limiting bacterial activity (Digiano and Zhang 2004). To provide an 

assessment with consideration of both temperature effects on bacterial activity and chlorine 

decay, the following expression from the previously mentioned mechanistic models [such as 

Servais et al. (1995) and Digiano and Zhang (2004)] was utilized to describe the chlorine effect 

on bacterial activity: 

 𝐴𝑐𝑡(𝐶𝑡) = 𝐴𝑐𝑡(0) 𝑒𝑥𝑝 (−(
𝐶𝑡−𝐶𝑚

𝑑𝐶
)) ; ⁡𝑓𝑜𝑟⁡𝐶𝑡 > 𝐶𝑙𝑚  (S9) 

where Act(Ct) is the bacterial activity under chlorine concentration of Ct at time t, Act(0) is the 

bacterial activity unsuppressed by chlorine with Cm as a threshold concentration, and dC is a 

coefficient for describing the decrease of bacterial activity with the increase of chlorine 

concentration [Cm and dC were given as 0.03 and 0.2 mg/L for suspended bacteria, respectively, 

or 0.1 and 0.25 for fixed bacteria (Servais et al. 1995)]. 
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Eq.(S9) was consequently utilized to estimate the bacterial activity considering both changes in 

water temperature and chlorine residual levels for a hypothetical study location (with a constant 

water age of 400 hours as an extreme case) in Washington D.C. as presented in the part (d) of 

Figure 6 in the main text. 
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