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Abstract: While the characteristics and origin of drusy calcite cement in carbonate deposits is
well constrained in the literature, little attention is paid to drusy dolomite cement. Petrographic
observations, stable isotopes, and fluid-inclusion microthermometry suggest that drusy dolomite
cement in Permo-Triassic conglomerate/breccia dolostone beds in northern United Arab Emirates
has precipitated as cement and not by dolomitization of drusy calcite cement. The low δ18OVPDB

(−9.4‰ to −6.2‰) and high homogenization temperatures of fluid inclusions in drusy dolomite
(Th = 73–233 ◦C) suggest that dolomitization was caused by hot basinal brines (salinity = 23.4 wt%
NaCl eq.). The δ13CVPDB values (+0.18‰ to +1.6‰) and 87Sr/86Sr ratio (0.708106 to 0.708147) indicate
that carbon and strontium were derived from the host marine Permo-Triassic carbonates. Following
this dolomitization event, blocky calcite (Th = 148 ◦C; salinity = 20.8 wt% NaCl eq.) precipitated from
the hot basinal brines. Unravelling the origin of drusy dolomite cement has important implications
for accurate construction of paragenetic sequences in carbonate rocks and decipher the origin and
chemistry of diagenetic waters in sedimentary basins.

Keywords: drusy dolomite; dolomitization; cementation; hot basinal fluids

1. Introduction

Calcite cement with a drusy mosaic texture, displaying crystal size growth from pore
wall to pore center, is widely distributed in limestones [1,2]. Such cement commonly fills
moldic pore and hence has been interpreted to be sourced by dissolution of aragonitic al-
lochems [3–7]. The stable isotopic composition of drusy mosaic calcite cement coupled with
the presence of moldic porosity have been interpreted to indicate a meteoric origin [8–10].
Dolomite cement in carbonate rocks commonly develops rhombic crystals that do not
show systematic size variation within the pores [11]. Nevertheless, rare drusy mosaic
dolomite cement has been reported in carbonate deposits too [12–15]. The origin of such
dolomite is not fully explored, particularly regarding whether it is a primary precipitate
or formed by dolomitization of precursor drusy calcite cement. The fluid flow and re-
lated diagenetic evolution, particularly dolomitization of carbonate succession in northern
United Arab Emirates (UAE), is interpreted to be controlled by the tectonic evolution of
the region [16,17].

In this paper, we constrain the origin of drusy mosaic dolomite cement in conglom-
erates/breccia of the Bih Formation (Permo-Triassic), Ras Al Khaima, northern UAE
(Figure 1), using petrographic, stable isotopic, and fluid-inclusion microthermometric
analyses. This study provides important insights into the conditions of formation of drusy
dolomite cement and its associated diagenetic fluids. The presented data and discussions
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help in constructing more accurate paragenetic sequences in Permo-Triassic dolostones,
northern UAE, and in other carbonate successions with similar depositional and diagenetic
settings.

Figure 1. Location of the study area, northwest of the UAE (marked in green). Modified from [18–20].

2. Geological Setting

The Bih Formation (Permo-Triassic) crops out in the Musandam Peninsula, Ras Al
Khaimah, northern United Arab Emirates (Figure 1). The formation is suggested to be
age-equivalent to the Khuff Formation [19] which is an important hydrocarbon reservoir in
the Arabian Gulf region. Deposition of the Bih Formation occurred in subtidal to intertidal
(shoals, lagoon, and mudflats) environments on a passive margin of the Arabian plate [20].

The formation is divided into two units separated by a marker interval, which is called
mid-Bih conglomerates/breccias [21]. The origin of this interval is uncertain, being inter-
preted to have resulted from the collapse of evaporite beds [20] tectonic deformation [20]
or are lag deposits formed owing to marine transgression [22]. Strohmenger et al. [20]
proposed that the Bih Formation corresponds to sequence KS4 through KS7 of the Khuff
Formation (Figure 2). Two main tectonic events have affected the study area [23] including:
(i) The obduction of Oman ophiolite on the Arabian platform during the Late Cretaceous.
During this tectonic phase, the passive northeastern margin of the Tethys ocean became
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compressive and resulted in the close of the Tethys ocean [24]; (ii) the Zagros orogeny
(Paleocene to Middle Miocene) [25–28] which caused large scale folding and thrusting [26].

Figure 2. (A) Chronostratigraphic framework of the Khuff Formation in the subsurface compared to the stratigraphic range
of the Bih Formation [21]. (B) Logging graph showing the thickness of conglomerate/breccia beds in the field.

3. Samples and Methods

Fifty-six samples were collected from the conglomerate/breccia beds and associated
dolostone beds. Thin sections were prepared for all the samples after impregnation with
blue epoxy. Representative polished uncovered thin sections were prepared and exam-
ined by a Technosyn Cold cathodoluminescence microscope (CL), backscattered electron
imaging (BSEI), and energy dispersive X-ray analyses (EDS) attached to a Quanta scanning
electron microscope. Fluid-inclusion microthermometry was conducted on two represen-
tative double polished 50 µm thick sections using a pre-calibrated LINKAM THMS600G
stage fitted onto the Nikon E600 microscope.
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Synthetic pure H2O and CO2 inclusions standard were used to calibrate the ther-
mocouple. Both homogenization (Th) and final ice melting temperatures (Tmice) were
measured whenever the size of the inclusions permitted. The former is the minimum
entrapment temperature of the inclusion (i.e., the temperature of mineral precipitation) [29].
The latter is the temperature at which the last ice melts in an aqueous fluid inclusion and
reflects the trapped diagenetic fluid salinity [29]. The fluid salinity (wt% NaCl eq.) was
inferred from Tmice using the Bodnar equation [30]. In order to avoid overheating, low
heating rates were used for measuring homogenization temperatures (Th).

Stable carbon and oxygen isotopes were obtained for the 36 micro-drilled drusy
dolomite cement with a GVI IsoPrime continuous flow isotope ratio mass spectrometer
system (CF-IRMS). The δ13C and δ18O isotopic values are determined on carbon dioxide
(CO2) from carbonate minerals by the reaction with 100% phosphoric acid (H3PO4) at
90 ◦C in a vacuum using standard procedures based on the principles reported in [31].
Samples and standards are weighed into Exetainer™ septum vials, sealed and flushed
with pure helium. In addition, 100% phosphoric acid is injected into the vial, which is
then placed in an aluminum tray maintained at 90 ◦C for more than 1 h. The CO2 is
extracted automatically with a double-hole needle Gilson auto-sampler connected to a
GVI MultiFlow. The MultiFlow contains a 500-uL sample loop, and a GC column that
separates CO2, N2, O2, and H2O. Helium carrier gas then transports the purified CO2
into the GVI IsoPrime continuous flow isotope ratio mass spectrometer system (CF-IRMS)
that measures the isotope ratios. Four representative micro-drilled drusy dolomite cement
samples were analyzed for Sr isotopes. One mg of each sample is collected to react with
suprapure HCl for 24 h. Purified Sr is obtained by chromatographic separation with 2.5 mL
of AGW 50 × 8 (Biorad) cation exchange resin [32]. The analysis equipment is a Finnigan
MAT 262 7-collector solid-source mass spectrometer with a single Re filament applying
1 µL of ionization enhancing solution [32].

4. Results
4.1. Field Observations

The base of the Bih Formation does not crop out, and the lowest stratigraphic part con-
sists of a medium-to-thick-bedded brown dolomitized packstone–grainstones with locally
well-developed coarse-crystalline dolostone and vuggy textures. About 180 m above the
base of the exposed Bih Formation, the mid-Bih conglomerate/breccia occurs (approx. 20 m
thick; Figures 2B and 3A). The conglomerate/breccia beds of Wadi Bih, which are interbed-
ded with dolograinstones, are massive overall but locally show a low-angle, through cross
stratification (Figure 3B). The beds are cross cut by a series of normal faults (Figure 3A).
The basal contact between conglomerate/breccia and underlying dolograinstone beds is
sharp and erosional (Figure 3C). The lower contact between dolograinstone beds with the
conglomerate/breccia beds is marked by the presence of rip-up dolomudstone intraclasts
(Figure 3D).

Stylolites occur within as well as along boundaries between the conglomerate/dolostone
beds. Above the mid-Bih breccia, there are cycles of interbedded dolostones and dolomitic
limestones, with algal laminations, bird-eye structures, and dissolution molds. The succes-
sion continues with 90 m cliff-forming, dark gray coarse-crystalline dolostones.
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and underlying massive dolostone bed. (D) The conglomerate/breccia beds have a gradational contact with overlying
dolograinstone bed (arrows).

4.2. Petrography of the Drusy Dolomite

The conglomerate/breccia dolostone beds are cemented by drusy mosaic dolomite
with a crystal size increasing progressively from 20 µm along the pore wall to 2 mm in the
pore center (Figure 4A–D). In some cases, the centermost parts of the pore are occupied
by blocky calcite (500–700 µm across). Dolomite crystals adjacent to this blocky calcite
are partly calcitized (Figure 5A,B). The drusy dolomite crystals display sector CL zoning
with alternating non-luminescent and bright orange luminescent zones (Figure 5C,D). The
microcrystalline equant to bladed dolomite crystals (20–100 µm across) along the pore
walls are dull luminescent. The blocky calcite crystals are dull luminescent with a local
thin orange luminescent zone.

Dull luminescent calcite occurs along stylolites and fills fractures varying in width
from 5 to 60 µm (Figure 5E,F). The stylolites (amplitudes up to 2 cm) and dissolution
seams cut across the dolostone pebbles and have bed-parallel and bed-oblique orien-
tations. Some of the stylolites are cutting across both pebbles and dolomite between
pebbles (Figure 6A–D). The drusy mosaic dolomite has Fe and Mn contents below the
EDS detection limits. Fe and Mn contents as low as few ppm can still generate zoning in
dolomite [33–35].



Water 2021, 13, 1908 6 of 14
Water 2021, 13, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 4. Optical photomicrographs (PPL) showing: (A) The fine dolomite crystals (arrows) in mosaic dolomite between 
pebbles are considered to be relics of fine-crystalline dolostone pebbles. The distribution of the fine dolomite crystals 
shows the rounded shape of pebble (dashed line). (B) The fine-crystalline dolostone pebble is partly replaced by the 
medium-crystalline dolomite (40 μm). Parts (arrows) of the pebble are not subjected to replacement. (C) Fracture cutting 
across the mosaic dolomite cement between pebbles was filled by the mosaic calcite cement (5 to 60 μm). The average 
width of this fracture is 70 μm. (D) Fracture-filling calcite along a pebble. 

Dull luminescent calcite occurs along stylolites and fills fractures varying in width 
from 5 to 60 μm (Figure 5E,F). The stylolites (amplitudes up to 2 cm) and dissolution 
seams cut across the dolostone pebbles and have bed-parallel and bed-oblique 
orientations. Some of the stylolites are cutting across both pebbles and dolomite between 
pebbles (Figure 6A–D). The drusy mosaic dolomite has Fe and Mn contents below the EDS 
detection limits. Fe and Mn contents as low as few ppm can still generate zoning in 
dolomite [33,34,35]. 

  

Figure 4. Optical photomicrographs (PPL) showing: (A) The fine dolomite crystals (arrows) in mosaic dolomite between
pebbles are considered to be relics of fine-crystalline dolostone pebbles. The distribution of the fine dolomite crystals
shows the rounded shape of pebble (dashed line). (B) The fine-crystalline dolostone pebble is partly replaced by the
medium-crystalline dolomite (40 µm). Parts (arrows) of the pebble are not subjected to replacement. (C) Fracture cutting
across the mosaic dolomite cement between pebbles was filled by the mosaic calcite cement (5 to 60 µm). The average width
of this fracture is 70 µm. (D) Fracture-filling calcite along a pebble.

Water 2021, 13, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 5. Optical (A; PPL) and companion CL (B) photomicrographs showing several generations 
of dolomite cement, which filled intergranular pores between pebbles are characterized by a 
distinguishable luminescent degree. Optical (C; PPL) and companion CL (D) photomicrographs 
showing: Coarse mosaic dolomite cement and coarse calcite cement, which is reddish stained in 
intergranular pores between pebbles; concentric growth pattern of planar-e to planar-s mosaic 
dolomite and non-luminescent calcite cements precipitated in pore space, where precursor dolomite 
was dissolved. Four generations of dolomite cement have been identified in the companion CL (D) 
photomicrograph. Optical (E; PPL) and companion CL photomicrographs (F) showing the calcite 
precipitated in intercrystalline pores between pebbles (white arrow) and within stylolite (yellow 
arrow) is characterized by a non-luminescent zone. 

Figure 5. Cont.



Water 2021, 13, 1908 7 of 14

Water 2021, 13, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 5. Optical (A; PPL) and companion CL (B) photomicrographs showing several generations 
of dolomite cement, which filled intergranular pores between pebbles are characterized by a 
distinguishable luminescent degree. Optical (C; PPL) and companion CL (D) photomicrographs 
showing: Coarse mosaic dolomite cement and coarse calcite cement, which is reddish stained in 
intergranular pores between pebbles; concentric growth pattern of planar-e to planar-s mosaic 
dolomite and non-luminescent calcite cements precipitated in pore space, where precursor dolomite 
was dissolved. Four generations of dolomite cement have been identified in the companion CL (D) 
photomicrograph. Optical (E; PPL) and companion CL photomicrographs (F) showing the calcite 
precipitated in intercrystalline pores between pebbles (white arrow) and within stylolite (yellow 
arrow) is characterized by a non-luminescent zone. 

Figure 5. Optical (A; PPL) and companion CL (B) photomicrographs showing several generations
of dolomite cement, which filled intergranular pores between pebbles are characterized by a distin-
guishable luminescent degree. Optical (C; PPL) and companion CL (D) photomicrographs showing:
Coarse mosaic dolomite cement and coarse calcite cement, which is reddish stained in intergranu-
lar pores between pebbles; concentric growth pattern of planar-e to planar-s mosaic dolomite and
non-luminescent calcite cements precipitated in pore space, where precursor dolomite was dissolved.
Four generations of dolomite cement have been identified in the companion CL (D) photomicrograph.
Optical (E; PPL) and companion CL photomicrographs (F) showing the calcite precipitated in inter-
crystalline pores between pebbles (white arrow) and within stylolite (yellow arrow) is characterized
by a non-luminescent zone.

Figure 6. BSE images showing: (A) The presence of dolomite along a dissolution seam within a pebble. The core of rhombic
dolomite crystals is dissolved while the rim is preserved. (B) Calcite cement (Ca) along the dissolution seam within the
pebble, which precipitates after dissolution of dolomite (shown by an irregular boundary of dolomite crystal, yellow arrows).
(C,D) stylolite/seams (S1 and S2) cutting across each other and the clay mineral and TiO2 occur along the stylolite/solution
seam within a pebble.
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4.3. C, O, and Sr Isotopic Composition of Dolomite Cement

The δ13CVPDB values of drusy dolomite vary from +0.2‰ to +1.6‰ and δ18OVPDB
from −9.4‰ to −6.2‰. The δ13CVPDB values of fracture-filling calcite cement vary between
−3.8‰ and +1.9‰ and δ18OVPDB from −7.6‰ to −4.0‰. The 87Sr/86Sr ratios of two drusy
and mosaic dolomite samples are 0.708106 and 0.708147, respectively (Figures 7 and 8A,B).

Figure 7. Cross plot of stable δ13CVPDB versus δ18OVPDB values of samples from the conglomer-
ate/breccia beds and the dolograinstone beds in the conglomerate/breccia interval, as well as isotope
values of Permian to Triassic marine carbonates. Stable oxygen isotope values of drusy dolomite are
lower compared to other dolomites and slightly lower than sea coeval marine carbonates.

4.4. Fluid-Inclusion Microthermometry of Carbonate Cement

Fluid inclusions (1–20 µm across) in the drusy mosaic dolomite cement display two-
phases (liquid and vapor). The crystal sizes of drusy dolomite are divided into fine
(50–100 µm), medium (>100–500 µm), and coarse crystals (>500 µm). Results can be
summarized as follows: (1) Homogenization temperatures (Th) of fine-sized dolomite
crystals (50–100 µm), range from 93 to 143 ◦C (av. 118 ◦C); (2) Th of medium-sized dolomite
crystals (100–500 µm) varies from 73 to 188 ◦C (av. 130.5 ◦C). The salinity of these fluid
inclusions could not be measured owing to the small size of the inclusions (<2–3 µm); (3)
Th values of coarse crystalline dolomite (>500 µm) filling the centermost part of the pores
vary from 118 to 233 ◦C (av. 175.5 ◦C), while salinity ranges from 21.8 to 25.1 wt% NaCl
eq.; and (4) the calcite cement that postdates dolomite has a Th value of 148 ◦C and salinity
of 20.8 wt% NaCl eq. The distribution of Th in calcite and drusy dolomite is shown in
histograms (Figure 9).
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Figure 8. (A) Cross-plot of 87Sr/86Sr against δ18OVPDB showing two samples from the pebble have a slightly higher Sr
isotope value than coeval marine carbonates. Two samples from drusy and mosaic dolomites are within the isotopic
range of Permian to Triassic marine carbonates. The sample from drusy dolomite showing a lower δ18OVPDB value than
coeval marine carbonates. (B) Measured 87Sr/86Sr ratios of different types of dolomite cements in the Bih Formation
(Permo-Triassic) plotted on the sea water 87Sr/86Sr curve [31].
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Figure 9. Histograms of fluid-inclusion homogenization temperatures (Th) in fine-crystalline dolomite (A), medium-
crystalline dolomite (B), coarse-crystalline dolomite (C), and calcite (D).

5. Discussion

Constraining the origin of the drusy dolomite in terms of whether it has been pre-
cipitated as cement, which is a common cement in limestones [13,14] or formed by the
replacement of precursor drusy calcite [15] has implications for unravelling the role of
diagenetic paleofluids, as well as for improvements in the definition of paragenetic se-
quences in carbonate rocks and related reservoir-quality features. There are two possible
interpretations of the formation of drusy dolomite cement: (1) Precipitation as cement, and
(2) fabric-preserving dolomitization of precursor drusy mosaic calcite. Evidence supporting
precipitation as drusy dolomite includes the sector cathodoluminescence zoning and its
close association with the latter precipitated blocky calcite.

Fluid-inclusion microthermometry of drusy mosaic dolomite and the subsequently
precipitated calcite cement indicate formation from hot brines during compressional tec-
tonic events in conjunction with the obduction of Oman ophiolites [16,36]. However,
it is not immediately clear whether the drusy mosaic dolomite has been precipitated
as cement [13] or formed by dolomitization of drusy mosaic calcite by the hot basinal
brines [15,37]. Drusy calcite is a common cement in limestones [1,5–7,38]. Thus, the com-
mon presence of drusy mosaic dolomite in totally dolomitized limestones may suggest
formation by fabric-preserving dolomitization [15]. The latter process suggests similar dis-
solution rates of drusy calcite and precipitation rate of dolomite during the dolomitization
process. A similar fabric-preserving dolomite of Bih Formation has been reported in earlier
studies of carbonate reservoirs in the world [39–41].

The high Th (73 to 233 ◦C) and salinity (20.8 to 25.1 wt% NaCl eq.) of drusy mosaic
dolomite and subsequently precipitated cement indicates that they have precipitated either
during deep-burial diagenesis or by upward flux of hydrothermal/hot basinal fluids [42].
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The increase in Th with the increase in dolomite crystal size (av. 118 to 175.5 ◦C) is
interpreted to indicate that the drusy dolomite precipitated with the increase in temperature
during progressive burial. The maximum burial temperatures reached by the Bih Formation
is approximately 190 to 200 ◦C [22]. The wide range of Th of different carbonate phases
indicates that some fluid inclusions have been subjected to re-equilibration during burial
processes [29]. The relatively systematic Th zoning from pore walls inwards (i.e., increase
in crystal size) supports the formation of drusy dolomite by precipitation from pore fluids
than by dolomitization of precursor drusy calcite cement. Apparently, the chemistry of the
dolomitizing fluids has changed with time and reflected on the variation of Fe-rich and
Fe-poor zoning of CL pattern of the drusy dolomite cement (cf., [2,36]).

The similar Th (148 ◦C) and salinity values (20.8 wt% NaCl eq.) of late blocky calcite
and fracture-filling medium to coarse calcite cement is attributed to the circulation of hot
brines [17]. The considerably lower δ13CVPDB values (−3.8‰ and −0.9‰) of fracture-filling
calcite cement than drusy dolomite samples might indicate the deviation of dissolved
carbon from degradation of hydrocarbons or organic matter [42]. Using the δ18OVPDB
values (−9.4‰ to −6.2‰) and Th (73 to 233 ◦C) of drusy dolomite, the fractionation
equation of Land [43] it is inferred that precipitation has occurred from evolved brines
(δ18OVSMOW = +0.29‰ to +10.96‰). The wide extent of variations in the degree of geo-
chemical evolution of the brines could be related to variable fluid sources and variable
degrees of interaction with the host rocks in the basin. The positive correlation between
C and O isotopes of drusy mosaic dolomite (Figure 7) suggests increasing input of 12C
into the formation waters with the increasing temperature [44]. The small variations in Sr
isotopic compositions between the various types of carbonate cements suggest a related
origin (Figure 8A,B). The 87Sr/86Sr ratios in one of the pebbles (0.708202) is within the
isotopic range of Permian to Triassic seawater values (0.7069 to 0.7083) [31]. The slightly
higher ratio in another pebble sample (0.708424) than the range for Permo-Triassic sea-
water (Figure 8B) suggests that the hot basinal fluids have interacted with siliciclastic
rocks [45,46]. The similar carbon isotope and 87Sr/86Sr ratio of drusy dolomite and coeval
marine carbonates ([31]; 0.708106 and 0.708147, respectively) suggests that dissolved car-
bon and Sr were derived from the dissolution of marine carbonates and/or marine pore
waters. The slightly lower oxygen isotope value of drusy dolomite than coeval marine
carbonates (Figure 8A) is attributed to precipitation at elevated temperatures.

The development of stylolites and dissolution seams along the rim of pebbles or cutting
across both pebbles and dolomite between pebbles indicate that stylolitization postdates
the drusy dolomite cement. This complex relationship between fracturing, stylolitization,
and dolomite cementation may be caused by multiple phases of tectonic movements. The
cross-cutting of low amplitude seams by high amplitude stylolites in conglomerate/breccia
samples could be a result of increasing compressive stress by tectonic movements generated
during the obduction of Oman ophiolites [47,48]. The presence of dolomite cement (Th up to
190 ◦C; salinity up to 20.8 wt% NaCl eq.) along the stylolites suggests the flux of hot basinal
brines and may indicate that the dolomite was precipitated by dolomitization of the host
limestones prior to stylolitization. Dolomite cement apparently has been concentrated in the
vicinity of the stylolitization surface as an insoluble residue (cf., [49]). Similar observations
and interpretations have been presented for carbonate successions elsewhere [49–51]. The
presence of clay minerals (locally pigmented by TiO2) along stylolites suggests that these
minerals promoted the pressure dissolution of carbonates [52,53].

Constraining the depths at which the flux of hot dolomitizing basinal brines occurred
is difficult without radiometric dating of dolomite [54,55]. However, the cross-cutting
relationship between the stylolites and dolomite cement suggests that dolomitization took
place at shallow depths [36].

6. Conclusions

The puzzling origin of pore-filling drusy mosaic dolomite cement in Permo-Triassic
conglomerate/breccia beds outcropping in northern United Arab Emirates is constrained
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using the integrated field, petrographic, isotopic, and fluid-inclusion microthermometric
analyses. There are two possible interpretations of the formation of drusy dolomite cement:
(1) Precipitation as cement, and (2) fabric-preserving dolomitization of precursor drusy
mosaic calcite. Fluid-inclusion microthermometry indicates the formation of this dolomite
from hot basinal brines (Th = 73 to 233 ◦C; salinity = 21.8% to 25.1% wt% NaCl eq.).
Using the average homogenization temperature and oxygen isotope of dolomite δ18OVPDB
(−9.4‰ to −6.2‰) the brines are inferred to be geochemically evolved with δ18OVSMOW
(+0.29‰ to +10.96‰). Lines of evidence supporting precipitation as drusy dolomite from
pore waters include the sector cathodoluminescence zoning, the relatively systematic Th
zoning, and with the presence of the latter precipitated blocky calcite, which has also
precipitated from hot basinal brines (Th = 148 ◦C salinity = 20.8 wt% NaCl eq.). The
construction of accurate paragenetic sequences is important for establishing exploration
and production models for carbonate reservoirs. To achieve this goal, diagenesis should be
linked to fluid history and tectonic evolution of the basin.
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