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Abstract: The use of a single host strain that allows for an evaluation of the levels of total coliphages
in any type of environmental sample would facilitate the detection of and reduction in complexity
and costs, favoring countries or areas with technical and economic limitations. The CB390 strain is
a candidate for this type of simultaneous determinations, mainly in water samples. The objective
of the study was to establish the recovery capacity of the CB390 strain in solid and semi-solid
samples and to evaluate the microbiological quality of the sludge generated and stabilized by lime
and drying beds in two WWTPs in Colombia. The results of both matrices indicated that CB390
recovered similar numbers of total coliphages (p > 0.05) against the two host strains when evaluated
separately. Only the drying bed treatment was able to reduce between 2.0 and 2.9 Log10 units for
some microorganisms, while the addition of lime achieved a maximum reduction of 1.3 Log10 units
for E. coli. In conclusion, the CB390 strain can be used in solid and semi-solid samples, and the
treatment in a drying bed provided a product of microbiological quality. However, the results are
influenced by the infrastructure of the WWTP, the treatment conditions, and the monitoring of the
stabilization processes.

Keywords: biosolids; domestic wastewater; heavy metals; microbiological indicators; sewage sludge;
total coliphages; wastewater treatment plant

1. Introduction

Heightened food demand due to an increase in world population has resulted in ex-
cessive water use increasing in sewage waters. These waters must be treated in wastewater
treatment plants (WWTP), and reutilized or discharged into bodies of water under better
conditions [1]. According to the United Nations World Water Assessment Programme
(WWAP), more than 80% of the world’s wastewaters and over 95% of emerging countries
dispose of their waters without previous treatment [2].

In Colombia, the treatment of domestic urban wastewater reached between 42 and
42.9% during 2017 and 2018. However, the Colombian government has a projected coverage
of 54.3% for 2022 and 68.6% for 2030 [3–5]. Nevertheless, in less favored rural or urban
areas, basic sanitation coverage rates are lower [6–8].

As a result of wastewater treatment, liquids are separated from solids, and sludge is
obtained from the sedimentation process [9]. Sludge can be stabilized through different
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technologies, generating a product known as biosolid, presenting a lower load pathogenic
microorganism [10,11]. Every year tons of sludge and biosolids are produced world-
wide [11–15]. Due to the low rates of domestic water treatment in Latin America, the
generation of sludge or biosolids is low [2,16–19]. However, 250,172 and 134,900 tons of
biosolids were produced in seven Colombian cities and municipalities in 2018 and 2019,
respectively [20]. This is a higher level of production in comparison to those generated in
2003 and 2007 [17,21].

Class B biosolids contain limited pollutants. Therefore, they must be handled with
minimal public contact. They can be used in farms, forestry, and land recovery [22,23]. Due
to the presence of pathogenic microorganisms and heavy metals, the inappropriate use of
biosolids represents a potential risk to public health and the environment [9,24–26]. The
presence and levels of pathogens and chemical compounds depend on the source of the
wastewater and the efficiency of the treatment [27–30].

Despite different sludge stabilization processes, the complete elimination of pathogens
and heavy metals cannot be guaranteed. Heavy metals may require another additional
treatment to improve the characteristics of the sludge [29,31,32] or the review of conditions
or factors that can determine the efficiency of the presence of other microorganisms or
consortiums such as sulfate reducing bacteria (SRB), to allow for the removal of heavy
metals in sludge [33–35] . Therefore, it is necessary to evaluate the quality of the sludge
before it is utilized or disposed of. Their use is determined by the regulations of each region
or country [15,22,29,36–50]. In the case of Colombia, this activity is ruled by decree 1287 of
2014 [42].

Quality determination, chemical status, or microbiological evaluation of these types
of waste are mainly carried out in the WWTPs of the main cities of Colombia. As a result,
most plants in different municipalities ignore the sludge quality and efficiencies of the
stabilization treatment.

Enteric viruses are among the different groups of microorganisms that can be found
in sludge and stabilized sludge. These are considered a high-risk group due to their
resistance to inactivation, prolonged survival, and low infective dose [51]. Therefore,
their determination becomes relevant. However, due to the costly and time-consuming
detection processes, bacteriophages are alternative indicators of the presence of fecal viral
pollution [52–55]. This proposal is based on the fact that bacteriophages have similar or
close characteristics concerning their biology, morphology, similar structures, fate, infection,
transport, and similar survival patterns against enteric viruses, providing more detailed
information on the presence of viral pathogens in liquid, solid or semi-solid environmental
samples [54,56–60]. Somatic and F-specific coliphages have been proposed as indicators of
pathogens and sanitation efficiency [58,61–64]. Somatic coliphages present a higher count
and resistance to treatments, followed by F-specific phages [53,60–62,65].

The independent detection and enumeration of these types of viral indicators are even
more wasteful and expensive when used to evaluate the microbiological quality of any type
of matrix. Therefore, it is necessary to have a single host strain capable of determining total
bacteriophage levels regardless of the type of matrix and that its recovery levels are similar
compared to other host strains that were traditionally used (E. coli WG5 and Salmonella
enterica serovar typhimurium WG49).

According to the above, the proposed strain for simultaneous detection of total bac-
teriophages corresponds to E. coli CB390 against other evaluated strains (C-3000, C3322,
and CN13 plus HS) [64,66]; however, its evaluation has mainly been carried out in dif-
ferent types of water sample [66–70]. Therefore, it is necessary to have data from other
types of solid and semi-solid samples because the extraction processes, geographical con-
ditions, or the culture media used could somehow influence their behavior. According
to Jebri et al. [71] in activated sludge samples, strain CB390 obtained better total bacterio-
phage recoveries with some changes in the series of media used compared to that which is
traditionally used [67–69].
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The evaluation of this strain with several possible environmental samples from differ-
ent areas and countries and according to the procedure described by Guzmán et al. [69] can
help one to obtain a better knowledge of its behavior, efficiency, and possible limitations.

Finally, evaluating and determining e the total bacteriophage count in sludge, in
addition to reducing the costs and laboratory analysis times for treatment plants, would
allow evaluating the reduction or elimination of a greater number of viruses present in
the samples [72,73]. The levels of recovery that are presented in this study could expand
the use of the host strain internationally. Regarding Colombia, the evaluation of viral
indicators in biosolids complements this being a regulatory requirement [42].

Many of these plants do not have a defined operating procedure. In most cases, the
WWTPs in Colombia do not know the microbiological quality of the generated sludge
and the efficiency of the stabilization process. This investigation focuses on two objectives.
First, to evaluate the ability of the E. coli CB390 strain to simultaneously detect somatic
coliphages and F-specific phages in semi-solid or solid sludge samples, based on the
satisfactory results that this strain has had in liquid samples, described above. Second, to
publicize the microbiological quality of the sludge before and after its stabilization in two
municipal WWTPs in Colombia.

2. Materials and Methods
2.1. WWTPs Location and Treatment Plant Description

Chiquinquira’s WWTP is located in the Boyacá department. It is located approximately
136 km from La Calera’s WWTP in the Cundinamarca department (Figure 1). Both types
of plants receive water collected by the sewerage network of the municipal seat. It is a
combined sewer system whose wastewaters mainly come from domestic, commercial, and
industrial sources with the respective stormwater input (Table 1). For both WWTPs, the
treated sludge is buried within the same treatment plant facilities to avoid any contact.

2.2. Sampling

A total of 24 and 27 samples of untreated and treated sludge from the Chiquinquirá
WWTP were analyzed to determine the concentration of microorganisms and heavy metals.
About 800 g of sludge was collected in sterile Ziploc bags and sampling within the first four
months of 2020. Nine and ten samples of treated and untreated sludge from La Calera were
also evaluated, which were sampled between March and April 2020. Table 1 describes the
types of treatments carried out at each of the plants. From the total of the samples collected
from WWTP of La Calera, three samples of sludge without and with treatment were chosen
to evaluate the levels of heavy metals under Colombian decree 1287 of 2014 [42].

Furthermore, eight affluent and effluent wastewater samples from La Calera and
24 from Chiquinquirá were analyzed for WWTPs microbiological quality evaluation and
determination. The samples were collected in sterile 500 mL plastic bottles. In the WWTP
of Chiquinquirá, the UV disinfection system was damaged.

All liquid and solid samples were taken at different times and days of the week within
the time mentioned above. All samples were collected and maintained at <10 ◦C until
processed. For microbiological analysis, samples were analyzed within 12 (±8) h after their
collection, whereas for helminth egg and heavy metals a maximum of 16 days after their
sampling was allowed.
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Figure 1. La Calera and Chiquinquirá, Colombia WWTPs localization.

Table 1. Municipalities of La Calera and Chiquinquirá, Colombia WWTPs sludge treatment and condition description.

WWTPs
Flow Treatment Population Served Water Line Sludge Treatment Type of Sludge

Stabilization
Time of Treatment

or Stabilization
Quantity of Treated
Sludge Generated

La Calera
32 L/s

~18,000
people

Pretreatment
Primary treatment

Secondary
treatment

Digester
Drybeds Drybed ~2 months ~4 to 7 Ton/year

Chiquinquirá
240 L/s to 252 L/s

~72,770
people

Thickeners and
Dewatering Lime-treated ~1 month ~480 Ton/year

~: Approximately.

2.3. Microbiological Analysis of Sludge and Wastewater Samples

Microbiological (thermotolerant coliforms and Salmonella spp, somatic coliphage, total
helminth eggs, and viable helminth eggs.) and chemical evaluation of untreated and
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treated sludge were based on that Decree 1287 of 2014 to evaluate their quality [42], as
described below.

2.4. Thermotolerant Coliform (TTC)

To quantify thermotolerant coliforms or fecal coliforms, the EPA/625/R-92/013
method was used (Annex F) [74]. A total of 30 mL or g of sludges were mixed with
270 mL of sterile Phosphate Buffered Saline (PBS) and suspended by magnetic stirring
at room temperature for 15 min. This suspension was used to prepare decimal dilutions,
and then thermotolerant coliform was quantified by the membrane filtration procedure.
For filtration, 0.45 µm × 47 mm cellulose acetate membranes (Sartorius) were used, and
a vacuum filtration system, Sartorius. The blue-colored colonies on the membrane filter
and M-FC medium (Merck) supplemented with 1% solution of rosolic acid were counted
as the thermotolerant coliform. The results of thermotolerant coliforms are expressed as
plaque-forming units per grams of dry weight basis (CFU/g dwb) [42,74]

2.5. Salmonella spp.

The most probable number of Salmonella spp. was determined according to EPA,
Method 1682 [75]. Briefly, a given volume of sample was inoculated into the enrichment
medium Tryptic Soy Broth (TSB) and incubated for 24 h at 37 ◦C. After incubation, a series
of aliquots of the enrichment culture were inoculated in modified semi-solid Rappaport
Vassiliadis (MSRV, OXOID) supplemented with novobiocin 2% (OXOID) and malachite
green to inhibit the growth of non-Salmonella species while allowing most Salmonella
species to grow. Presumptive Salmonella colonies were isolated on xylose-lysine desoxy-
cholate agar (XLD) and confirmed using lysine-iron agar (LIA), triple sugar iron agar (TSI),
and urea broth. The results of Salmonella spp. are expressed as most probable number per
25 g of dry weight basis (MPN/25 g dwb) [42,75]

2.6. Helminth Eggs (HE)

Viable and total helminth eggs were detected and quantified according to NOM-
004-SEMARNAT-2002 (Annex V) [45]. In summary, this technique consisted of mixing
and shaking the equivalent of 2.0 g of total solids or dry weight sample with 1 L of
Tween 80 solution (0.1%). A 24 h sedimentation was performed then, the supernatant was
discarded, and the pellet was filtered through a 160 µm sieve to remove the largest particles.
The solids retained on the sieve were washed with 2 L of distilled water; this wash was
collected in a clean 5 L plastic container.

Subsequently, the sample was subjected to the second sedimentation for 6 h, the
supernatant was discarded, and the sediment was placed in 250 mL conical tubes to
centrifuge at 660× g for 5 min. Previously the conical tubes had approximately 150 mL
of ZnSO4 (density 1.3). At the end of the centrifugation process, the supernatant was
recovered in a clean 2.5 L plastic container, 1 L of distilled water was added, and the
sediment was discarded.

Finally, sedimentation was carried out of 8 h discard the supernatant and 15 mL of
acetoacetic buffer and 10 mL of ethyl acetate was added to this, followed by a gentle
homogenization. The resulting pellet was mixed with 5 mL of H2SO4 (0.1 N) and then
incubated at approximately 26◦ C for 4 weeks, allowing for air exchange. Finally, the
sample was examined under a light microscope, eggs were counted, and viability was
determined based on the formation of developing larvae. The results are expressed as Total
Helminth Eggs (HET/4 g) and viable Helminth Eggs (VHE/4 g) [42,45].

In addition to that described in Decree 1287 of 2014 [42], the detection of other bac-
teriological indicators such as E. coli (CFU/g dwb) and total coliforms (CFU/g dwb) [76]
was performed. For viral indicator detection, two additional indicators were detected:
F-specific coliphages (F-specificPH) and CB390 phages (CB390PH).
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2.7. Total Coliforms (TC) and E. coli

To quantify the total coliforms and E. coli the EPA/625/R-92/013 method (Annex F) [74]
and ISO 9308-1 method were used [74,76]. A total of 30 mL or g of sludges were mixed with
270 mL of sterile Phosphate Buffered Saline and suspended by magnetic stirring at room
temperature for 15 min. This suspension was used to prepare decimal dilutions, and then
the bacterial were quantified by the membrane filtration procedure. For filtration, 0.45 µm
× 47 mm cellulose acetate membranes (Sartorius) were used, and a vacuum filtration
system, Sartorius. The dark blue/violet colonies were enumerated as E. coli. Additionally
the sum red and dark blue/violet colonies on Chromocult agar (Merck) were enumerated
as Total Coliform. The results are expressed as plaque-forming units per grams of dry
weight basis (CFU/g dwb).

2.8. Somatic Coliphages, F-Specific Coliphages and CB390 Phage Analysis

Bacteriophages were isolated from solid and semisolid samples through the method
described by Lasobras et al. [61]. In brief, samples were mixed with 10% beef extract at a 1:10
(w/v) ratio and homogenized through magnetic agitation for 30 min at room temperature.
Following this, the suspension was centrifuged at 4000× g for 30 min. Subsequently, the
supernatant was filtered through 0.22 µm syringe filters polyethersulfone (PES) membrane
(Sartorious). Subsequently, somatic coliphages (SOMCPH) were detected according to the
ISO 10705-2 (2000) method [77] using the E. coli WG5 (ATCC 700078) strain. F-specific
phages were detected according to the ISO 10705-1 (1995) method [78] using the Salmonella
enterica serovar typhimurium WG49 (ATCC 700730) strain.

The protocol described by Guzmán (2008) was used for CB390 (CB390PH) strain
detection [69], where a series of additives, antibiotics and a combination of two types of
media are used for the growth of bacteria, and the double layer agar described by the ISO
procedure [77,78]. The strain E. coli CB390 (CECT9198) was grown on modified Scholten
agar (MSA) (OXOID) with 100 µg/mL ampicillin (Sigma-Aldrich). For the double-layer
agar technique, TYG agar and semisolid agar (OXOID) were supplemented with ampicillin
(100 gmL−1), Ca2+ and Mg2+. The sum of somatic coliphages and F-specific phages were
considered as total coliphages (TCPH). The results are expressed as Plaque Forming Units
per gram of dry weight basis (PFU/g dwb).

2.9. Chiquinquirá WWTP Sludge Chemical Analysis

According to Decree 1287/2014 [42] the following 10 heavy metals were evaluated:
A arsenic (As), cadmium (Cd), copper (Cu), chromium (Cr), mercury (Hg), molybdenum
(Mo), nickel (Ni), lead (Pb), selenium (Se) and zinc (Zn) according to USEPA (2001) [79]
by an inductively coupled plasma-optical emission spectrophotometer (ICP-OES Horiba
Jobin-Yvon Ultima 2 CE). A total of 20 g of the sludge samples were weighed and dried
at 60 ◦C for 12 h. To achieve homogeneity, the dried samples were sieved using a 5-mesh
polypropylene sieve and ground in a mortar and pestle. Approximately one gram of dry
material sample was refluxed for one hour with mass grade nitric acid and chlorohydric
acid. The samples were transferred to a 100 mL volumetric flask using water type I
grade. The extract solution was filtered before analysis in the instrument. The sample was
analyzed by direct analysis verifying that the turbidity was below 1 NTU. The results were
reported as mg/kg.

2.10. Evaluation of Microbiological Indicators in Wastewater Samples

To evaluate the influent and effluent water’s microbiological quality, the presence
of total coliforms (CFU/100 mL) and E. coli (CFU/100mL) was found, according to the
ISO 9308-1 method [76]. Samples were collected and stored established according to
the Standard Methods for the Examination of Water and Wastewater [80]. For filtration,
0.45 µm × 47 mm cellulose acetate membranes (Sartorius) were used, and a vacuum filtra-
tion system, Sartorius. Moreover, the dark blue/violet colonies were enumerated as E. coli.
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Additionally, the sum of red colonies and E. coli colonies on Chromocult agar (Merck) was
enumerated as total coliform.

To detect CB390 (CB390PH) phages in water, samples were filtered through 0.22 µm
syringe filters PES membrane (Sartorious), according to Guzmán et al. [69], ISO 10705-2 [77]
and ISO 1705-1 [78], as previously described. The results are expressed as Plaque Forming
Units in 100 mL analyzed water (PFU/100 mL).

2.11. Data Analysis

All statistical analyses were carried out using IBM SPSS Statistics v26 software. Normal
distribution was evaluated using the Kolmogorov-Smirnov test. Data without a Gaussian
distribution were analyzed using Wilcoxon (Mann-Whitney U) and Kruskal-Wallis tests
non-parametric tests. All tests of significance were two-tailed and p values of <0.05 were
considered statistically significant (sludge without and with treatments).

3. Results
3.1. Sludge Bacterial and Viral Indicators

E. coli CB390 concentrations in sludge samples with and without treatments were
similar to the counts obtained for the sum of total coliphages phages (somatic and F-specific
coliphages); no significant differences (p > 0.05) were observed in the recoveries presented
from E. coli CB390 compared to E. coli WG5 and the sum of total coliphages (Figure 2).
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Figure 2. SOMCPH, F-specificPH, CB390PH, and TCPH concentrations in sludge samples with-
out treatment (A) and with treatment (B). SOMCPH: Somatic Coliphages, F-specificPH: F-specific
Coliphage, PHCB390: CB390 phages, TCPH: Total Coliphages.

The concentration of total coliforms, thermotolerant and E. coli in sludge samples
without treatment from the La Calera WWTP was 6.2, 5.8, and 5.3 Log10 CFU/g while the
values for these same indicators in the Chiquinquirá WWTP were higher with reported
values between 6.7 and 7.6 Log10 CFU/g (Figure 3).

Regarding WWTP La Calera, drying bead sludge treatment results at week four for
total coliform concentrations were 4.9 Log10 CFU/g, C. thermotolerant of 4.4 log10 CFU/g,
and E. coli of 3.8 Log10 CFU/g, whereas at week eight bacterial levels were lower, reducing
an additionall 1.5 Log10 units for a maximum total of 2.9 log10 units.

On the other hand, total coliform, thermotolerant, and E. coli levels in WWTP Chiquin-
quirá were 6.4, 5.9, and 5.4 Log10 CFU/g respectively, with a maximum reduction of 1.2
Log10 unit.
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Figure 3. La Calera (A,B) and Chiquinquirá (C,D) WWTPs microbiological indicators in untreated and treated sludge as a
function of time (weeks). TC: Total Coliforms, TTC: Thermotolerant Coliforms, EC: E. coli, SOMCPH: Somatic Coliphages,
F-specificPH: F-specific Coliphages, PHCB390: CB390 phages, TCPH: Total Coliphages.

Concentrations of the viral indicators (SOMCPH, F-specificPH, CB390PH, and TCPH)
in untreated samples of WWTP La Calera were 3.7 and 4.7 Log10 PFU/g. These results
contrast with the values found in the WWTP of Chiquinquirá, where the observed levels
were from 5.4 to 6.4 Log10 PFU/g (Figure 3) (Appendix A—Table A1).
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The concentration of viral indicators at week four of treatment in sludge samples from
WWTP Chiquinquirá for SOMCPH, F-specificPH, CB390PH, and TCPH corresponded to
5.6, 4.4, 5.4, and 5.6 Log10 PFU/g, respectively, thus, reaching a maximum reduction in
viral indicators of 1.0 Log10 units. The levels of these indicators in WWTP La Calera were
3.9, 2.8, 4.0, and 3.9 Log10 PFU/g, reaching reductions between 1.2 y 1.4 Log10 units at
week eight (Figure 3).

These results were obtained in La Calera WWTP after approximately 30 days of
stabilization by lime addition (Figure 3); the pH reached during the study was less than 9.0.
Other variables and conditions are not controlled or monitored (proportion of lime, time,
humidity) by the WWTP which may affect the levels of microbiological reduction.

3.2. Concentration of Salmonella spp and Helminth Egg in Sludge

For the WWTPs Chiquinquirá and La Calera, the concentration of Salmonella spp. in the
sludge was 3.4 MPN/25 g and 2.5 MPN/25 g respectively. The total helminth egg values for
both plants were 75.3 and 109 HET/4 g; however, viable egg concentration was lower, with
concentrations of 22.4 and 43.8 VHE/4 g, respectively (Figure 4) (Appendix A—Table A1).
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without treatment as a function of time (weeks). HE: Helminth Eggs, VHE: Viable Helminth Eggs.

In the fourth week of treatment of the sludge from the Chiquinquirá plant, the val-
ues were 3.1 MPN/25 g for Salmonella spp., total helminth eggs 53.9 HET/4 g, and viable
19.9 VHE/4 g. In contrast to La Calera’s plant, at week four and week eight Salmonella spp.
and helminth eggs obtained better results. The reduction was closed to one logarithmic unit
for Salmonella, while for helminth eggs decreased by 0.6 Log10 units obtained final concen-
trations of Salmonella spp. of 0.3 MPN/25 g; for total and viable eggs 32.8 HET/4 g and 11.8
VHE/4 g were obtained after eight weeks of treatment (Figure 4) (Appendix A—Table A1).
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3.3. Chiquinquirá WTTP Heavy Metal Concetration

Sludge Cd, Cu, Cr, Hg, Mo, Ni, Pb, and Zn concentrations corresponded to 43.8, 57.6,
10.7, 0.5, 4.8, 24.0, 15.6, and 1.1 mg/kg, respectively; however, according to the method’s
limit of detection, Ar and Se were not detected in any analyzed sample (<4.0 mg/kg).
Mercury was only detected in one sample with a concentration of 0.6 mg/kg (Figure 5).
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Figure 5. Chiquinquirá, Boyacá (Colombia) WWTP heavy metal concentration in treated and untreated sludge.

Average heavy metal concentration in lime-treated sludge for Cd, Cu, Cr, Mo, Ni,
Pb, and Zn were 46.3, 61.4, 10.5, 4.4, 21.9, 17.2, and 1.1 mg/kg, respectively. Selenium
was only detected in one sample, which presented a maximal concentration of 4.0 mg/kg.
Furthermore, Ar (<4 mg/kg) and Hg (<0.5 mg/kg) were not detected in the analyzed
samples (Figure 5).
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3.4. Bacterial and Viral Indicators in Domestic Waste Water

Total coliforms at the entry for both La Calera’s and Chiquinquirá’s WWTPs had
an average concentration of 7.6 Log10 CFU/100 mL, whereas for E. coli, the average
concentration was 6.5 and 6.2 Log10 CFU/100 mL, respectively. In La Calera’s WWTP
effluent water samples, average counts of 6.6 and 5.4 Log10 CFU/100 mL were observed for
total coliforms and E. coli. On the other hand, for the WWTP Chiquinquirá, concentrations
of 6.3 and 5.4 Log10 CFU/ 100 mL were identified (Figure 6).
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At La Calera´s plant, CB390PH concentrations for entry and effluent water samples
were 6.2 and 5.3 Log10 PFU/100 mL, respectively. On the other hand, the observed values
for the Chiquinquirá WWTP were 6.7 and 5.8 Log10 CFU/100 mL, respectively (Figure 6).

4. Discussion

E. coli CB390 coliphage recovery compared to total coliphages in untreated and treated
sludge did not present significant differences (p > 0.05, Kruskal Wallis). The value of total
coliphages is equivalent to the independent count of somatic and F-specific coliphages.
Reported concentrations for somatic coliphage WG5 strain and total coliphages in all solid
and semi-solid samples were slightly higher than those reported for CB390; however, these
differences were not statistically significant (p > 0.05, Kruskal Wallis) (Figure 2). These
results are consistent with the recovery levels of the same strain in different types of liquid
matrices, regardless of geographic location [66–70].

The recovery values of the CB390 strain reported here suggest the possibility of its use
in solid or semi-solid matrices for simultaneous somatic and F-specific coliphage detection
(Figure 2), expanding its microbiological evaluation in a larger type of environmental samples.

Although the recovery results do not present significant differences, it is important
to note that most of the CB390 counts are always below E. coli WG5 and above WG49.
These levels could be improved by using the series of double-layer agar media described
by ISO 10705-1 [78] standard allowing higher and closer values to each other, according by
to Jebri et al. [71]. Therefore, it is necessary to continue evaluating this strain with a greater
number of samples from different sites and types of treatments.
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A total reduction of 1.2 Log10 units was observed for E. coli microbiological counts
in Chiquinquirá’ s WWTP at the fourth week of treatment, followed by thermotolerant
and total coliforms; nevertheless, reduction differences among them were not significant.
Likewise, the same was observed for reduced levels of different viral indicators (p > 0.05).
Nonetheless, total coliphages, somatic and CB390 phages were the least affected by lime
supplementation, compared with low phage detection by Salmonella WG49 (Figure 3).

Concerning Salmonella spp. the reductions in total and viable helminth eggs were 0.04,
0.15, and 0.1 Log10 units, respectively (Figure 4). It is worth noting that the results obtained
in this study could be due to the mixture of sludge and lime because as the WWTP has not
established the ratio of lime that needs to be added, the mixture is done manually, there is
no pH control, and the arrangement in the cells is outdoors. The above experiment was
probably carried out in the face of adequate control factors, such as the homogenization
of compounds, temperature, pH, and humidity, which could allow for the survival of the
evaluated indicators [74,81].

Regarding lime-treated sludge, the data obtained in this study are quite different from
those of other studies [65,82–84], because in those studies, the results showed that microor-
ganism levels were very low or undetectable after treatment with lime. Thermotolerant
and not thermotolerant, as well as pathogenic bacteria were unappreciable, despite the
very short time to lime exposure. The behavior was similar for somatic and F-specific
coliphages: despite a reduction in these microorganisms, somatic coliphages were the
most resistant to the treatment [61,65,84]. In contrast, helminth eggs were unaffected by
lime addition in a short period of time, hence, their reduction could require more than
three weeks [81,83,84]. Collectively, these results confirmed that lime treatments produce
biosolids of sufficient microbiological quality, which can be used for agricultural purposes
without restrictions [82,85].

Concerning WWTP La Calera reductions in comparison with drying beds at the fourth
and eight week of treatment by different bacteriological and viral indicators, the evaluated
Salmonella spp. and helminths eggs were higher compared to the lime-treatment performed
in WWTP Chiquinquirá (Figures 3 and 5). Both types of treatments presented significant
differences for each evaluated indicator (p < 0.05).

Bacteria reduction results for WWTP La Calera drying beds at the fourth week were
between 1.3 and 1.5 Log10 PFU/g; whereas, for phages, they were between 0.5 and 0.8
Log10 units. At the eighth week of drying, reduction levels were even greater for bacteria
2.7 and 2.9 Log10 units. In contrast, phage reduction was lower and ranged between 1.9 and
2.1 Log10 PFU/g. E. coli was the indicator that presented the highest reduction, followed
by thermotolerant and total coliforms. F-specific phages presented the greatest reduction,
followed by total coliphages, somatic and CB390 (Figure 3). F-specific phage reduction in
this type of drying against other viral indicators presented a discrete significant difference
(p < 0.05). The reduction levels here reported were similar to those reported under the same
type of stabilization, where a decrease in indicators, pathogenic bacteria and parasites were
observed [74,82,86,87].

Concerning heavy metal concentration in WWTP Chiquinquirá sludge, no changes
were observed after treatment (p > 0.05) (Figure 5). For La Calera’s heavy metal concen-
tration, García and Díaz described low detected values [88]. On the other hand, sludge
treatment by the addition of lime or by the drying bed process did not affect possible sam-
ple heavy metal concentration [86]. Therefore, it is important to highlight that the presence
of these compounds is related to wastewater origin, in addition to the control of industrial
activities carried out in the zone [27–29,89]. For both evaluated WWTPs, water was mainly
from domestic, commercial, and institutional sources with respective stormwater.
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According to the microbiological results obtained in this study, lime-treated sludge
cannot be used for the described uses in decree 1287 of 2014 [42]. Inadequate sludge
use represents a possible public health and environmental risk due to the presence of
pathogenic microorganisms [9,24–26]. These results could be mainly due to the state of
the WWTP infrastructure, technical, operational, and economic limitations. The absence
or weakness of the control, follow-up and monitoring processes within the stabilization
process is another factor to consider.

In contrast, drying bed treated sludge generated a product of better quality, which can
be utilized according to decree 1287 of 2014 [42]

Finally, in domestic wastewater total coliform, E. coli, and CB390 phage detected that
the concentrations from the evaluated plant affluent and effluent were similar between
plants. However, a higher level of phages detected was recognized in the Chiquinquirá
plant compared to La Calera (Figure 6). Concerning both plants, E. coli and CB390 detected
similar phage levels compared to the concentrations reported by other treatment plants in
Colombian municipalities [67,90]. Regarding bacteria and phage reduction after treatment,
their values were between 1.3 and 0.8 Log10 units, respectively (Figure 6). The reductions
in bacteriological and viral indicators could be greater; however, the UV light disinfection
process in the Chiquinquirá WWTP was damaged. Bacteria reduction levels were simi-
lar to those reported in internal reports available on the Espucal E.S.P website [91] and
Empochiquinquirá E.S.P. [92].

5. Conclusions

According to the technical settings and sludge stabilization process conditions for
each evaluated WWTPs, it was observed drying bed treatment resulted in a higher quality
product in comparison with lime treated sludge. The WWTP La Calera must establish
the operational parameters for stabilization by lime, where an adequate reduction in
microorganisms is ensured.

Heavy metal levels in sludge samples with or without treatment were unaffected,
regardless of the type of treatment performed.

In conclusion, the results obtained in this investigation suggest that E. coli CB390 could
be used to detect somatic and F-specific coliphages (total coliphages) simultaneously in
semi-solid and solid samples.

It is necessary to collect a greater amount of microbiological data from sludge to con-
tinue evaluating the efficiency and limitation of the strain in different types of stabilization
treatments and WTTPs from Colombia or other sites. On the other hand, This allows for
the determination of the type of treated sludge, its possible uses or reuses in accordance
with Colombian regulations.
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Appendix A

Table A1. Bacterial concentration, viral indicators, Salmonella spp. and helminth eggs in untreated and treated sludge
samples collected from La Calera and Chiquinquirá WWTPs.

Indicator

WWTP La Calera WTTP Chiquinquirá

Sludge
n: 9

Sludge
Dryingbed Treatment

n: 5
(4 Weeks)

Sludge
Dryingbed Treatment

n: 5
(8 Weeks)

Sludge
n: 24

Lime-Terated Sludge
n: 27

(4 Weeks)

Average
(SD) Range Average

(SD) Range Average
(SD) Range Average

(SD) Range Average
(SD) Range

TC
Log10 (UFC/g)

6.2
(0.5) 5.7–6.9 4.9

(0.7) 4.1–5.7 3.5
(0.6) 2.5–4.0 7.6

(0.2) 7.2–8 6.4
(0.3) 5.7–6.8

TTC
Log10 (UFC/g)

5.8
(0.4) 5.3–6.4 4.4

(0.4) 3.9–4.9 2.9
(0.3) 2.3–3.1 7.0

(0.2) 6.5–7.4 5.9
(0.3) 5.2–6.3

E. coli
Log10 (UFC/g)

5.3
(0.4) 4.7–5.9 3.8

(0.7) 3.0–4.6 2.4
(0.6) 1.4–3.0 6.7

(0.2) 6.2–7.1 5.4
(0.3) 4.9–5.8

SOMCPH
Log10 (UFC/g)

4.7
(0.3) 4.3–5.1 3.9

(0.5) 3.4–4.3 2.7
(0.4) 2.1–3.1 6.4

(0.3) 5.9–7.1 5.6
(0.2) 5.3–6.0

F-specificPH
Log10 (UFC/g)

3.7
(0.3) 3.3–4.1 2.8

(0.5) 2.2–3.4 1.6
(0.3) 1.1–2.0 5.4

(0.3) 4.8–6.1 4.4
(0.2) 4.0–4.9

PHCB390
Log10 (UFC/g)

4.5
(0.3) 3.9–5 4.0

(0.6) 3.3–4.6 2.6
(0.7) 1.4–3.1 6.1

(0.4) 5.6–7.0 5.4
(0.2) 5.2–5.9

TCPH
Log10 (UFC/g)

4.7
(0.3) 4.4–5.2 3.9

(0.5) 3.4–4.4 2.7
(0.4) 2.1–3.1 6.4

(0.3) 6.0–7.1 5.6
(0.2) 5.4–6.1

Salmonella
MPN/25 g

2.5
(0.3) 2.1–2.9 2.0

(0.2) 1.9–2.2 0.3
(0.0) 0.3–0.3 3.4

(0.1) 3.2–3.6 3.1
(0.4) 2.4–3.5

HE/4 g 109
(18) 82–136 74.4

(11.5) 56–84 32.8
(6.1) 24–40 75.3

(6.5) 64–88 53.9
(5.7) 40–66

VHE/4 g 43.8
(10.9) 24–58 24.8

(6.1) 20–34 11.8
(3.2) 8.0–16 22.4

(9.2) 4.0–34 19.9
(6.4) 8.0–34

TC: Total Coliforms, TTC: Thermotolerant Coliforms, SOMCPH: Somatic Coliphages, F-specificPH: F-specific Coliphages, PHCB390: CB390
phages, TCPH: Total Coliphages, HE: Helminth Eggs, VHE: Viable Helminth Eggs, SD: Standard Deviation.
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