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Abstract: In recent years, the concept of a centralized drainage system that connect an entire city
to one single treatment plant is increasingly being questioned in terms of the costs, reliability, and
environmental impacts. This study introduces an optimization approach based on decentralization
in order to develop a cost-effective and sustainable sewage collection system. For this purpose,
a new algorithm based on the growing spanning tree algorithm is developed for decentralized
layout generation and treatment plant allocation. The trade-off between construction and operation
costs, resilience, and the degree of centralization is a multiobjective problem that consists of two
subproblems: the layout of the networks and the hydraulic design. The innovative characteristics
of the proposed framework are that layout and hydraulic designs are solved simultaneously, three
objectives are optimized together, and the entire problem solving process is self-adaptive. The model
is then applied to a real case study. The results show that finding an optimum degree of centralization
could reduce not only the network’s costs by 17.3%, but could also increase its structural resilience
significantly compared to fully centralized networks.

Keywords: decentralization; resilience; multiobjective optimization; sewage collection systems

1. Introduction

Sanitary sewage collection systems, or simply speaking sewer networks, are essential
parts of any modern city; they directly influence public health and are vital for environ-
mental protection. Sewer networks have traditionally been designed and developed in the
form of centralized networks to collect and transfer wastewater from homes and factories,
preferably by gravity, to a centralized wastewater treatment plant located far enough from
urban areas [1,2]. Increasing population growth and industrial and agricultural devel-
opments have added to the demand for water in societies. In addition to the pollution
and scarcity of available water resources, the increasing water demands have introduced
significant challenges. This issue is particularly critical in arid and semi-arid countries
suffering from freshwater scarcity; hence, the need for the sustainable management and
protection of water resources is striking.

The expansion, reconstruction, and rapid growth of cities and industries have resulted
in fundamental challenges for developing and upgrading urban water systems. Due to
rapid urbanization and increased costs on one hand and reduced budgets on the other
hand, the construction, operation, maintenance, and rehabilitation of centralized sewer
networks present severe challenges and obstacles. Additional concerns relate to the reliabil-
ity and lack of resilience of centralized systems. In flat areas, particularly with high-level
groundwater, poor geotechnical conditions for civil engineering activities, and with highly
populated and fully urbanized cities, it is expensive or even unfeasible to install sewer
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lines of sufficiently large diameter and depth. As a result, in such areas sewers are often
designed and constructed with minimum slopes. Although the minimum slope approach
generally leads to a cost-effective sewer system, it causes operational problems such as
increased sedimentation rates and risk of clogging due to a lack of proper flow velocity
in sewers, which is required for self-cleaning. To compensate for a lack of natural ground
slope, centralized networks serving large and flat areas mostly require pumping stations,
which bring about additional costs, consume energy, and make the system fragile.

Recently, decentralized systems have been introduced to overcome the drawbacks
mentioned above. Such approaches involve treating and reusing wastewater near the
source using independent units [3–6]. In decentralized systems, it is expected that increas-
ing the number of treatment plants will reduce operating costs by reducing the diameter
of the sewers and the excavation volumes, as well as the number of pumping and lift
stations. Furthermore, independent units (subnetworks and treatment packages) dramati-
cally enhance the reliability and resilience of a sewer system. Decentralized urban water
systems have recently received more attention in developing countries lacking reliable
systems and financial resources to afford the high construction, operation, maintenance,
and rehabilitation costs of centralized systems [2,7–14].

It is also worth mentioning that advances in the design and operation of modern
wastewater treatment processes such as sequencing batch reactors (SBRs), which are
efficient, small in size, and suitable for urban environments, make these promising for
use in decentralized urban sewer networks. Such systems have much more potential
for recycling and reusing treated wastewater (e.g., for irrigation of urban green spaces)
and are more efficient and cost-effective than centralized systems. Additionally, recent
developments in network design and optimization algorithms have facilitated the design
of decentralized sewer systems.

A literature review showed that despite many innovative methods being used for
designing centralized wastewater collection networks [15–28], only a few studies have
proposed decentralized sewer networks [2,25,29]. Overall, systematically generating feasi-
ble decentralized layouts is a bottleneck in optimizing decentralized sewer networks [28].
Recently, several investigations have been published regarding decentralization aspects for
stormwater networks. The layout generator algorithms [9,30], single-objective optimiza-
tion algorithm [9], multiobjective optimization algorithms [12,31–36], and multicriteria
decision-making algorithms [11,37,38] are some of the main approaches investigated so far
for decentralized stormwater systems.

In general, the design of a sewer network needs to solve two mathematically different
subproblems: (1) generate feasible layouts employing algorithms from the graph theory;
(2) measure the network’s components by solving the hydraulic governing equations
concerning a set of design criteria. The latter includes calculating the sewer diameters
and installation depths (or sewer slopes) and the pumping capacities. The subproblems
are nonlinear and discrete, with many complex constraints from the hydraulics principles,
technical criteria, and regional limitations [16]. It is possible to simplify the sewer network
design by separately solving the subproblems mentioned above. For this purpose, a near-
optimum layout is first derived using engineering judgments or a simplified objective
function and optimization. Then, for the layout at hand, the network is hydraulically
designed [39]; however, for the above subproblems, the layout and the hydraulic designs
are highly interrelated. The layout can significantly affect the network hydraulic design
characteristics and vice versa. This issue is particularly significant in flat and wide areas in
which the layout alternatives are numerous. Additionally, the inter-relationship between
the subproblems is much more critical when designing a decentralized sewer network.

Consequently, the global optimum design of a sewer network can only be achieved
when these two subproblems are solved implicitly and simultaneously. In this respect, the
current study introduces a multiobjective optimization framework for decentralized sewer
system design. The layout and hydraulic design subproblems are optimized implicitly
using a coupled design package. The objective functions include the construction and oper-
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ational costs of the network and the wastewater treatment plant(s), the structural resilience,
and the degree of centralization. For this purpose, a systematic network layout generator
and hydraulic simulation–design model are developed to produce all feasible network
configurations with a vast degrees of centralization. The multiobjective optimization is
used to drive the optimum trade-off between the aforementioned objective functions.

2. Materials and Methods

As mentioned earlier, in order to optimize a sewer collection network, the layout and
hydraulic design subproblems must be solved simultaneously. Mathematically, a sewer
network optimization problem can be expressed as follows:

dopt = arg max/min
d∈D [〈 f1〉, 〈 f2〉, 〈 f3〉] (1)

where fi represents the objective functions, f1 represents the annualized cost of construction
and operation, f2 represents the structural resilience, and f3 represents the degree of
network centralization. Additionally, d is the vector of decision variables, including the
layout parameters; the number and locations of treatment plants; the depth of roots (outlets);
and the hydraulic characteristics of the network, consisting of the sewer diameters and
slopes and the locations of pumping (lift) stations. Additionally, dopt is an optimal solution
and D is the feasible space of the problem. The above objective functions are optimized
subject to a train of physical and technical constraints on the layout and hydraulic designs.
For centralized sanitary sewer networks, the constraints and design criteria have usually
been well explained in the previous investigations, especially in [16,39], which are adopted
in this study. Subject to the constraints, the following objective functions are optimized
together using the Borg multiobjective evolutionary algorithm (MOEA) [40].

2.1. Cost Function ( f1)

A sewer network cost function consists of the construction and operational costs
of sewers (Φ), manholes (Ψ), pressurized transmission pipelines (Ω), pumping and lift
stations (Y), and wastewater treatment plants (Γ). Accordingly, the total cost function of a
sewer network design to be used as an objective function is defined as follows:

C = ∑ Φ(H, D, L) + ∑ Ψ(H, D) + ∑ Ω(D, L) + ∑ Y(Q, HP) + ∑ Γ(Q) (2)

In which H is the buried sewer depth or manhole installation depth, D is the sewer di-
ameter, L is the sewer length, and Q is the pumping or treatment flow rate. For each particu-
lar case study, the above functions are estimated and derived through nonlinear regressions.

To establish the objective function f1, the annual cash flow method is applied to the
estimated cost C as the following:

f1 =
Cr(1 + r)T

(1 + r)T − 1
+

Cr(1− α)

(1 + r)T − 1
+ Cβ (3)

where r is the interest rate; T is the design period, which can be different for each component
of the design cost function; a is a parameter used to calculate the profit from selling the
design, which can be different for each component during its design period; β is a parameter
used to estimate the annual operation cost.

2.2. Structural Resilience Analysis ( f2)

Structural resilience as an objective function is the network’s ability to minimize the
frequency and magnitude of structural failures, such as clogging and sewer cracking or
pump failure [41]. The maximum structural resilience is obtained when clogging in the
sewers has the least effect on the upstream parts [42]. To quantify the clogging consequence
in sewer networks, Bakhshipour et al. (2021) [12] proposed a criterion, Equation (4),
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which uses layout design properties. The principle is that the lower the proportion of the
population affected by sewer clogging, the more resilient the network will be.

Resstructural =
∑

NPResstr,i<90%
i=1 Resstr,i<90%

NPResstr,i<90%

Resstr,i = 100(1− Acum,i

Atotal
) (4)

where Acum,i is the area connected to pipei and Atotal is the total area covered by the
network. To account for the effects of DC (degree of centralization) on Equation (4),
Bakhshipour et al., 2020 proposed Equation (5) to quantify the structural resilience:

f2 = SRI =


NPResstr,i>90%

NP

(
∑

NPResstr,i<90%
i=1 Resstr,i<90%

NPResstr,i<90%

)
(%)

100 % i f Resstr,i<90% = 0
(5)

in which Resstr,i>90% is the number of sewers with structural resilience of more than
90% and NPResstr,i<90% is the number of sewers with structural resilience of less than 90%.
SRI is zero when all sewers are connected to more than 10% percent of the total area(

NPResstr,i>90% = 0
)

and 100% if each root (outlet) is connected to up to 10 % of the total

area
(

NPResstr,i<90% = 0
)

. More details on this index are found in the given references.

2.3. Degree of Centralization ( f3)

Despite the increasing attention being paid to decentralized urban water management,
no explicit definitions have been proposed to measure the degree of centralization (DC) [2].
The available definitions are mostly limited to fully centralized or fully decentralized
systems; however, a wide range of solutions with different DCs is feasible. Eggimann et al.
(2015) [2] adopted a weighted DC by considering a continuum of possible facility sizes for
wastewater management infrastructure. Following that idea, the present study introduces
a weighted index to measure the DC based on the network’s layout and the sewer pipes’
accumulative flow (Equation (6)). The main idea behind this formulation is that “the more
unbalanced the distribution of sewers and flow rates between the subgraphs, the more
centralized the network will be”.

f3 = DC = 100×
(

1− Q
Qw

Nso − 1
Nco − 1

)
(6)

where Nso is the number of selected locations (sites) of the treatment plants, Nco is the
number of candidate locations of the treatment plants, and Q and Qw are calculated
as follows:

Q =
∑Nso

i=1 Qi

Nso
(7)

Qw =
Nso

∑
i=1

wiQi , wi =
NPi
NP

(8)

where Qi is the flow received at each treatment plant, NPi is the number of sewers in each
subgraph, and NP is the total number of sewers in the network. Equation (6) considers
both distributions of infrastructure (sewers and pumping facilities) and flow in different

parts of the network by applying the coefficient Q
Qw

. The more balanced the distribution of

wastewater flows between the subgraphs, the closer the Q
Qw

coefficient is to 1 and the lower
the DC the network will have.

Based on Equation (6), the DC is 1 when the system is fully centralized and merely one
treatment plant is selected from the candidate list. In contrast, the DC is almost zero when
the system is fully decentralized, meaning that all candidate treatment plants are chosen.
In decentralized cases, the network has two or more roots (treatment plant); according to
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the above formula, the DC is a function of both the number of roots (treatment plants) and
the distribution of sewers and wastewater flows. In other words, for the same number of
treatment plants, the flow distribution between the subgraphs governs the DC value.

2.4. Subproblem 1: Layout Generator Algorithm

To generate a decentralized sewer layout, first the network’s base graph is drawn. In
a base graph, all sewer possibilities are included so that manholes (vertices) and sewers
(edges) constitute a connected cyclic graph. With respect to the street alignment, topology,
barriers, watercourses, outlets, and existing sewers in the city, an undirected base graph can
be drawn for the network [43]. To design feasible sewer layouts, an algorithm is developed
to partition the base graph into several sub-base graphs and to extract spanning trees
for each. The proposed algorithm used to generate decentralized layouts is described
through the pseudocode in Figure 1. The base graph partitioning algorithm consisting of
three modules is described below by solving a simple example.
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Figure 1. Pseudocode of the decentralized layout generation algorithm.

Figure 2a illustrates the base graph of a wastewater network. This graph is math-
ematically represented and introduced to the model by an adjacency matrix (A-Matrix,
Figure 2c) and an information matrix (B-Matrix, Figure 2b) containing sewers and connec-
tions data. Let N be the number of nodes (manholes), M be the number of edges (sewers),
and NL be the number of loops in the base graph. The B-Matrix involves M rows and
NL+3 columns. Column 1 contains the sewer names from 1 to M, while columns 2 to NL+1
are sewer-in-loop indicators determining whether a sewer is in a loop (value 1) or not
(value 0). Columns NL+2 and NL+3 include the sewer ends without any order, since the
base graph is undirected. The adjacency matrix is an N × N with binary elements; element
(i, j) is 1 if nodes i and j are connected and zero if they are not connected.
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Figure 2. Mathematical representation of a base graph: (a) example base graph; (b) B-Matrix; (c) A-Matrix.

2.4.1. The Assigned Zone to Each Root

The first step is finding the assigned zone to each root (outlet) and partitioning the
base graph according to the number and location of roots. To this end, a notion called
the depth of root (DR) is introduced here. Either engineering judgment or systematic
optimization can determine a DR. This study employs optimization by defining a decision
variable αi as follows:

DRi = round(1 + αi × (MPi − 1)) (9)

where αi(i = 1 : R) is a real value number in the range of (0, 1), R is the number of roots
in the base graph, and MPi is the path between the closest root and the desired root. The
closest root to another root is the one with the shortest path. Finding the shortest path
between two nodes is possible using the shortest path algorithms in the graph theory. Here,
Dijkstra’s algorithm is adopted to calculate MPi. The calculation of MPi is performed based
on the P-Matrix, which is initially equal to the adjacency matrix of the base graph A-Matrix.

For example, suppose nodes 4, 13, and 24 are potential roots in Figure 2a; thus,
R = ([4,13,24]) is the vector of roots. Once a DR is found for a root, the nodes of the base
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graph whose shortest path to the root is smaller than the DR are classified into a group.
For instance, for the first root (node 4), node 13 with MPi = 4 is the closest root. Given
that α1 = 0.78 and DRi = 3, nodes 1, 2, 3, and 7 are classified into the group of root
node 4 (Figure 3a). After this, in order to identify the assigned zone of the next root, some
modifications are required. Since Nodes 1, 2, 3, and 7 have already been assigned to node 4,
they are excluded from the base graph’s node set N. As the subgraphs should remain
connected with the nodes excluded from N, the paths including nodes 1, 2, 3, and 7 are no
longer used for the shortest paths in the following stages. Accordingly, the P-Matrix needs
to be modified to identify the assigned nodes of the next root, node 13. This is performed
by disconnecting nodes 1, 2, 3, and 7 from the node set N by setting elements (7, 6), (7, 5),
(7, 11), and (1, 8) to zero in the P-Matrix. The elements related to nodes 2 and 3 do not
require modification as they are not connected to the node-set N. It is also worth noting that
nodes 1 and 7 are now called upstream nodes. This approach is implemented step-by-step
until all members of vector R are covered.

Figure 3. Finding the assigned zone for each outlet: (a) finding the assigned zone for the first root (node 4); (b) finding the
assigned zone for the second root (node 13); (c) finding the assigned zone for the last root (node 24).

Figure 3 demonstrates a schematic of the proposed procedure on the base graph.
Once the above procedure is implemented for all roots, the base graph vertices absent in
the classified groups are identified and assigned to relevant groups. As mentioned, the
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subgraphs must remain connected; thus, the strategy selected for this purpose is based
on the development of subgraphs through the upstream nodes. For example, to assign
the nodes of set N to subgraphs, subgraph 1 develops through nodes 1 and 7; subgraph 2
develops through nodes 11, 17, and 23; and subgraph 3 develops through nodes 14 and 20.
Using the adjacency matrix, the A-Matrix, the nodes connected to the upstream nodes of
these subgraphs are identified and considered new upstream nodes of the corresponding
group. It should be noted that set N needs to be updated at each node assignment step.
These steps continue until the all nodes of set N are assigned to the subgraphs.

2.4.2. Base Graph Partitioning

Once the assigned zone for each root is determined, the base subgraphs are extracted
through the following steps:

• The sewers of each subgraph are identified. For each sewer in the B-Matrix, the
upstream and downstream nodes are identified. If the nodes are in the same group,
the corresponding sewer belongs to that group; otherwise, it is a cut sewer;

• The loops of each subgraph are identified. For each loop in the B-Matrix, the corre-
sponding sewers are placed. If there are cut sewers among the sewers of a loop, the
loop is excluded; otherwise, the sewers of the loop indicate to which subgraph the
loop belongs.

After the sewers and loops of each base subgraph are identified (Figure 4), their
corresponding B-Matrices are created.

Figure 4. Pipe identification process: (a) identifying the pipes for each subgraph; (b) identifying the
loops for each subgraph; (c) partitioning of the base graph.
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2.4.3. Generating the Spanning Trees of Base Subgraphs

A feasible layout for a decentralized sewer network is a forest of nr spanning trees
with nr roots each, including a treatment plant. The present study adopts the algorithm of
growing spanning trees (Walters and Smith 1995) to extract the tree-like sewer network
from the undirected looped base graphs. Through this approach, a sewer of each loop is
cut rather than excluded. In the growing spanning tree method, each tree begins to grow
from a root defining three growing vectors:

(i) Vector M, consisting of the edges (sewers) of the growing tree;
(ii) Vector N, consisting of the vertices (nodes or manholes) of the growing tree;
(iii) Vector AM, consisting of the base graph edges adjacent to the growing tree. Each

of these edges may be considered a decision variable in order to construct another
growing tree branch.

According to the above definitions, the spanning tree growth algorithm applied to the
base graph includes the following steps:

1. The root node, root r, is identified;
2. The vector N is initialized with a single member N = [r]. No edge has yet been

selected, meaning M = [ ];
3. The AM vector is updated in each stage; in the beginning, only edges connected to

the root are included, i.e., AM =(the edges connected to the root node);
4. An edge from vector AM is chosen through optimization. For this purpose, a decision

variable xi (i = 1 : n− 1) in the range of (0, 1) is defined and n is the total number of
vertices in the base graph. Let H be the current number of adjacent edges; the chosen
edge number nai from variable xi is as follows, where nai represents the sewer “a” in
the network;

nai = round(1 + xi × (H − 1)) (10)

5. The edge vector is updated, N = M + [a];
6. The selection of edge “a” adds a new vertex “b” to the growing tree; therefore, it is

required to update the vertex vector, N = N + [b];
7. All edges except “a” connected to vertex “b” are denoted as “ab”(i);
8. Vector AM is updated by excluding edge “a” and adding edges “ab”(i). AM then

contains all choices for the next edge of the growing tree. Before going to the next
step, the following query should be applied to each new member of AM to make it
feasible: Is “ab”(i) already in AM or are both end nodes of ab(i) present in N? If yes,
then edge ab(i) is removed from AM, since its selection causes a loop in the growing
tree; AM = AM− ab(i); if no, vector AM is acceptable;

9. The algorithm goes back to step 5 and the tree continues growing until vector AM
becomes empty. After this, a branch of the growing tree is generated, including s
vertices of the base graph and s− 1 edges according to variables x1 to xs−1;

10. The vertices of the base graph that are not present in the vertex vector N are identified.
The number of these vertices is n− s− 1;

11. A vertex absent in N is selected and placed in N and vector AM is updated accordingly.
Then, the algorithm goes to step 5 and a new edge is identified using Equation (10);

12. This process continues until all absent vertices are placed in N. The algorithm
eventually generates a root-ending spanning tree based on the decision variables
xi (i = 1, n− 1); however, there are a number of excluded sewers—as many as the
number of loops c in the base graph. These sewers must be included in the final
design of the sewer network. To meet this constraint, the following modification
is applied;

13. Let m be the number of edges in the base graph. The number of edges in the grown
spanning tree at the end of the previous step is m − c. The excluded edges are
identified as aci (i = 1 . . . , c) and added to vector M;

14. Since the excluded edges are returned to the spanning tree, they should be cut to
avoid loops. For this purpose, one of the ends of the edge aci is selected to be cut. This
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introduces another decision variable to the problem. A binary variable yi (i = 1, . . . c)
is used for this purpose. When yi = 0, the edge is cut from its upstream, otherwise it
is cut from the downstream. As an aci is cut, a new vertex appears at the truncation
end, which is named n + i. The process continues until all ac elements are cut.

Eventually, all excluded edges are added to the tree, while c new vertices (vertex n + 1
to n + c) are created in the network. Then, a feasible wastewater collection network is at
hand, whose edges can be easily directed to the root node r as shown in Figure 5.

Figure 5. Generated decentralized network.

The proposed algorithm is applied to all partitions of the base graph to extract the base
graph’s spanning forest (decentralized layout). Figure 6 explains this algorithm schematically.

2.5. Solving Subproblem 2: Hydraulic Design of the Network

After generating layouts, the second subproblem is the hydraulic design (sizing) of
the sewer diameters (d), slopes (s), and pump stations (p) for each layout directed to a root.
This subproblem includes many complex constraints, which are nonlinear and discrete, and
should be satisfied ordinarily. Handling such constraints introduces intractable challenges
to the design of sewer systems. For this purpose, a hydraulic design algorithm proposed
by Haghighi and Bakhshipour (2012) [15] is adopted in this study. Employing this ap-
proach, the entire design criteria and constraints of wastewater collection networks are
systematically satisfied through a self-adaptive step-by-step hydraulic design algorithm;
therefore, there is no need to impose any penalty function on the objective functions used
to handle the constraints. This capability is a significant relief for the optimization process
and dramatically reduces blind searches to approach feasible decision spaces.
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Figure 6. Flowchart of the proposed algorithm for generating the spanning trees.

3. Case Study

As a case study to investigate the proposed algorithms, the sewage collection network
of Hendijan city, located in the southwest of Iran (Figure 7), with about 700 hectares area
and a population of 50,000, was designed. Some natural features of this city have made
it a suitable candidate for developing a decentralized sewer network. The city crosses a
large river dividing it into northern and southern parts, has high-level groundwater due
to its proximity to the Persian Gulf, is fully flat in topography, and has poor geotechnical
conditions, which are the main challenges for designing a fully centralized sewer network.
In such a case, a feasibility study for decentralized systems is necessary.

The base graph (Figure 8) of Hendijan city’s sewer network consists of 208 sewers,
64 loops, and 8 candidate locations for treatment plant installation (i.e., network roots).
Table 1 represents the hydraulic and other technical criteria and the constraints on the
network design, while Table 2 shows the problem’s decision variables. Due to lack of space
and other regional limitations, only the treatment plant at candidate location T.P. 8 can
treat 100% of the produced wastewater in this area. The treatment plant at location T.P. 3
can treat up to 75%, while the plants at the other candidate locations can treat 50% of the
total wastewater at most.
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Figure 7. The case study (Google maps).

Figure 8. The base graph of the case study.
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Table 1. Design constraints for the case study.

Item Name Item Value

Maximum velocity Vmax 5 m/s

Minimum velocity Vmin 0.6 m/s

Minimum Slope Smin 0.003 (if Q < 15 l/s)

Maximum Slope Smax 0.5

Maximum proportional water depth (h/D)max 0.75

Minimum cover depth Cmin 1.2 m

Table 2. Optimization variables of the case study.

Variable Type Number Note

α Real 8 Input parameter of the graph partitioning algorithm
(according to the number of candidate outlets)

x Real 145 Input parameter of growing spanning tree algorithm
(according to the number of vertices in the base graph)

y Binary 64 Input parameter of growing spanning tree algorithm
(according to the number of loops in the base graph)

d Real 208 Sewer diameter

s Real 208 Sewer slope

p Binary 208 Locations of lift pump stations

To set up the optimization model, the number and locations of the roots (treatment
plants) and layout and hydraulic design parameters are considered the decision variables.
Then, to drive the optimum trade-off between the objective functions, the construction and
operation costs (Table 3), the network structural resilience (Equation (5)), and the degree of
centralization (Equation (6)), the Borg multiobjective solver is applied.

Table 3. The cost function of the case study.

Description
Construction Cost

Operation Cost
(Million Rial/Years)D

(mm)
Pipe

(Million Rial/m)
Manhole

(Million Rial)

Network

200 10.5 H− 6.75 59 H + 108.82

0.15 × Construction Cost

250 11.5 H− 5.5 67.4 H + 117.32

350 13.14 H− 2.3 80.06 H + 124.42

400 15.71 H− 0.60 91.32 H + 132.92

500 11.2 H + 1.15 105.7 H + 150.7

630 12.2 H + 4.71 112.78 H + 160.1

800 12.93 H + 11.58 19.8 H + 169.72

1000 13.95 H + 24.36 125.5 H + 211.12

Pressurized pipeline
(Million Rial/m) 70D2 − 3.237D + 1.7721 0.15 × Construction Cost

Pump Station 9238.68 + 24.2576Q0.9484 − 7719.421Hp−0.3162 + 0.0928Q0.0003Hp6.175 gQht
1000ηΨ

Treatment Plant 14, 021Q0.95 1332Q0.5196

According to the described framework, the optimization generates and optimizes
the layouts and hydraulic design parameters simultaneously. In contrast, all physical
constraints and design criteria for both subproblems (layout and hydraulic designs) are
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systematically satisfied in the algorithms. The process continues until the best Pareto front
is achieved (Figure 9).

Figure 9. Proposed framework for optimization case study.

It is also worth mentioning that for this case study, initially the costs of a wide range
of sewer diameter sizes with different buried depths were estimated to derive the cost
functions of sewers and manholes through mathematical regression (Table 3). Similarly, the
costs for a wide range of pumping stations and wastewater treatment plants (the sequential
batch reactor process) with different flow rates and pumping heads were estimated to
attain the corresponding cost functions in Table 3. Although the derived cost functions
may have uncertainty and errors, they help state the problem mathematically and facilitate
automated optimization. In addition, since they are used in optimization to compare the
design alternatives, the errors mentioned above would not play a significant role in the
comparative nature of optimization.

4. Results and Discussion

After optimization, it was found that on average, 200,000 (de)centralized layouts
were generated and hydraulically designed and evaluated during a multiobjective run.
The computational time for solving the case study was estimated at around 15 h using a
personal laptop with an Intel(R) Core i7-7700HQ CPU, 2.8 GHz quad-core CPU, and 16 GB
random access memory (RAM).

Certain optimum solutions with a different number of treatment plants were cho-
sen from the obtained Pareto front for presentation in Figure 10 (8 optimum designs in
total). Three designs among them were considered for further investigation through the
following scenarios:

• Scenario 1: The fully centralized design with only one treatment plant (Figure 11a);
• Scenario 2: A design with 5 treatment plants (Figure 11b);
• Scenario 3: The most decentralized design found via the optimization with 8 treatment

plants (Figure 11c).



Water 2021, 13, 1886 15 of 19

Figure 10. Selected solutions from the Pareto front for different numbers of treatment plants.

Figure 11. Various design scenarios: (a) scenario 1, optimal fully centralized design (DC = 100%); (b) scenario 2, design with
5 treatment plants (DC = 55%); (c) scenario 3, the most decentralized design (DC = 27%).
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The last scenario cannot be called a fully decentralized design, since by definition DC
is a function of both the number of network roots and the sewage flow distribution between
the network’s sublayouts. The minimum DC found for this case study is about 27%.

As expected, solving the case study revealed that most of the entire budget for con-
structing and operating a centralized sewage collection network is spent on the sewers. In
scenario 1, around 24% of the total cost is spent on a single wastewater treatment plant
(scenario 1). At the same time, in the most decentralized design with 8 treatment plants
(scenario 3), the portion of total cost spent on treatment plants increases to about 44%. In
other words, as the number of treatment plants increases, toward the more decentralized
network, the cost of the sewer system decreases because of the reductions in excavation
depths and sewer diameter sizes and the need for pumping energy. Conversely, the total
costs for construction and operation of multiple small treatment facilities increase. Indeed,
economies of scale are essential issues to consider when designing a decentralized urban
water system. Multiobjective optimization is a helpful tool to investigate this importance,
as applied to the case study.

Figure 10 shows that the total annuities of the system do not change significantly
for DCs above 55%, corresponding to design alternatives with more than 5 treatment
plants (scenario 2). In these cases, the other considerations and criteria might be used to
differentiate the optimum designs. Table 4 provides a comprehensive comparison between
scenarios 1 to 3.

Table 4. Comparison between scenarios 1 and 3.

Scenario
Total System

Annuities
(Million Rials/Year)

Sewer Networks
(Million

Rials/Year)

Treatment Facilities
(Million Rials/Year)

Average Buried
Depth

(m)

Average
Sewer

Diameters (m)

DC
(%)

Structural
Resilience

(%)

1 3.31 × 105 2.52 × 105 0.795 × 105 2.65 0.26 100 44

2 2.82 × 105 1.76 × 105 1.07 × 105 2.49 0.22 55 74

3 2.76 × 105 1.56 × 105 1.21 × 105 2.48 0.21 27 79

As shown in Figure 10, decentralization strikingly increases the structural resilience by
distributing the risk of system failure between multiple small subsystems. The structural
resilience is increased from 44% in the fully centralized design in scenario 1 to 79% in the
most decentralized system in scenario 3. According to Figure 10, the structural resilience of
the optimum design in scenario 2 with DC = 55% is 74%, which is very close to the most
decentralized system in scenario 3. In other words, it is concluded that the decentralization
benefits in terms of the both the system costs and structural resilience do not improve
dramatically for DC ≤ 55%. Obviously, this finding is case-dependent, and different results
are expected for different case studies.

5. Summary and Conclusions

Wastewater management systems rely heavily on network-based infrastructure, tra-
ditionally designed and constructed with a high degree of centralization, conveying the
whole collected sewage flow to a large treatment plant very far from urban areas. In
general, centralized sewer networks are expensive in terms of construction, operation,
maintenance, and upgrades. They also cause serious concerns regarding long-term sustain-
ability, resilience, and adaptiveness to upcoming challenges such as rapid urbanization.
The challenges associated with centralized sewer networks are much more significant in
flat areas and when water recycling and reuse are of interest.

Recent studies have proposed a shift from centralized systems to decentralized ones to
overcome the challenges mentioned above. The superiority of decentralized sewer systems
over centralized systems is case-dependent, although they are generally found to be more
cost-effective and resilient if their network configuration and degree of centralization are
optimized. This requires sophisticated graph-based algorithms for layout design and
multiobjective optimization.
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The current study introduced a new algorithm to generate all feasible layouts of a de-
centralized sewer network, resulting in a wide range of degrees of centralization. The layout
generator algorithm was coupled to a self-adaptive hydraulic design model to measure the
network components hydraulically. A multiobjective optimization problem was introduced
to find the optimum trade-off between the cost, resilience, and degree of centralization for
the network at hand. The optimization problem is quite self-adaptive, without any penalty
function. It optimizes the network’s layout and hydraulic components implicitly.

The proposed model was applied to a coastal city in Iran. The city is flat with a large
river running through it, the groundwater level is high, and the geotechnical conditions are
unfavorable, making the installation of deep and large sewers expensive. These issues made
the case study a proper candidate for investigating the advantages of decentralized sewer
networks. The results demonstrated the good performance of the proposed algorithms
in generating decentralized layouts, with a wide range of degrees of centralization and
with the algorithms finding near-optimum solutions. As expected, the decentralization
increases the structural resilience by distributing the risk of system failure to multiple
small subsystems. By deriving the optimal trade-offs between the system’s costs, structural
resilience, and degree of centralization, one can decide on the best design depending on
further considerations and limitations.

For this purpose, developing a multicriteria decision-making framework to be used as
a post-processing model is suggested for further investigations in the future. This model
would facilitate the stakeholders in picking the best solution from the derived optimum
Pareto front.
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