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Abstract: The continuous growth of irrigated agricultural has resulted in decline of groundwater
levels in many regions of Maryland and the Mid–Atlantic. The main objective of this study was to
use crop water productivity as an index to evaluate different irrigation strategies including rainfed,
groundwater, and recycled water use. The Soil and Water Assessment Tool (SWAT) was used to
simulate the watershed hydrology and crop yield. It was used to estimate corn and soybean water
productivity using different irrigation sources, including treated wastewater from adjacent wastewa-
ter treatment plants (WWTPs). The SWAT model was able to estimate crop water productivity at both
subbasin and hydrologic response unit (HRU) levels. Results suggest that using treated wastewater
as supplemental irrigation can provide opportunities for improving water productivity and save
fresh groundwater sources. The total water productivity (irrigation and rainfall) values for corn and
soybean were found to be 0.617 kg/m3 and 0.173 kg/m3, respectively, while the water productivity
values for rainfall plus treated wastewater use were found to be 0.713 kg/m3 and 0.37 kg/m3 for
corn and soybean, respectively. The outcomes of this study provide information regarding enhancing
water management in similar physiographic regions, especially in areas where crop productivity is
low due to limited freshwater availability.

Keywords: hydrologic model; SWAT; SWAT–Cup; WWTP; Maryland; crop water productivity

1. Introduction

In recent years, the Mid–Atlantic region has been experiencing intermittent rainfall
with higher temperatures, especially during the growing season (summertime). As a result,
recurrent short–term droughts are becoming more frequent, and the evaporation rate has
increased during the summer. Researchers projected increases in temperature and annual
precipitation, especially during winter and spring, for this region [1–3]. According to
global climate model scenarios, future hottest years might be 11 ◦F (6.1 ◦C) warmer than
the historical hottest year under the higher emissions scenario (Representative Concen-
tration Pathway, RCP 8.5) [3]. As a result of higher water demand, it is predicted that
the Mid–Atlantic region of the USA might experience medium to high water stress by
2045 [4,5]. Currently, the agricultural sector consumes a high amount of fresh groundwater
to meet the increased crop water demand due to intermittent precipitation and warmer
climate. Fresh groundwater withdrawals increased by 38.25% for irrigation consumption in
Maryland from 2000 to 2015 [6]. Historical data indicated that the amount of groundwater
withdrawals increased in those years when annual average precipitation was below the
normal (838.2–1397 mm) during the growing season [7]. Therefore, irrigation is becoming
more common in the Mid–Atlantic region due to changing and non–uniform seasonal
distribution of precipitation, and also due to farmer’s desire to increase the crop yield.
Irrigated acres in the Mid–Atlantic area increased by 33% from 2003 to 2009, with a 6%
increase in farmland acreage [8]. While agricultural water consumption increased rang-
ing from 100% to 250% in the region from 1985 to 2010. While models of future climate
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predict a moderate increase in annual precipitation for the Mid–Atlantic, it will happen
mainly during winter and early spring [3], over fewer more extreme events, and with
higher summer temperatures that promote evapotranspiration (ET). Observed climate data
for the past century already show that rainfall has been decreasing during the growing
season while temperature has increased [3,9]. The water permit database for Maryland
also indicated that the number of pumping wells used for crop irrigation has increased in
the past few years to meet the higher crop water demand [10]. These factors, combined
with population growth and high rate of urbanization, have resulted in the depletion of
aquifers, especially in summer months. Negative impacts from the increase in freshwater
consumptions can be observed through groundwater level decline in many regions of
Maryland. Reviewing several aquifers in the Coastal Plain of Maryland indicate drastic
decline in the water table depth between 1982 and 2018, which ranges from 15.24 m (50 ft.)
to 22.86 m (75 ft.) of decline in Calvert and St. Mary’s Counties of Southern Maryland and
3.35 m (11 ft.) to 12.5 m (41 ft.) in Kent and Dorchester counties, respectively [11]. These
declines, if prolonged, could have a significant impact on the sustainable freshwater supply
in future.

In addition, uncertainty and non–uniformity in rainfall (wet and dry hydro–periods)
can cause yield reductions and economic losses for farmers. For example, a drop in
precipitation across Maryland in 2010, especially during May to July, resulted in significant
crop losses compared to 2009, with corn yields down 39 bushel/acre (2622.79 kg/ha),
soybean down 8%, hay down 15% despite an increase in acreage, and barley down 31% [12].
Irrigation can prevent such losses, by acting as a buffer against weather variations.

The alternatives for freshwater demand reduction during summer exist; however,
they have not been fully explored in this region. Water resource management should
focus on the demand management strategies as well as looking into alternative water
sources to minimize groundwater withdrawals. One way of achieving this is using treated
wastewater from the wastewater treatment plants (WWTP) for irrigation.

Improving the water management should focus on (a) increasing the production per
unit of freshwater consumed (water productivity), or (b) maintaining the production with
reduced water use or increased efficiency (demand management) [13]. Therefore, the
water resource managers and policymakers need to have a better knowledge of freshwater
consumption and crop production patterns throughout the watershed. Generally, water
management practices focus on water saving at the field scale by reducing irrigation water
allocation to the plots. However, plot–level water saving is not enough to get a signif-
icant improvement of water use efficiency at the watershed scale [13,14]. Few studies
are available where researchers analyzed the water stress and crop water productivity
under different water managements using both field experiments and watershed model-
ing [15–17]. These studies provided evidence of using water productivity as a useful tool
to evaluate the performance of agricultural production systems and recommend best man-
agement practices (BMPs) at any scale, ranging from the farm scale to the watershed scale.

This study aimed at applying a systematic approach to assess the agricultural water
use and crop yield at fine temporal and spatial resolution to estimate water productivity
and to explore the treated wastewater use for agricultural irrigation to conserve freshwater.
To achieve these goals, a distributed hydrological model was used to evaluate the water
use efficiency of irrigated farmlands and provide information for the improvement of
freshwater–saving strategies in these areas. The main objectives of this research were as
follows: (i) to calibrate and validate the model for watershed streamflow and crop yield
considering both rainfed and irrigated agricultural practices, (ii) to assess the spatial and
temporal variability of crop consumptive water use at the subbasin level, (iii) to calculate
crop water productivity from the model simulation, and (iv) to investigate the potentiality
of treated wastewater use for future policy implications.
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2. Materials and Methods
2.1. Study Area

The Monocacy River Watershed (MRW) in Maryland, USA, was selected as the study
area. MRW is part of the Potomac River Basin with a drainage area of approximately
2114 km2, which is located in Western Maryland bordering with south–central Pennsylvania
(Figure 1). This watershed is situated within three counties of Frederick and Carroll
Counties in Maryland and Adams County in Pennsylvania. According to the long–term
historical data (1901–2001), average annual precipitation is about 1092.2 mm (43 in/yr),
where water lost to evapotranspiration is about 711 mm (28 in/yr) or 17,000 million
gallons per day (MGD) [7]. The average temperature of this region is approximately 24 ◦C
in summer and 3 ◦C in winter [18]. Based on the recent climate data (2005–2014), the
average annual precipitation is approximately 1135 mm, with monthly averages ranging
from 72.2 to 122.1 mm. Of note is that, according to National Oceanic and Atmospheric
Administration (NOAA)’s National Climatic Data Center (NOAA–NCDC), states that
receive >1143 mm of annual precipitation are considered to be the wettest states within the
USA [19].
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Figure 1. Location of Monocacy River Watershed.

The MRW is in the Western Piedmont physiographic region where the subsurface of
the watershed consists of a layer of unconsolidated material or composed of soil, clay, sand,
and pieces of weathered bedrock. The west side of the watershed is characterized by steep
slopes consisting of highly erodible soil and the rest of the valley is mainly constituted
by prime agricultural soils. According to Soil Survey Geographic (SSURGO) database,
the watershed is dominated by C soil groups (47.16%), which have low infiltration rates,
followed by A (29.21%) and B (23.63%) soil groups with high and moderate infiltration
rates, respectively [20].

The land use and land cover of MRW is dominated by agricultural land (51.1%),
followed by forests (36.2%), and urban areas (12.1%) [21]. In agricultural lands, the most
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dominant crops are hay (14.5%), corn (13.1%), and soybean (10.8%), respectively (Table 1).
Among these crops, irrigation is mainly used for corn to maintain high yield goals [22].
Over the years, farm acreage for corn and soybean have varied. Figure 2 gives an overview
of the MRW’s historical corn and soybean yield and planted acreage for the last 29 years.
Despite a slight decrease in planted acreage, the corn yield has increased considerably
(Figure 2). On the other hand, soybean acreage and yield have both increased in the past
29 years; however, the increasing trend for soybean production is very moderate compared
to corn.

Table 1. Dominant crops and land use.

Land Use and Land Cover Area (acres) Area (km2) % of Watershed Area

Forest 189,307.88 766.10 36.24
Urban Area 68,957.65 255.12 12.07
Grassland 1243.05 5.03 0.24

Water 662.31 2.68 0.13
Agricultural Land 76,200.67 1085.06 51.33

Hay 75,540.25 305.70 14.46
Corn 68,321.40 276.49 13.08

Pasture 58,279.52 235.85 11.16
Soybean 56,368.50 228.12 10.79

Winter Wheat 8315.58 33.65 1.59
Alfalfa 935.82 3.79 0.18
Apple 362.05 1.47 0.07
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2.2. SWAT Model

The process–based models are often used for accurate simulation of the hydrological
processes [23–25] and crop yield of the watersheds [17,25,26]. In this study, the Soil and
Water Assessment Tool (SWAT) [27–29], was used to assess the MRW hydrology and crop
yield and calculate the water productivity from the model simulations.

During the SWAT model development, the watershed is divided into a number of
subbasins and each subbasin was subdivided into hydrological response units (HRUs)
based on homogeneous land use, soil, and slope classes. The SWAT model computes the
hydrological process and crop yield at HRU that allow for a high level of spatially detailed
simulations. The SWAT model uses a water balance equation to estimate the different
hydrological components (e.g., green and blue waters) at both the subbasin and HRU
scales [28]. Green water includes the portion of precipitation that infiltrates and is stored in
the soil as soil moisture and then returns to the atmosphere through plant transpiration and
direct evaporation. Blue water includes portion of water that flows through or below the
land surface and is stored in aquifer, lakes, and reservoirs. SWAT simulates the hydrologic
cycle components including precipitation, evapotranspiration, surface runoff, infiltration,
lateral flow, and percolation. Then, the SWAT model uses the water balance equation
(Equation (1)) to update the daily soil moisture as:

SWt = SW0 +
t

∑
i=1

(
Pday − Qsur f − Ea − wseep − Qgw

)
(1)

where, SWt and SW0 are the soil water storage at time t and 0, respectively, Pday is the
precipitation, Qsurf is the surface runoff flow, Ea is the actual evapotranspiration, wseep is
the deep aquifer recharge, and Qgw is the groundwater flow. In other words, to update
the daily soil moisture, the SWAT model’s hydrology component performs daily water
balance by subtracting all the daily losses to surface runoff, ET, deep seepage to aquifers,
and lateral groundwater flow from the daily precipitation and adds the balance to the
initial soil moisture, SW0.

2.3. Model Setup
2.3.1. Model Input and Data Collection

SWAT requires elevation, land use, soil, and climate data (i.e., precipitation and
temperature) to simulate the hydrological processes of the watershed. The required input
data were collected as follows: Digital Elevation Model (DEM) with 30 m resolution
from United States Geological Survey (USGS) National Elevation Dataset [29], land use
data with 30 m resolution from the 2018 crop data layer (CDL) [21], and soil data with
250 m resolution from the SSURGO database [20]. Daily climate data, precipitation, and
maximum and minimum temperature data for 19 years (2001–2019) were collected from
the National Climatic Data Center (NCDC) [9]. Based on the data availability within the
study time period (2001–2009), a total of 9 climate stations were selected, which are situated
within close proximity of the watershed area (shown in blue star in Figure 1).

The watershed was delineated, using the watershed outlet USGS 01643000, located
at the Jug bridge near Fredrick, Maryland (shown as a red point in Figure 1). Similar to
climate data, the observed monthly streamflow data were collected from USGS for 19 years
(2001–2019) to calibrate and validate the model. Total of 29 subbasins were delineated for
MRW, and 1294 HRUs were defined with 2–5–5% thresholds for land use–soil–slope classes.
The hydrological process including evapotranspiration, surface runoff, and the channel
routing were computed based on the Penman–Monteith method [30], the modified Soil
Conservation Service (SCS) Curve Number (CN) method [28], and the Muskingum routing
methods [31], respectively. Of note is that the model outcomes were extracted using ArcGIS
and figures were created in Microsoft Excel.
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2.3.2. Crop Management

For this study, the two major crops, corn and soybean, were selected. In Western
Maryland, planting and harvesting dates for corn depend on a number of variables and
slightly change from year to year. For example, corn is generally planted at the end of April
through mid–May, and soybean is planted in May. Fertilizer amount is also dependent on
the soil condition and varies from field to field. However, nitrogen is applied to corn based
on the targeted yield goal following the mandatory Nutrient Management Guidelines
in the state of Maryland. For example, for 200 bushels/acre (13,450.22 kg/ha) of corn,
around 200 lb/acre (224.17 kg/ha) of nitrogen is applied. After observing the 29 year crop
yield trend, it was noticeable that crop yield varied between 65 and 175 bushels/acre and
yields of more than 150 bushels/acre were observed in the last 8 years. Thus, on average,
150 lb/acre (168.13 kg/ha) nitrogen was selected as the fertilizer application rate in this
study. The harvesting date was fixed after 120 days of growing days as suggested by the
Maryland Cooperative Extension [22].

2.3.3. Parameter Selection and Streamflow Calibration

The calibration protocol presented by Abbaspour et al. [32] was followed to select
the model parameters and calibrate the SWAT model. Based on a literature review of
the existing studies on adjacent regions [33–36], in total, 17 parameters were selected for
model calibration (Table 2). The initial ranges of the parameters were defined based on the
suggestions from the SWAT 2012 manual [37]. The sequential uncertainty fitting (SUFI–2)
algorithm on SWAT–CUP (SWAT Calibration and Uncertainty Programs) was used for the
model calibration and validation process [37]. The model was calibrated for 10 years (2005–
2014), with a 4-year warm–up period and was validated for another 5 years (2015–2019).
For the monthly streamflow simulations, the correlation coefficient (R2), Nash–Sutcliffe
coefficients (NSE), Kling–Gupta efficiency (KGE), and percent bias (PBIAS) were used as
the evaluation criteria. A detailed description of these measures was described in Paul and
Negahban–Azar [38]. Model performance was evaluated based on the evaluation matrix
described by Moriasi et al. [39].

Table 2. List of model parameters used in this study to calibrate and validate the SWAT model. The model parameter names
and their definitions are listed according to SWAT input/output documentation [27].

Parameter Definition Initial Range Calibrated Value

SOL_K Soil saturated hydraulic conductivity (mm/h) −25 to 25 10.95
SOL_AWC Available soil water capacity (mm H2O/mm soil) −25 to 25 3.95
ALPHA_BF Baseflow recession constant (days) 0.01 to 1 0.680
GW_DELAY Groundwater delay (days) 1 to 500 113.5
GW_REVAP Groundwater “revap” coefficient 0.01 to 0.2 0.011
REVAPMN Re–evaporation threshold (mm H2O) 0.01 to 500 273.5
GWQMN Threshold groundwater depth for return flow (mm H2O) 0.01 to 5000 115.0

CN2 Curve number for moisture condition II −0.3 to 0.3 0.011
EPCO Plant uptake compensation factor 0.01 to 1 0.855
ESCO Soil evaporation compensation factor 0.01 to 1 0.717

CH_N(2) Main channel Manning’s n 0.01 to 0.15 0.059
CH_K(2) Main channel hydraulic conductivity (mm/h) 5 to 500 165.2
SFTMP Snowfall temperature (◦C) 0 to 5 2.1

SMFMN Melt factor for snow on 21 December (mm H2O/◦C–day) 0 to 10 7.1
SMFMX Melt factor for snow on 21 June (mm H2O/◦C–day) 0 to 10 7.3
SMTMP Snowmelt base temperature (◦C) −2 to 5 3.1

TIMP Snowpack temperature lag factor 0 to 1 0.35

2.3.4. Crop Yield Calibration

After streamflow calibration and validation, the SWAT model was calibrated and
validated for annual corn and soybean yields. Observed crop yields for corn and soybeans
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were collected for 2005–2019 from the USDA National Agricultural Statistics Service (USDA–
NASS). NASS reported the grain crop yields at the county level and in bushels/acre.
However, SWAT estimates the crop yield at the HRU scale and presents it in kg/ha with
20% moisture content at harvest time [25]. Thus, crop yields were converted to kg/ha
following the method used in Srinivasan et al. [25]. For crop yield simulation evaluation,
relative yield reduction (RYR) and root–mean–square error (RMSE) were used as the
evaluation criteria. For crop yield calibration, five sensitive crop yield parameters related
to harvest and leaf area were selected based on the literature review [40–42].

2.4. Scenarios Analysis

At first, the model was run with rainfed irrigation condition and crop yield was
assessed for this scenario. Although frequent irrigation practices are evident in the East-
ern Shore, according to the Maryland Department of Environment (MDE) water permit
database, several groundwater wells assigned for crop irrigation are identified within this
watershed in Western Maryland as well [10]. Irrigation amount, timing, and frequency are
determined by the farmers based on the weather conditions, soil moisture, and growth
stage. Therefore, three scenarios were developed in this study to investigate the impact of
different BMPs on water productivity (WP):

Scenario 1: Model was run with the rainfed condition.
Scenario 2: Model was run with “auto irrigation” from the shallow aquifer (assigned

as the main source of irrigation), which is required for each HRU. Under this scenario, an
irrigation event is automatically triggered based on the defined plant–stress threshold.

Scenario 3: Model was run with updated management files considering irrigation
source “outside” of the watershed. This scenario was developed considering treated
wastewater reuse for irrigation purposes to match the expected high crop yield. Modified
scenarios were applied for selected HRUs computing maximized irrigated areas based on
the WWTP capacity.

The WP was calculated for each HRU using the SWAT simulated crop yield, and
the irrigation amount was used to calculate WP (kg/m3). To understand the impact of
freshwater consumption (irrigation with groundwater) and treated wastewater use on crop
water productivity (WP) (kg/m3), two indices were calculated:

WPIP =
Crop yield (kg)

Irrigation (m3) + E f f ective Rain f all(m3)
(2)

WPP =
Crop yield (kg)

E f f ective Rain f all(m3)
(3)

Here, WPIP can be defined as total crop water productivity, consisting of both rainfall
and irrigation amount during the crop growth period. On the other hand, WPP can be
defined as green water (rainfall) productivity, where only rainfall is consumed during
the crop growth period [17]. The assumption for WPP was that, for additional irrigation
water demand, freshwater withdrawal would be replaced by the treated wastewater from
nearby WWTP.

3. Results and Discussion
3.1. Streamflow

SWAT model was calibrated and validated for both irrigation and rainfed management
conditions, and the very minimal difference was found between these two simulations
(Figure 3). Under the irrigated condition, the scores of the goodness–of–fit R2, NSE,
KGE, and PBIAS for calibration periods (2005–2014) were 0.60%, 0.55%, 0.65%, and 11.1%,
respectively. While under the rainfed condition, the scores of the goodness–of–fit R2, NSE,
KGE, and PBIAS were 0.61%, 0.56%, 0.60%, and 10.32%, respectively. These statistics
showed that the SWAT model was able to capture the observed monthly streamflow and
categorized as “satisfactory” according to Moriasi et al.’s [39] performance measure and
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evaluation criteria. The average monthly streamflow was also well estimated during
validation periods (2015–2019) with high R2, NSE, KGE, and PBIAS values of 0.85, 0.83,
0.79, and 3.92%, respectively. Thus, the high values of NSE (≥0.80) and PBIAS (<±5%)
values indicate a “very good” correlation between daily observed and simulated flows, and
R2 (>0.75) and KGE (≥0.75) demonstrated a “good” agreement between these. Continuous
daily climate data were available after 2008 for all climate stations (showed in Figure 1).
The quality of these data resulted in better model performances with higher scores of the
goodness–of–fit indices during the validation period.

Water 2021, 13, x FOR PEER REVIEW 8 of 16 
 

 

evaluation criteria. The average monthly streamflow was also well estimated during val-
idation periods (2015–2019) with high R2, NSE, KGE, and PBIAS values of 0.85, 0.83, 0.79, 
and 3.92%, respectively. Thus, the high values of NSE (≥0.80) and PBIAS (<±5%) values 
indicate a “very good” correlation between daily observed and simulated flows, and R2 
(>0.75) and KGE (≥0.75) demonstrated a “good” agreement between these. Continuous 
daily climate data were available after 2008 for all climate stations (showed in Figure 1). 
The quality of these data resulted in better model performances with higher scores of the 
goodness–of–fit indices during the validation period. 

 
Figure 3. The hydrograph of average monthly observed and simulated discharge during (a) calibration (2005–2014) and 
(b) validation (2015–2019). 

3.2. Crop Yield 
Table 3 shows the adjustment of the parameters for crop yield calibration. Very few 

parameter modifications were needed to match the observed corn and soybean yields. As 
mentioned in Section 2.4, the model was simulated for both rainfed and irrigation man-
agements. Table 4 shows that the model with irrigation application was able to capture 
both corn and soybean yields well. Thus, outcomes from this model were considered as a 
baseline for the analysis. 

Table 3. Default and adjusted crop yield parameters for corn and soybean applied at HRU scale. The model parameters 
name and their definitions are listed according to SWAT input–output documentation [27]. 

Parameter Unit Parameter Definition 
Corn Soybean 

Default Calibrated Default Calibrated 

BIO_E (kg/ha)/(MJ/m2) Radiation use efficiency or biomass energy ra-
tio 

39 40 25 25 

HVSTI (kg/ha)/(kg/ha) Harvest index for optimal growing season 0.5 0.5 0.31 0.3 
WSYF (kg/ha)/(kg/ha) Lower limit of harvest index 0.3 0.3 0.01 0.01 
BLAI (m2/m2) Maximum potential leaf area index 6 6 3 3 

DLAI  Fraction of growing season when leaf growth 
declines 

0.7 0.7 0.6 0.5 

Table 4. Comparison of model performance for crop yield simulations between rainfed and irri-
gated conditions. 

 With Irrigation Without Irrigation 
RYR (%) RMSE (kg/ha) RYR (%) RMSE (kg/ha) 

Corn 
Calibration −18.97 1596.8 −24.08 1863.5 
Validation 8.78 610.4 −11.64 873 

0

40

80

120

160

200

Ja
n-

05
Ju

l-0
5

Ja
n-

06
Ju

l-0
6

Ja
n-

07
Ju

l-0
7

Ja
n-

08
Ju

l-0
8

Ja
n-

09
Ju

l-0
9

Ja
n-

10
Ju

l-1
0

Ja
n-

11
Ju

l-1
1

Ja
n-

12
Ju

l-1
2

Ja
n-

13
Ju

l-1
3

Ja
n-

14
Ju

l-1
4

M
on

th
ly

 D
isc

ha
rg

e (
m

3 /s
) 95PPU

L95PPU
Observed
Simulated

0

40

80

120

160

200

Ja
n-

15
Ju

l-1
5

Ja
n-

16
Ju

l-1
6

Ja
n-

17
Ju

l-1
7

Ja
n-

18
Ju

l-1
8

Ja
n-

19
Ju

l-1
9

(a) (b)

Figure 3. The hydrograph of average monthly observed and simulated discharge during (a) calibration (2005–2014) and
(b) validation (2015–2019).

3.2. Crop Yield

Table 3 shows the adjustment of the parameters for crop yield calibration. Very few
parameter modifications were needed to match the observed corn and soybean yields.
As mentioned in Section 2.4, the model was simulated for both rainfed and irrigation
managements. Table 4 shows that the model with irrigation application was able to capture
both corn and soybean yields well. Thus, outcomes from this model were considered as a
baseline for the analysis.

Table 3. Default and adjusted crop yield parameters for corn and soybean applied at HRU scale. The model parameters
name and their definitions are listed according to SWAT input–output documentation [27].

Parameter Unit Parameter Definition
Corn Soybean

Default Calibrated Default Calibrated

BIO_E (kg/ha)/(MJ/m2) Radiation use efficiency or biomass energy ratio 39 40 25 25
HVSTI (kg/ha)/(kg/ha) Harvest index for optimal growing season 0.5 0.5 0.31 0.3
WSYF (kg/ha)/(kg/ha) Lower limit of harvest index 0.3 0.3 0.01 0.01
BLAI (m2/m2) Maximum potential leaf area index 6 6 3 3
DLAI Fraction of growing season when leaf growth declines 0.7 0.7 0.6 0.5

Table 4. Comparison of model performance for crop yield simulations between rainfed and irrigated
conditions.

With Irrigation Without Irrigation

RYR (%) RMSE (kg/ha) RYR (%) RMSE (kg/ha)

Corn
Calibration −18.97 1596.8 −24.08 1863.5
Validation 8.78 610.4 −11.64 873

Soybean Calibration −7.48 373.2 23.81 501.8
Validation 6.23 191.3 32.74 512.2
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Figure 4 is showing the comparison between observed and simulated crop yields for
the calibration (2005–2014) and validation (2015–2019) periods. During calibration, the
simulated average crop yields for corn (7817.3 kg/ha) and soybean (2282.3 kg/ha) were
higher than the observed yields of 6553.9 kg/ha and 2123.5 kg/ha, respectively. As a result,
during calibration, the RMSE for corn and soybean were 1596.8 kg/ha and 373.2 kg/ha,
respectively. However, the simulated corn and soybean yields during validation were closer
to the observed data with a smaller RYR of 8.78% and 6.23%, respectively. RMSE was also
much lower during validation than the calibration period (610.4 kg/ha and 191.3 kg/ha
for corn and soybean, respectively). The RYR for corn and soybean indicates that the
SWAT model overestimated (negative RYR in Table 4) the crop yield during calibration
and underestimated (positive RYR in Table 4) it during the validation period. This result
also indicates that over the years the fertilizer uses increases in this area. However, in this
study, a fixed amount of fertilizer was used, which resulted in these RYR variations.
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Figure 4. Comparison of observed (NASS) and simulated (SWAT) crop yield for corn and soybean
for the (a) calibration (2005–2014) and (b) validation (2015–2019) periods.

3.3. Irrigation Requirement

In Maryland, irrigation needs vary from year to year and depend on rainfall. Based
on the SWAT model, the average irrigation for the growing season was simulated as
5.24 mm/ha (0.51 acre–ft) for corn and 6.88 mm/ha (0.65 acre–ft) for soybean. Within the
simulation periods, four dry years (2005, 2007, 2010, and 2013) were selected to estimate the
required irrigation demands for corn and soybean production. Figure 5 shows the applied
irrigation amount for corn and soybean production at the HRU scale. The irrigation amount
was varied with the HRUs and from year to year (Figure 5). However, it was noticeable that
the southeastern part of the watershed required a higher amount of irrigation compared to
the other regions in the study area.

It is estimated that for the high yield goal (200 bushels/acre or 13,450.22 kg/ha),
15 inches (0.38 m) of seasonal water might be needed, which would result in an annual
average of 128,666 GPD (487.05 m3/day) freshwater withdrawal. It is noted that, for more
than 10,000 GPD (37.85 m3/day), farmers are required to get a groundwater permit from
MDE [43]. On the other hand, at least 25 acre–inches (27,154 gallons or 102.79 m3) of water
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is required in dry summers (zero rainfall) to maintain the expected corn production. Based
on this, the simulated irrigation amount was much lower than the field application.
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Overall, 18 publicly owned WWTPs are located within MRW, which have high water
reuse potential with a discharge capacity ranging from 0.04 (0.002 m3/s) to 6.5 MGD
(0.285 m3/s) (Figure 6 and Table 5). All the WWTPs are almost uniformly distributed
within the watershed. Required irrigation water for 120 growing days was calculated for
each crop, and the detailed estimation is presented in Table 5. Since it was difficult to
identify the exact amount of irrigation for specific farmland proximities, 10 km buffer zones
were created from each WWTP to locate the potential corn and soybean farmlands.
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Table 5. Estimated area of corn and soybean (in km2) where reclaimed wastewater can be applied
from neighboring WWTPs. A list of existing publicly owned WWTPs is included with their capacity
and discharge method information.

Subbasin No.
Area (km2) Wastewater Treatment Plant

Corn Soybean Flow (MGD) Discharge Method

3 3.70 3.06
2.00

Outfall to surface waters

0.16

4 1.22 0.93 0.31

6 1.79 0.77 0.67

7 0.19 0.17
0.06

0.02

8 0.43 0.62 0.18

10 1.45 0.52 0.63

11 1.65 1.17 0.56 Spray irrigation

18 0.66 0.36 0.11

Outfall to surface waters
20 1.03 0.83 0.91

22 5.8 4.01
3.28

0.09

23 1.91 1.48
0.04

0.56 Spray irrigation

24 0.24 0.17 0.08

Outfall to surface waters
26 0.85 0.63 0.63

27, 29 4.52 4.71 6.50

28 4.41 3.56 3.97

3.4. Water Productivity

Water productivity for both indices, WPIP, and WPP, were estimated based on the
model–simulated crop yields and irrigation amounts. All the analysis was done at HRU
levels and for the 2005–2014 period. Total water productivity (rainfall and irrigation) varied
across crops. The estimated WPIP for corn was relatively higher compared to soybean.
During 2005–2014, the average irrigation water productivity for corn and soybean found to
be 0.617 kg/m3 and 0.173 kg/m3, respectively. Under the recycled water use scenario, the
green water productivity (rainfall plus treated wastewater use) improved up to 0.713 kg/m3

for corn and 0.37 kg/m3 for soybean.
For a better understanding of irrigation use during dry years, four dry years (2005,

2007, 2010, and 2013) were selected from the total simulation period of 2005–2014. Subbasin–
scale spatial variability of the corn and soybean water productivity is shown in Figure 7.
From Figure 7, it is clear that the distribution of WPIP and WPP was different for each
year. The water productivity of total water consumption (rainfall and irrigation) varied
across crops. In the dry year (2007), the WPIP for both corn and soybean was higher on the
western region of the watershed.
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The green water productivity (only rainfall) also varied across crops. From Figure 7,
the overall distribution of the WPP of corn and soybean was higher on those subbasins
where the precipitation amount was lower. Again, higher productivity was estimated for
2007, when the average annual precipitation was much lower (906.6 mm) than in other
years. For this year, the largest green water productivity for corn (>0.95 kg/m3) and
soybean (>0.3 kg/m3) was found in southern subbasins where precipitation was lower
than 800 mm. Thus, it was clear that instead of groundwater, the treated wastewater uses
for irrigation resulted in higher WPP, especially where the rainfall amount was low.

3.5. Further Discussion

The successful implementation of sustainable water resources policies depends on
long–term hydrological assessments. A DSS based on the hydrologic modeling approach
was developed to investigate the “what–if” scenarios with respect to agricultural water
resource management. Reclaimed wastewater from WWTPs was also considered as a
potential irrigation water source in the model, and based on the simulated irrigation
amount, the potentiality of treated wastewater use for irrigation was estimated considering
the existing WWTP’s capacity (Section 3.3, Table 5). One of the main important aspects of
reclaimed wastewater use is the economic feasibility of the project, which is mainly driven
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by the plant’s capacity, the cost of water, and its distribution from the source to the point of
use [44,45]. Therefore, the proximity of the wastewater treatment plants to its point of use
(agricultural land) and the volume of available treated wastewater are the two important
decision factors to be considered in any planning. It is also acknowledged that another
important decision factor is the quality of treated wastewater to minimize the human and
environmental risks [44–46]. While assessment of treated wastewater quality was out of
the scope of this study, according to MDE’s water reuse guidelines, irrigation of food crops
with advanced treated wastewater (classes IV) is acceptable when there is no contact with
the edible portion of the crop [47]. Thus, in this study, only publicly owned treatment
works (POTW–WWTP) that treat the domestic sewages with advanced and secondary
treatment processes were considered as the primary sources to obtain treated wastewater
for irrigation.

In this study, it was found that the southeastern part of the study area, located in the
Piedmont physiographic region, required a higher amount of irrigation compared to the
other regions in the study area. This outcome confirms the previous study done by Chu
and Shirmohammadi [48], where they showed that, in the Piedmont physiographic region,
SWAT underestimates the subsurface flow. Furthermore, many other researchers showed
that for the complicated groundwater system, the computational method used by SWAT
may lead to inaccurate outcomes [48–50]. In addition, the variation in irrigation amounts
could be also related to the different outcropping lithology, where the infiltration rate is
higher (more permeable lithology), and thus, the green water available for irrigation could
be lower. For future studies it is recommended to use a modified groundwater sub–model
to estimate the shallow groundwater level and its interactions in the water system. Finally,
it should be noted that the projected impacts of the water management BMPs on crop yields
should be verified in the field. In addition, the feasibility of direct wastewater transfers
across the farms should be assessed properly.

4. Conclusions

The main objective of this study was to evaluate the agricultural water use efficiency
under current irrigation practices and provide water conservation strategies including
the use of treated wastewater for irrigation as one of those strategies in the Mid–Atlantic
agroecosystem. A quantitative method for computing the crop productivity for corn
and soybean was established using a distributed hydrological model (SWAT). The results
demonstrated that the SWAT model is a useful tool in calculating water productivity at the
watershed scale. The water productivities for corn and soybean had spatial variabilities
within the subbasins, which were mainly influenced by precipitation variability. This study
also explored the treated wastewater use potentiality to increase crop water productivity
and provides information for future policy implications. The overall distribution of the
total and green water productivity showed that treated wastewater use for crop irrigation
has a higher potential to increase water use efficiency compared to the baseline condition.
During the simulation periods (2005–2014), the total water productivity (irrigation and
rainfall) for corn and soybean was found to be 0.617 kg/m3 and 0.173 kg/m3, respectively,
while the green water productivity (recycled water use and rainfall) was found to be
0.713 kg/m3 for corn and 0.37 kg/m3 for soybean. The highest green water productivity
was estimated for the driest (<906.6 mm) year (2007) for both corn (>0.95 kg/m3) and
soybean (>0.3 kg/m3), especially in the southern subbasins, where annual precipitation
was lower than 800 mm. Thus, it was clear that the treated wastewater use for irrigation
will result in higher WPP and reduce fresh groundwater consumption. Results from this
study can be used to assess the water consumption volumes by water source and type.
Another important outcome is that the SWAT model is able to calculate water productivity
at both subbasin and HRU levels. This could be very useful for agricultural water managers
for sustainable management of water and conservation of freshwater resources within the
region and similar areas.
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