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Abstract: Freshwater resources are limited and seasonally and spatially unevenly distributed. Thus,
in water resources management plans, storage reservoirs play a vital role in safeguarding drinking,
irrigation, hydropower and livestock water supply. In the last decades, the dams’ negative effects,
such as fragmentation of water flow and sediment transport, are considered in decision-making, for
achieving an optimal balance between human needs and healthy riverine and coastal ecosystems.
Currently, operation of existing reservoirs is challenged by increasing water demand, climate change
effects and active storage reduction due to sediment deposition, jeopardizing their supply capacity.
This paper proposes a methodological framework to reassess supply capacity and management
resilience for an existing reservoir under these challenges. Future projections are derived by plausible
climate scenarios and global climate models and by stochastic simulation of historic data. An
alternative basic reservoir management scenario with a very low exceedance probability is derived.
Excess water volumes are investigated under a probabilistic prism for enabling multiple-purpose
water demands. Finally, this method is showcased to the Ladhon Reservoir (Greece). The probable
total benefit from water allocated to the various water uses is estimated to assist decision makers in
examining the tradeoffs between the probable additional benefit and risk of exceedance.

Keywords: reservoir management; reservoir operation; climate change; sediment deposition; reser-
voir storage capacity

1. Introduction

Currently, under the rising pressures of increasing water demand along with climate
change effects, i.e., changes in water distribution and reduced water availability and quality
extremes, a key challenge in water resources management is the adaptation of the water
storage capacity to strengthen water security [1,2]. Water storage provides a mechanism
for dealing with variability, which, if planned and managed correctly, increases water
security, agricultural productivity and adaptive capacity [3]. Reservoirs are one of the
most important infrastructures for integrated water resources management [4] and play an
important role in mitigating the negative impacts of climate change [5]. From this point of
view, a water reservoir can play a fundamental role in safeguarding potable water demand,
irrigation, hydropower production and/or livestock during water-scarce periods. Thus, as
also described by Mulligan et al. [6], they support agricultural and economic activity and
enhance people’s well-being.

The World Commission on Dams [7], by the end of the twentieth century, lists
45,000 dams throughout the world, acknowledging their contribution to human develop-
ment, but also noting the severe and often unnecessary impacts in numerous cases. Dams
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have a profound impact on ecosystem structures, functions and services in basins via regu-
lation of basin water resources, which in turn affects basin water resources, soil, climate
and biodiversity [8]. More precisely, dams can have negative upstream and downstream
impacts including: dispossession of lands; downstream geological alterations due to sedi-
ment trapping; natural fish migration; isolation and/or extinction; flood hazard in the case
of dam failure; disruption of the riverine ecosystem, such as fragmentation, reduction of
biodiversity and water quality due to nutrients sequestration; greenhouse gases generation
(methane), as a result of anaerobic degradation of biomass [9–11]. Studying the trade-offs
and synergies between ecosystem services upstream and downstream of dams is of great
importance because such studies can help reach win–win goals for regional development
and ecological protection [12].

Furthermore, as the inventory of new potential dam sites is shrinking, construction
of additional reservoirs is less likely to be compared to simultaneous flow and sediment
management in existing reservoirs [13]. Existing reservoirs with given storage capacity and
management plans are vulnerable to hydrologic and socioeconomic alterations. Vulnera-
bility of water resources systems to floods and droughts is expected to increase, and the
trade-offs between reservoir releases to maintain flood control storage, drought resilience,
ecological flow, human water demand and energy production should be reconsidered [14].

Assessment of climate change effects on water resources management and allocation
for an existing reservoir is achieved via hydrological models, which require reliable his-
toric climatic (e.g., temperature, precipitation or evapotranspiration) and hydrologic (e.g.,
runoff) time series and future projections in the near future (taking 2050 as the reference
average year for the period 2041–2060) and/or the far future (taking 2070 as the reference
average year for the period 2061–2080), as defined in the fifth report of the Intergovern-
mental Panel on Climate Change [15]. Future projections can be derived either by the use
of plausible climate scenarios and global climate models (GCMs), or by extrapolation of
historic data. For future climate change uncertainties, a range of climate scenarios should
be considered in impact assessments. A climate scenario is a plausible representation of
the future climate that has been constructed for explicit use by investigating the potential
impacts of anthropogenic climate change [16]. Climate scenarios often make use of climate
projections (descriptions of the modeled response of the climate system to scenarios of
greenhouse gas and aerosol concentrations), by manipulating model outputs and combin-
ing them with observed climate data. Scenario construction techniques can be contrasted
according to the sources of uncertainty that they address. Such sources are unknown
future emissions of greenhouse gases and aerosols, conversion of emissions to atmospheric
concentrations and the climate change imposed by radiative effects, modeling the response
of the climate system to forcing and methods for regionalizing GCM results and those that
they ignore [16].

These techniques do not always provide consistent results. There is a number of
studies questioning whether climate models provide plausible prediction of the future
hydroclimate, when comparing model outputs with real data of the recent or earlier
past [17–21]. Accurately predicting the future is difficult if not impossible, and hydrologic
planning will always consider probabilistic or multiple plausible realizations and adopt
adaptive risk management with systems planned for particular levels of security or reliabil-
ity [22]. Considering their strengths and weaknesses, we consider both possibilities (i.e., by
using plausible climate scenarios and global climate models (GCMs) or by extrapolation
of historic data) in order to incorporate the uncertainty of runoff change. For downscaled
climate change data, including maximum, mean and minimum temperature and precipi-
tation, there are three climate databases most widely used in ecology to date [23]: (i) the
WorldClim [24], (ii) CRU TS datasets [25], and (iii) the EuMedClim [26], which differ in
data quality over time and space. A detailed comparison is provided in [26], enabling the
selection based on the specific characteristics of each case study.

Apart from hydrologic alterations, the reservoir operation depends on the increase
of the dead storage due to sediment deposition. The sediment volume retained into a



Water 2021, 13, 1819 3 of 27

reservoir can decrease its potential storage capacity and subsequently its performance in
terms of the water and energy services it provides. Dam sedimentation presents geographic
and seasonal differences because of strong dependence on the globally and seasonally
differing climate conditions regarding mainly rainfall and temperature, which also affect
dam inflows [27,28]. For watershed management agencies, the estimation of annual
sediment yield and the sediment delivery has been a top priority due to the influence
that sedimentation has on the holding capacity of reservoirs and the annual economic
cost of sediment-related disasters [29]. Morris [30] gave a classification of the available
strategies that combat reservoir sedimentation in order to be used by practitioners as a
checklist in evaluating sediment management alternatives of new designs and remedial
work at existing sediment-challenged reservoirs. Kondolf et al. [31] summarizes the
collective experience from five continents in managing reservoir sediments and mitigating
downstream sediment starvation.

According to the World Commission on Dams [7], the annual rate of loss in the storage
capacity of the world’s reservoirs was approximately 0.5–1.0% (in terms of water volume),
driving to a 50% reduction of storage capacity for most dams by 2050. Morris and Fan [32],
note the need to replace the concept of a limited design life with dual management of flow
and sediment to preserve and ensure sustainability of existing reservoir sites instead of
constructing new dams, as the number of potential new sites is shrinking. The importance
of considering this need is also claimed by Oehy and Schleiss [33], who noted that today’s
loss in storage capacity due to reservoir sedimentation is higher than the increase of capacity
due to construction of new reservoirs [13]. Numerous studies have reported sedimentation
rates for small and large reservoirs across the globe; others have attempted to derive
correlations between sedimentation rates and variability in these rates over time relative
to catchment area, land use/cover, precipitation and sediment sources; in all cases the
complexity in correlating sedimentation rates to one or a few variables is shown [13,34–37].

The research on reservoir operation affected by future climate change is thoroughly
analyzed by Feng et al. [37]; two main concepts are identified: (1) reservoir reoperation,
incorporating ecological flow into the operation model to obtain trade-offs between environ-
mental requirements and human needs [38–40], and (2) adaptive operation, i.e., adapting
the reservoir operation to climate change and focusing on impacts of the changing environ-
ment on the water resources system [41]. The proposed framework of adaptive reservoir
operation includes incorporating the future weather generator model, the hydrological
model and the reservoir operation model [42,43]. Therefore, the main impetus for this
paper is the need to reassess supply capacity and management resilience for an existing
reservoir under climate change, considering also the trade-off between the active storage
reduction over time and the benefit by the probable use of excess water.

The present paper aims: (i) to propose a methodological framework for the reassess-
ment of the present reservoir management strategy under future hydrologic conditions
and the reduction of active storage due to sediment deposition and (ii) to examine, under
a probabilistic prism, possible alterations of the reservoir management by proposing the
use of additional excess water volumes enabling multiple-purpose water demands. More
precisely, the novel methodology for multiple-year regulation of reservoir active storage
capacity as proposed by Yannopoulos and Demetracopoulos [44] is used and properly
adjusted to determine a basic monthly reservoir operating scheme for which there is a low
probability of exceedance (<5%) for the present and future active storage capacity of the
reservoir. Then, the additional excess water releases are stochastically simulated based
on the near and far future hydrologic uncertainty. For future climatic projections, both
concepts (climatic scenarios and stochastic simulation) are considered, as analyzed above,
in order to incorporate the uncertainty of the runoff change. The methodology is applied
to the Ladhon (Ladon or Ladonas) Reservoir, in Northwestern Peloponnisos (Greece). The
paper is structured as follows: In Section 2, the steps of the proposed methodology are
provided in a synoptic and general way; in Section 3, the case study is shortly described,
and each step of the methodology is thoroughly analyzed in order to demonstrate its
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application; in Section 4, the results and discussion are presented; in Section 5, conclusions
are drawn.

2. Description of the Proposed General Methodological Framework

Let us consider an existing water reservoir with given multiple water uses. The most
significant characteristic of a reservoir is its storage capacity, which in turn determines
its yield. Yield is defined as the volume of water that can be supplied during a specified
period. Provided that the sequence of monthly inflow and demand rates are available, the
monthly water supply (yield) and the remaining monthly water volume in the reservoir
(including the spill) can be computed from the water volume balance of the reservoir.

Based on the historic meteorological and hydrologic conditions, the present supply–
demand pattern is analyzed. Reservoir water availability is affected by climate change in
the near and the far future and by reduction of the active storage capacity due to sediment
transport and deposition. Consequently, the water allocation capacity of the reservoir is
modified and therefore an analysis of the future reservoir capacity together with possible
adaptations of its water management strategy are required. Within this frame, we propose
the following steps for a general methodological process in order to reassess and adapt the
existing reservoir operation and management under these challenges:

1. Identify: (i) the current and potential (future) water uses, (ii) the monthly water
demand time series and (iii) periods of possible conflicts among the water uses related
to the reservoir water management (e.g., during winter, when the water volume
should be released for hydropower production, whereas these water volumes should
be retained in order to ensure irrigation during late spring and summer). Based on
these, build the current pattern of the monthly (average) reservoir water demand and
spot possible future water demand trends.

2. Collect and analyze the longest reliable historic climatic (e.g., mean, minimum and
maximum temperature and precipitation) and hydrologic (runoff) time series at a
monthly time scale and at a basin scale (which include the earlier and present historic
past, referred to as the baseline or current state). Determine the functional connection
between climatic data and hydrologic response (e.g., use and calibrate a hydrologic
model to compute the runoff of the catchment based on temperature and precipitation,
assuming there are no water uptakes upstream).

3. Estimate the change of the reservoir water availability in the future, which affects the
water supply capacity, by using two approaches: (a) Approximate climatic projections
in the near and far future for the extreme (worst and best) climate scenarios, as pro-
posed by the Intergovernmental Panel on Climate Change [15], by using a climatic
database (e.g., WorldClim [24], CRU TS datasets [25] and the EuMedClim [26]. Esti-
mate the “fuzzy” upper and lower meteorological change compared to the current
state. Compute the future hydrologic response (runoff) in the near future (2050)
and the far future (2070) based on the future climate data by using the calibrated
hydrologic model from step (2). (b) Based on the real historic data of step (2), use
stochastic simulation and forecasting models, e.g., CASTALIA software by Efstratiadis
et al. [45], for the hydrologic variables, like temperature, precipitation and runoff, to
statistically analyze the current state and then predict their future values. The future
time series are obtained by generating numerous “ensemble” time series of a short
length, representing multiple hydrological scenarios for relative short time horizons.

4. Based on the historic and future time series of monthly precipitation, temperature
and runoff derived from the previous steps, generate a very long synthetic record of
random hydrologic years, either for monthly precipitation and temperature (and then
through the hydrological model, compute the corresponding monthly runoff), or di-
rectly for the monthly runoff, as proposed in the novel methodology for multiple-year
regulation of reservoir active storage capacity by Yannopoulos and Demetracopou-
los [44].
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5. Compute the increase of the dead storage due to basin soil erosion, sediment transport
and retention into the reservoir from the period of dam operation till: (i) the current
year (2020), representing the current state, (ii) the year 2060, representing the near
future (2040–2060), and (iii) the year 2080, representing the far future (2061–2080).

6. Based on the long synthetic runoff time series of the current (historic) and future
projections of step (4) and the monthly water demand of step (1), compute the monthly
reservoir yield (based on the basic water demand) and the excess water volume,
defined as the remaining water volume after satisfying the water demand, based on
the current and future (as computed in step (5)) reservoir storage capacity. Excess
water is the overflows by the dam, representing the water potentially available for
uses other than reservoir prescribed demands (e.g., excess power supply, drinking
water and other market purposes).

7. Estimate, whether with the present and the future (reduced) active reservoir storage
capacity, the water demand is satisfied and compute the excess water volume.

8. Compute and graphically depict the cumulative frequency—probability for: (i) any
given excess water volume and (ii) any given reservoir capacity (assuming a zero-
height dam and following the methodology proposed by Yannopoulos and Demetra-
copoulos [44], interpreted as the probability of exceedance.

3. Ladhon Dam

In order to implement the management procedure described in the previous section,
the Ladhon Dam and Reservoir was selected. As shown in Figure 1, Ladhon River is
situated in Central-Western Peloponnisos, demarcating the boundaries between the regions
of Achaia and Arcadia. It is the most important tributary of the Alfeios River, draining
almost one third of the Alfeios basin total area, and is mainly supplied by karstic sources [9].
The prevailing climate in the Ladhon River Basin ranges from temperate to the continental
type based on Köppen climate classification. Precipitation averages 1123 mm annually,
ranging from 529 to 1714 mm. The annual basin mean air temperature is 13.98 ◦C with a
range of variation less than 8.5 ◦C.

At 420 m above sea level, a gravity concrete dam of medium size (101.5 m crest length
and 56 m height) was built at Tropaia between 1950 and 1955. Ladhon Dam corresponds to a
river basin area of 749 km2, forming a reservoir in a meander-type valley, mainly composed
of limestone and shale with a 4 km2 lake area and 46.2 × 106 m3 storage volume [46].
Approximately 8 km downstream, one of the first major hydroelectric power stations (HPS)
in Greece was built in 1955 and set in operation in 1956 by the Hellenic Public Power
Corporation (HPPC). Ladhon HPS, due to its hydropower variability, has been used mainly
as a peak load power plant. Under the need to increase the renewable energy share into
the Greek Energy sector, in line with the EU Directive on Renewable Energy, it is worth
investigating, for current and future hydrologic conditions, the possibility to reassess the
role of such an HPS and propose an alternative operating scheme. Based on the exceedance
probabilities, the proposed scheme involves the stable monthly excess releases of water
in the usage for extra demand. This concept is closer to the philosophy of the base load
power plants, which supply a dependable and consistent amount of electricity, to meet the
minimum demand.
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Figure 1. Ladhon River Basin and the wider Alfeios River area in Peloponnisos (Greece).

The highest water inflows into Ladhon Dam are mainly during winter and spring with
the highest value observed in February 2003 (60.61 m3/s), when serious flooding events
were reported. The hydrologic year 2007–2008 was the worst in terms of water inflows
and in the summer of 2007 extremely hot and dry weather conditions in Greece, combined
with strong winds, led to a disastrous upsurge of forest fires and wildfires, burning large
forested areas (Aleppo pine forests, low vegetation and meadows) of Western and Northern
Peloponnisos [9]. In Diakakis et al. [47], an increase in reported flood events in Peloponnisos
since 1960 and especially in the last 25 years is observed with the highest concentration
of events in the lower Alfeios basin (Region of Ileia) and Laconia, mainly in November
and January. Heavy rainfall events (e.g., in winter 2003 and 2019) generate spill events at
Ladhon Dam, with reported damages to downstream agricultural areas in the lower part
of Ladhon River Basin and the wider Alfeios lower area.

3.1. Water Demand and Supply Pattern from Ladhon Reservoir

The main water uses of Ladhon Reservoir are primarily hydropower production at the
Ladhon hydropower station (HPS) and secondarily water supply to Alfeios River in order
to cover the irrigation demand of the Flokas works, linked with the diversion Flokas Dam
situated almost 20 km upstream of the Alfeios River outflow into the Kyparissiakos Gulf.
The irrigation water demand extends officially from May to September, whereas in most
years could be further extended from April up to October due to dry climatic conditions.
Based on these water use priorities, a monthly minimum reservoir level serves as guidance
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for the operation of the Ladhon HPS. The general rule of thumb is to start on January 1st
with a minimum water level at 402 ± 1 m and increase it until May at the target level of
419 ± 1 m, in order to satisfy mainly irrigation demands.

A critical point of the present research is the determination of an alternative water
demand scenario for managing the future reservoir operation, which can be satisfied with a
high probability based on the historical reservoir water inflows. Firstly, the reservoir water
inflows and outflows during the available historic period (1956–2014) are analyzed. The
water releases are analogous to the water inflow rates, aiming solely at hydroelectric energy
production (single reservoir purpose). The partial satisfaction of irrigation demands during
the dry period of each year becomes a matter of conflict as an extra decision between
HPPC and local irrigation authorities is necessary every year [48,49]. The previously men-
tioned reservoir operation is shown in Figure 2 (i.e., the average of the historic timeseries
(1956–2014) with the black solid line, the average of the decade 1960–1970 with the red
dotted line, the average of the decade 2000–2010 with the green dotted lines, the most
adverse hydrologic year 2008 with the orange line and the alternative proposed scenario
with the blue line), where the monthly water use is given in the vertical axis as a percentage
of the yearly water quantity, which is usually about equal to the yearly runoff.

Figure 2. Monthly demands as percentages of yearly demands for characteristic year periods during the historic time series
1956–2014. In addition, a scenario for future management is proposed and shown in comparison to the average existing
management and adverse year 2008 reservoir operation.

The alternative demand scenario proposed is based on the analysis of water inflows
and the corresponding energy production. It is assumed that the future annual demand
should be satisfied in the case of the most adverse water inflows as in 2008. Since Alfeios
River provides water to the fertile land of the Ileia Region situated at the lower Alfeios
basin close to its estuary, its main tributary Ladhon should serve, besides hydropower
production, also the irrigation needs of the agricultural areas of this land. Therefore, the
aim of the selected scenario for the operation of Ladhon Reservoir is to satisfy both the
irrigation demand target and a predetermined monthly hydropower production threshold.
The proposed scenario is shown in Figure 2. The yearly total demand is determined to
be 192.58 × 106 m3, which is equal to the lowest yearly runoff observed in the period
(1956–2012) and occurred in the most adverse year 2008. As this year was the driest of
the whole period, PPC forced by the local authorities, charged for safeguarding water
irrigation, to drastically change the program of Ladhon Reservoir operation, according
to which hydropower constitutes the single purpose, Thus, PPC reserved water during
the winter period and provided it during the irrigation period. The proposed reservoir
operation scenario is quite different from the average operation of the reservoir (black
solid line), since it emphasizes the multiple-purpose water management of the reservoir.
It satisfies irrigation needs even in unfavorable (dry) years (see the most adverse yearly
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demands in 2008), while ensuring a minimum prescribed hydroelectric energy production,
as the future trend is to combine the usage of the green energy alternatives, i.e., solar, water,
wind and other kinds of renewable energy sources. Since higher reservoir water inflows
are expected during winter, compared to the hydrologic regime of the adverse year 2008,
additional hydropower energy can be produced than the least scheduled ones, as proposed
by the alternative management scenario. In this sense, the past and present role of Ladhon
Reservoir in the Greek energy power map is expected to change from serving only as the
peaking power plant to a more reliable and stable base-load power plant.

Assuming a zero height dam and following the novel methodology of Yannopoulos
and Demetracopoulos [44], the exceedance probability with respect to any given reservoir
volume is computed and shown in Figure 3 for the regulation periods r = 1, 2, 3 and
10 years derived for the actual runoff data (1956–2012) using the above scenario. For
the proposed water management scenario and the actual dam capacity due to sediment
deposition into Ladhon Reservoir (see Section 3.4), if similar hydrologic conditions with
the historic time series (1956–2012) were assumed, the reservoir should satisfy the demand
shown in Table 1 with a 90% probability (10% exceedance probability) for a one (1) year
regulation period. Therefore, the proposed scenario suggests a significant change of future
reservoir water management, which could be more flexible and beneficial (i.e., resilient) for
the local communities and the state.

Figure 3. Exceedance probability with respect to any reservoir volume for the regulation periods r = 1, 2, 3 and 10 years
derived for the actual runoff data (1956–2012) using the scenario proposed in Table 1 and shown in Figure 2 in the blue line.

Table 1. Alternative water management scenario of hydroelectricity production and irrigation supplement for the future
Ladhon Reservoir operation as a multipurpose reservoir.

Month Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Water demand
(106 m3) 16.00 6.52 6.52 6.52 6.52 6.52 16.00 16.00 32.00 32.00 32.00 16.00

3.2. Past and Future Meteorological and Hydrologic Data

The available historical record of the meteorological stations of the Hellenic National
Meteorological Service (HNMS) close to the Ladhon Dam includes measured time series
of mean monthly rainfall and temperature for a 47-year time period (1957–2004) for the
Ladhon Basin (Appendix A, Table A1). The time series of measured mean monthly inflows
into the Ladhon Reservoir and water releases, as provided by the Hellenic Public Power
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Corporation from the operation of Ladhon Dam and its adjacent hydropower station, are
available from October 1956 to September 2012. The meteorological data from 2005 to 2012,
which is the additional time period with available hydrological and operational data from
Ladhon Dam, but not from the meteorological stations, were not available from the HNMS.

The future climatic and hydrologic projections are approximated by both approaches
analyzed in the Introduction, i.e., (a) using plausible climate scenarios and global climate
models and (b) by properly extrapolating historic data. To apply the future climate sce-
nario approach, we selected one of the most widely used climate database, the WorldClim
version 1.4 [24]. This database includes: (i) the 1960–1990 average climate for monthly pre-
cipitation, mean, minimum and maximum daily temperatures and 19 derived bioclimatic
variables, at high geospatial resolution (GeoTIFF of 1 km × 1 km), referred as the baseline
‘current’ climate. The data layers were generated through spline surface fitting spatial
interpolation of average monthly climate data from weather stations around the world.
(ii) Future climate data (monthly average of total precipitation and monthly minimum
and maximum temperature over the reference future period) for two future time periods:
(a) 2050 (average for 2041–2060), referred to as the near future, and (b) 2070 (average
for 2061–2080), referred to as the far future. The provided climatic data are downscaled
and calibrated (bias corrected) outputs from global climate models (GCMs) using the
WorldClim 1.4 baseline ‘current’ climate for four representative concentration pathways
(RCPs) based on the Fifth Assessment of the Intergovernmental Panel on Climate Change
(IPCC) report [15]. In order to approximate the minimum and maximum runoff change,
we considered the two extreme climate-change IPCC scenarios, being (a) the “optimistic”,
RCP 2.6, representing an environmental-friendly future with a draconian climate policy
and (b) the “pessimistic”, RCP 8.5, representing an unsustainable future without any policy
restrictions for mitigating climate change. More precisely, the RCP 2.6 limits the increase of
the global mean temperature to 2 ◦C and represents the lowest emissions as a result of the
most stringent climate policy [50]. The RCP 8.5 is characterized by increasing greenhouse
gas emissions over time, representative of scenarios in the literature that lead to high
greenhouse gas concentration levels without a climate policy [51].

In order to estimate the water inflows into the Ladhon Reservoir, for each climatic
scenario (current and the two extreme future scenarios projected to the near and far
future), the 1 km × 1 km grid data of the GFDL Climate Model version 3 (CM3) of the
NOAA Geophysical Fluid Dynamics Laboratory (GFDL) [52] was chosen. This model
has been suggested by McSweeney et al. [53] as one of the most appropriate climate
models for the Mediterranean region. This database provides the mean monthly average
temperature and precipitation for the time projections to 2050 (average for 2041–2060)
and 2070 (average for 2061–2080) of the two-extreme climate-change scenarios. Thus, we
applied the following process to produce a time series of equal time length as the historic
record (1957–2004). Based exclusively on the mean monthly averages of the WorldClim
database, the monthly average change between the present (monthly average of the historic
period 1960–1990 provided by WorldClim v.1.4) and the corresponding values of the two
extreme climate change scenarios for the near and the far future were computed. These
monthly average differences have been applied to the available 47-years historic record
of monthly precipitation and temperature, resulting in a new time series of the same time
length, but having as mean monthly values the ones of the future projections. From this
process, five in the total time series of 47 years (one current and four future for the two
future scenarios and the near and the far future) for the mean monthly precipitation are
available and, accordingly, five for the mean monthly temperature.

Based on the historic meteorological and hydrologic monthly time series (with a com-
mon period of 1957–2004), the simple lumped conceptual river basin ZYGOS model [54,55],
having a similar logic as the HBV model [56], but requiring less hydrologic data input, has
been selected and used for the hydrologic simulation of the Ladhon River Basin [48,49].
The aforementioned software models the main hydrological processes of a watershed,
using a lumped approach. It implements a conceptual soil moisture accounting scheme,
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based on a generalization of the standard Thornthwaite model, extended with a ground-
water tank. A global optimization procedure, implementing the evolutionary annealing
simplex algorithm, is included for the automatic estimation of model parameters, using
as evaluation criterion the coefficient of determination [57]. Input data are the monthly
precipitation and the potential monthly evapotranspiration time series (estimated from the
mean monthly temperature based on the Thornthwaite method) as inputs. The objective
function value of the calibration process for the Ladhon Basin is 0.8 [48,49]. Based on the
calibrated ZYGOS model, the monthly inflow water volumes for the near and the far future
for the two extreme climate-change scenarios are estimated using as inputs the derived
47 years of mean monthly precipitation and evapotranspiration (using the mean monthly
temperature from the Thornthwaite method) as described above.

The future climatic and hydrologic projections are approximated additionally by the
second methodological approach, using the statistical characteristics of the real recorded
time series and a proper extrapolation to the future. For this purpose, the stochastic soft-
ware of CASTALIA [45,58,59] for the stochastic simulation and forecasting of hydrologic
variables has been selected. This model includes: (1) multivariate analysis (for many hy-
drologic processes, including rain, temperature and discharge and geographical correlated
locations) and (2) multiple time scales (monthly and yearly) in a disaggregation framework.
It enables the preservation of essential marginal statistics up to third order (skewness) and
joint second order statistics (auto- and cross-correlations) and the reproduction of long-term
persistence (Hurst phenomenon) and periodicity. The measured monthly water inflows
into the Ladhon Reservoir (1956–2012) serve as inputs into CASTALIA. The forecasting
procedure can be conducted in two alternative modes: (i) in steady-state simulations, by
generating a long time series, which represent statistically rare events, and evaluating ex-
treme probabilities, and (ii) in terminating simulations, in which the present and past states
of the system under study must be considered, thus the observed values of the present and
past must condition the hydrological time series of the future [45], by generating numerous
time series of a time horizon (referred to as multiple hydrological scenarios) of, typically, a
few years, where the observed past records of the hydrological variables are introduced
to the generation scheme, in order to obtain statistical predictions of their future values.
For the Ladhon Basin, the latter mode is used generating 15,500 short-time hydrologic
scenarios for a time length of ten years of a monthly time step, using the recorded monthly
runoff at Ladhon Dam (1956–2012).

3.3. Generation of a Long Synthetic Record and Computation of Water Releases

Based on the historic and future time series of monthly runoff derived from the two
approaches, we generated a very long synthetic record of random hydrologic years, as
proposed in the novel methodology for multiple-year regulation of reservoir active storage
capacity by Yannopoulos and Demetracopoulos [44]. More precisely, for each monthly
water inflow time series, a random year consisting of random water inflow values for each
month, corresponding to the available monthly values for the 47 hydrologic years, was
generated. This algorithmic procedure was repeated 200,000 times to produce 200,000
(bootstrap) hydrologic years. For the generated year and the water demand: (i) the required
reservoir capacity was computed for a zero-height dam [44] and (ii) the water releases
from the reservoir and the excess water volumes were computed from the monthly water
balance of the Ladhon Reservoir based on the current and future reservoir storage capacity
(as computed in step (5) of Section 2). If the reservoir capacity is greater than the minimum
required capacity for satisfaction of the demand, the excess water partly remains as a
residue in the reservoir and partly overflows from the spillway of the dam. If the reservoir
capacity is less than the minimum required capacity for the satisfaction of the demand,
then the excess water totally overflows from the spillway of the dam. In the latter case, the
demand is only partially satisfied. Nevertheless, if an amount of water during or before
the high runoff period could be used for an extra water purpose (hydroelectric energy
production, drinking water and other market purposes), it would allow the reservoir to
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store and use greater amounts of water on a yearly basis, without affecting the percentage
of demand satisfaction.

3.4. Sediment Retention in the Ladhon Reservoir

For an accurate estimation of basin soil loss and sediment transport, a systematic
hydromorphologic monitoring of a dam reservoir along with sediment discharge mea-
surements, would have been required. However, such information is not available for
Ladhon Reservoir. Therefore, a fairly reliable estimation of sediment yield and dead storage
for a reservoir with no such measurements, such as Ladhon Reservoir, was undertaken
by making use of the RUSLE2015 database [60] of soil loss by water at high resolution,
combined with a process of low requirements for additional input data as described below.
The estimation of the soil erosion by water at the Ladhon Dam was based on the dataset
of soil loss by water erosion in Europe available by the Joint Research Centre (JRC) of the
European Commission. The Global Soil Erosion Modelling platform (GloSEM available at
https://esdac.jrc.ec.europa.eu/content/global-soil-erosion accessed on 10 January 2021)
provides an assessment of global soil erosion (in t ha−1 yr−1) for 2001 and 2012, which is
estimated by application of a modified version of the revised universal soil loss equation
(RUSLE) model, at a spatial resolution of 25 km (pixel size) [60]. Based on the total Ladhon
drainage basin, a GIS map of the total soil erosion (in t ha−1 yr−1) was produced, resulting
in a total soil loss for the entire basin equal to 951.392 t/yr, which is comparable with
some relevant estimates of other Greek rivers by [61]. Now, for the drainage area cut off
corresponding to the Ladhon Dam, the soil loss was equal to 834.155 t/yr. On the basis of
monthly suspended sediment flux data available for other Greek rivers discharging into
the Ionian Sea, i.e., Acheloos River (2.5 × 106 t), Arachthos River (7.3 × 106 t), Kalamas
River (1.9 × 106 t) and on the basis of published information on sediment fluxes in the NE
Mediterranean Sea (e.g., [62]), an amount of some 2.5 × 106 tons per year of suspended
sediment and an amount of more than 3 × 106 tons of total sediment load are expected to
be transported annually by the Alfeios River towards its deltaic coast [63]. Approximately
25% of the sediment load corresponded to the drainage area cut off from the Ladhon Dam,
resulting in 750,000 t/yr of total sediment load. This was in good agreement with the
834,155 t/yr estimated earlier.

The sediment yield was approximated as a fraction of the soil erosion through a
sediment yield factor (SDR). The SDR connects the eroded sediment volume and trans-
ports it from the drainage area to the sediment volumes entering streams and rivers. It
is estimated empirically either by correlation exclusively with the basin area or with the
hydro-morphologic basin characteristics. The first method, i.e., using only the basin area,
is widely used for providing direct, quick and reliable results even though it represents
a simplification of the sediment transport process [64,65]. Moreover, the area is strongly
correlated to the sediment yield, compared to the hydromorphologic data, whose corre-
lation shows greater variation. The three relations more widely used are the empirical
relationships of Renfro [66], of USDA-SCS [67] and of Vanoni [68]. The Vanoni relation-
ship [68], SDR = 0.42 × A−0.125, (with A the area in mi2), was selected for this study since it
is the most general as a result of a dataset from 300 basins worldwide. The corresponding
sediment yield of the entire basin was 178.105 t/yr (for SDR 0.187) and for the basin area
cut off by Ladhon Dam, 161.524 t/yr (for SDR 0.194). Moreover, in the environmental
impact report of Flokas Dam, a value of 210.07 t/km2 was computed for the Alfeios basin,
based on the simple empirical relationship of Koutsoyiannis and Tarla [69] where the mean
annual sediment transport is linked to the mean annual precipitation and a geological factor
expressing the erosion. For the Ladhon Dam’s draining area, the mean annual sediment
yield can then be approximated as 159,863 t/yr, which is similar to our previous estimate.

Finally, for the total volume of sediment depositions in the Ladhon reservoir, assuming
a bulk density of the retained sediments of the order of 2 t/m3, an annual sediment
volume retained in the reservoir of 80,762 m3/yr was estimated. Then, for a steady
annual sediment volume, the increase of the dead volume due to sediment retention

https://esdac.jrc.ec.europa.eu/content/global-soil-erosion
https://esdac.jrc.ec.europa.eu/content/global-soil-erosion
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results in: (i) 5,249,518 m3 after 65 years (1955–2020), reducing its active storage by 5%,
(ii) 8,479,990 m3 after 105 years (1955–2060), reducing its active storage by 12%, and (iii)
10,095,226 m3 after 125 years (1955–2080), reducing its active storage by 16%. The sediment
volume in the reservoir after 40 years was estimated to be equal to 3,230,472 m3, which
is comparable to the theoretical dead volume of the reservoir (given in the Ladhon Dam
study as 2,890,000 m3).

For assessing the effect of active storage decrease due to sediment deposition to the
target reliability supply, the novel methodology for multiple-year regulation of reservoir
active storage capacity proposed by [44] Yannopoulos and Demetracopoulos (2018) is
alternatively used. More precisely, this method, based on a very long record of monthly
inflows and predetermined monthly water demands, provides a robust way to select
reservoir capacity as a function of the reservoir regulation period and the exceedance
probability. The computation of reservoir active storage capacity was performed with the
aid of the concept of a zero-height dam proposed by the authors for the first time. The
method is in the spirit of the methods initiated by [70] Rippl (1883); it is, however, easier to
interpret physically and implement computationally. The analysis is depicted graphically,
demonstrating the cumulative frequency of exceedance, interpreted as the probability
of exceedance, for any reservoir volume capacity for the considered regulation periods
(commonly up to three years). Figure 3 shows the exceedance probability for any reservoir
volume capacity for the regulation periods of 1, 2, 3 and 10 years and the demand scenario
given in Table 1. The meaning of a x% probability of exceedance for a given reservoir
storage volume is that, in x% of the time period, the given reservoir storage will fail to fully
satisfy the given demand, since a higher reservoir volume is required. By assuming a “zero-
height dam” at the existing Ladhon Dam, we built these exceedance probability diagrams
for the predetermined monthly water demand from Ladhon Reservoir (as estimated in
step (1) of Section 2) and for the water inflow time series of current and future climate
scenarios (as estimated in step (4) of Section 2). For the present and future active storage
of Ladhon Reservoir (as computed in step (5) of Section 2), the corresponding exceedance
probabilities are considered as a measure of the reliability of this storage volume to satisfy
the predetermined monthly water demand.

4. Results and Discussion
4.1. Current and Future Water Inflow in Ladhon Reservoir

Starting with the statistical characteristics of the monthly water inflows into Ladhon
Reservoir, the results for the historic and future time series are provided in Tables A1 and A2.
The effect of two extreme climate change IPCC scenarios (optimistic and pessimistic
scenario) for the near (solid line) and for the far (dotted line) future on the water inflows
into Ladhon Reservoir is shown graphically in Figure 4. Through the comparison of the
simulated historic and future monthly runoff into the Ladhon Reservoir, it is worth noticing
that: (i) For the optimistic IPCC climatic scenario, RCP 2.6, in the near future (2050) the
runoff was mainly reduced from October until March up to 25%, and then a small increase
up to 5% is noticed for the spring and summer period, which is in accordance with the
scenario assumptions. In the far future (2070), the runoff decreased throughout the year
with the highest reduction reported from September until January (15%) (with the highest
reduction value in October (26%)), and for the rest of the months the runoff was reduced
from 9% to 14% during the spring and summer period. (ii) For the pessimistic IPCC climatic
scenario, RCP 8.5, in the near future (2050) the runoff was reduced from approximately
30 up to 40% for the winter and autumn period and from 20% up to 30% for spring and
summer. In the far future (2070), the runoff decreased more than 40% throughout the year
with the highest reduction reported in October (61%) and the lowest in June and July (42%).
As it can be seen from this table, the simulated monthly runoff values with the ZYGOS
hydrologic model were good approximations of the recorded (real) values for most months
except for the low flow conditions during the dry period. More precisely the runoff for
October was underestimated by 30% and for the summer period from 23% (June) up to 40%
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(September). This can be attributed to the fact that the Ladhon Basin is interconnected with
its neighboring basins with water inflow contributions through karstic sources that cannot
be easily incorporated into the hydrologic simulation. This deviation between measured
and simulated runoff was taken into consideration by taking the relative runoff change
instead of its absolute value between the simulated historic and future runoff values (being
all simulated with ZYGOS and therefore comparable).

Let us consider the stochastic simulation by using the Castalia software. We produced
15,500 stochastic scenarios with each scenario having 10 years duration (starting from
the next year of the historic measured period (1956–2012), that being the hydrologic year
2012–2013 up to 2012–2022). The mean monthly values of these stochastic scenarios are
given in Table A3 (and the column 15,500 stochastic scenarios—10 years (2012–2021))
and compared to the mean values of the historic (measured) runoff record, the following
conclusions can be drawn. From December to March the stochastic mean monthly runoff
was reduced from 40% up to 60% (December: −47%, January: −58%, February: −43%
and March: −42%); from August to October a smaller reduction is noticed ranging from
15 to 18% (August: −18%, September: −15% and October: −16%). Therefore, the most
significant reduction was estimated from December to April, resulting in mean runoff
values lying between the corresponding runoff values derived from the optimistic and
pessimistic IPCC climatic scenarios in the far future. For the other months the reduction of
the mean monthly runoff was comparable to the corresponding values derived from the
optimistic IPCC climatic scenario in the near future.

4.2. Excess Water Volume

The monthly excess water volume represents the additional water volume with high
variability and higher exceedance probability in comparison to the basic monthly wa-
ter volume, which corresponds to the proposed water management scenario selected
to fully satisfy the water demand for current and future hydrologic conditions with a
very low exceedance probability. Firstly, the mean monthly excess water volume and
its 95% confidence interval were computed for the historic (measured and simulated)
and future (stochastic simulation and IPCC climate change scenarios) hydrologic condi-
tions (Figure 5a and Table A4). The results show that from December until April at least
40 × 106 m3 of the excess water volume (where the mean excess water volume, multiplied
by 106 m3, was 40 in December, 60 in January, 65 in February, 65 in March and 40 in
April) could be used for additional hydropower production from the Ladhon Reservoir
without restricting the need for irrigation water demand during the dry period. During
that period, a lower monthly mean excess water was available for additional irrigation
purposes (with a mean excess water volume in May of 25 × 106 m3, June of 2.5 × 106 m3,
July of 0.5 × 106 m3, August of 0, September of 0.6 × 106 m3 and October of 1.5 × 106 m3).

The mean monthly excess water derived from the future stochastic runoff simulations
using the CASTALIA software did not deviate significantly from the historic measured
runoff time series (1956–2012), which are depicted as bars in Figure 5a. For most of the
months the excess water volume change of future stochastic scenarios compared to historic
records was less than ±15%, except for October with a reduction to about half (−51%) and
November with −21%.
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Figure 4. Monthly runoff change (106 m3) of future projections based on IPCC climate change scenario RCP 2.6 and 8.5 to the near future (2050) and the far future (2070) using GFDL-CM3
in relation to the historic simulated runoff (1957–2004).
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Figure 5. (a) Mean monthly excess water (×106 m3) and 95% confidence interval expressed as: (i) bars for the historic
measured (1956–2012) hydrologic data and all stochastic simulations using Castalia and (ii) lines for the simulated hydrologic
time series using the ZYGOS hydrologic model based on the historic situation (1956–2004) and the future projections of
IPCC climate change scenarios. (b) Cumulative frequency—the probability of the monthly excess water (on 106 m3) based
on the generation of 200,000 years from the historic measured runoff (1956–2012).

Comparing the mean monthly excess water derived from the historic measured and
simulated runoff time series, a similar deviation of the simulated from the measured
values reported for the monthly water inflows into Ladhon Reservoir is also noticed
for the monthly excess water volumes. This deviation is a matter of estimation based
on the reservoir water balance (estimated water inflow and precise outflow for a given
reservoir volume). More precisely, from January to May the mean excess water volumes
resulting from the historic simulated hydrologic data does not deviate significantly from
the measured ones, whereas for the dry period the mean excess water volumes from the
simulated data are close to zero and significantly below from the corresponding values of
the historic measured data. For this reason, the results derived from the historic simulated
data were compared only with the ones from the future climate change IPCC scenarios
(which were also simulated using the hydrologic model, as analyzed above) and their
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relative change (instead of the absolute values) was analyzed. These excess water volumes
are depicted as lines in Figure 5a.

Generally, for the summer period (including June, July and August) and for September
and October, and therefore for the months covering the main irrigation period, the mean
excess water volume for the current and future climate scenarios was zero and the change
could not be analyzed. By comparing the future mean excess water volumes to the ones
derived from the historic simulated runoff, for the optimistic IPCC climate change scenarios,
RCP 2.6, we found: (i) In the near future there was a small increase of the mean excess
water volume for the beginning of the dry period when water is required for irrigation
purposes, i.e., for April (2%), for May (9%) and for June (29%), which is in accordance
to the storytelling of the climatic scenario. For the other months, a variable decrease of
mean excess water is observed with the smallest in March (with −6%) and the highest
in November (with −67%). (ii) In the far future, the mean excess water volume reduced
for all months. From February to May a small decrease (about 20%) is shown, in January
and June a medium decrease (about 40%) and a drastic decrease in December (−66%) and
in November (−90%). Therefore, for the optimistic IPCC climate change scenarios, the
mean excess water from February to May, mainly used for hydropower energy production,
did not change significantly by considering the hydrologic uncertainty of the near and
the far future. For the other months, i.e., the remaining wet period (November, December
and January) targeting hydropower production and for the remaining dry period (June,
July, August, September and October) targeting irrigation, the mean excess water for
hydropower and irrigation was subject to a medium to significant decrease in the near and
the far future.

For the pessimistic IPCC climate change scenarios, RCP 8.5: (i) in the near future, there
was at least a 35% decrease of the mean excess water volume for all months. From February
to May, when water was only used for hydropower production, the reduction of the mean
excess water ranged from 35 to 50%. For the remaining wet period (November, December
and January) a higher decrease was computed, ranging from 66% to 99%. (ii) In the far
future, the mean excess water volume was reduced for all months more than 80%, and,
therefore, the additional hydropower production and irrigation could not be guaranteed.

A critical point for the mean monthly excess water volumes is to identify how probable
is their occurrence within the time period. Within the proposed methodological framework,
the cumulative frequency of exceedance for the monthly excess water (106 m3) from
historic measured runoff (1956–2012) was built and is shown in Figure 5b. This was
based on the generation of 200,000 years by employing the procedure of [44]. From
this figure, the probability of the excess water volume to have values at least equal to a
given value is provided as the cumulative frequency or vice versa the 100% minus the
cumulative frequency provides the probability of the excess water to have values below
the given value. Therefore, the probability of the excess water to have values of at least the
mean monthly excess water values given previously is as follows: (a) for February until
May, approximately 55%, (b) for December and January, 40%, (c) for November and June
approximately 30% and (d) for the other months it was very low, below 5%.

The choice of the level of exceedance probability may be a matter of economic, social
and environmental factors; the lower the probability level the higher the excess water
volume, which could be used additionally, hence the higher the risk of non-satisfying
the excess water demand above the basic water demand. Accepting a monthly operation
scheme with a “low risk” of not-satisfying the selected monthly excess water volumes, i.e.,
expressed as 10% exceedance probability (corresponding to 90% cumulative frequency),
the lowest monthly excess water volumes are observed with descending magnitude order
in February and March (approximately 25 × 106 m3), in January and April (approximately
20 × 106 m3), in December and May (approximately 10 × 106 m3) and in the other months
it was practically zero. Accepting a “higher risk” operation policy, i.e., expressed as 40%
exceedance probability (corresponding to 60% cumulative frequency) almost doubled
the mean monthly excess water volumes, the descending order being in February and
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March (approximately 55 × 106 m3), in January and April (approximately 45 × 106 m3),
in December and May (approximately 30 × 106 m3) and in the other months it was below
0.5 × 106 m3.

4.3. Active Storage Reduction Due to Sediment Deposition and Reservoir Supply Reliability

As described in Section 3.4, for the present and future active storage of Ladhon
Reservoir, the corresponding exceedance probabilities based on the “zero-height dam”
concept [44] is taken as a reliability measure of any reservoir storage to satisfy the prede-
termined monthly water demand. The exceedance probability with respect to reservoir
volumes is shown in Figure 6, including: (a) the current state based on the historic mea-
sured (1956–2012) and simulated (1956–2004) runoff and (b) the future projections derived
from the simulated runoff of the future IPCC climatic scenarios and from the stochasti-
cally simulated runoff data. As mentioned previously, the simulated runoff data (current
and future) (due to the peculiarities of the Ladhon River Basin as described previously)
underestimated systematically the monthly low flow runoff for the dry period compared
to the measured runoff, and therefore, overestimated the required reservoir volumes. To
overcome this deviation in Figure 6, the curve derived from the simulated runoff time
series was shifted horizontally to the left by trial and error (the best fit corresponds to a
reduction of reservoir volume by 30 × 106 m3) in order to coincide with the curve derived
from the measured runoff. The corresponding curves of future projections derived from the
simulated runoff of the future IPCC climatic scenarios were also similarly shifted, assuming
that the systematic runoff underestimation of the hydrologic model was the same also in
the near and the far future.

Figure 6. Cumulative frequency—the probability (%) of the reservoir required volume (in 106 m3)
assuming a zero-height dam and based on the novel methodology of Yannopoulos and Demetra-
copoulos (2018): (a) the randomly generated 200,000 years based on the historic measured and the
simulated runoff data (1956–2004), (b) the future IPCC climatic scenarios in the near and the far
future and (c) the 15,500 probabilistic scenarios of 10 years duration (using CASTALIA).
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In order to assess the effect of the active storage decrease, due to sediment deposition,
to the water supply target reliability from this figure, the exceedance probability is given
for the current period (historic simulated and measured runoff data): (i) 4% for the design
active storage of 46.2 × 106 m3, (ii) 9% for the current active storage of 40.95 × 106 m3

and (iii) 25% for the far future active storage volume of 36.105 × 106 m3. The exceedance
probability in the near and far future under the optimistic IPCC climate scenarios equaled
to: (i) 0–9% for the design active storage of 46.2 × 106 m3, (ii) 3–25% for the current
active storage of 40.95 × 106 m3 and (ii) 10–48% for the far future active storage volume
of 36.105 × 106 m3. The exceedance probability in the near and far future under the
pessimistic IPCC climate scenarios equaled to: (i) 35–95% for the design active storage of
46.2 × 106 m3, (ii) 60–98% for the current active storage of 40.95 × 106 m3 and (ii) 80–99%
for the far future active storage volume of 36.105 × 106 m3.

Based on these results, it can be concluded that the active storage reduction from the
beginning of the operation of Ladhon Dam until now has reduced its reliability in terms of
satisfying the proposed water demand by 5% (=9–4). The reliability of the current active
storage will be reduced in the future up to 16% (=25–9) under an optimistic climate change
scenario and 89% (=98–9) under a pessimistic climate change scenario. Finally, the reliability
of the future active storage will be reduced by 27% (=48–25) under an optimistic climate
change scenario and up to 74% (=99–25) under a pessimistic climate change scenario.

For the stochastically simulated runoff using CASTALIA, the reservoir exceedance
probability derived from the 15,500 probabilistic runoff scenarios was: (i) 17% for the
design active storage of 46.2 × 106 m3, lying between the corresponding probabilities
of the optimistic (RCP2.6-2070) and the pessimistic (RCP8.5-2050) future climate change
scenarios, (ii) 25% for the current active storage of 40.95 × 106 m3, being almost equal to the
corresponding probability of the optimistic (RCP2.6-2070) future climate change scenario,
and (iii) 32% for the far future active storage volume of 36.105 × 106 m3, lying between
the corresponding probabilities of the historic measured data and the optimistic (RCP2.6-
2070) future climate change scenarios. It is of note that for active storage volume below
25 × 106 m3, corresponding to the half of the design storage, the cumulative frequency
curve from the stochastic simulation practically coincided with the corresponding curve
from the historic data.

4.4. Total Benefit for Water Allocated to Hydropower Production and Irrigation

In order to estimate the total benefit from water allocated to hydropower energy,
the unit benefit proposed by Bekri et al. [49] was used. This research took into account,
firstly, the changes that resulted from the liberalization of the energy market in Greece,
and, secondly, the effect of the hourly marginal energy price of the energy system and the
real benefits of Ladhon HPS for the period 2000–2008 based on the estimations of the chief
engineer responsible for the operation of Ladhon HPS. The mean value of the extreme
unit benefit values (corresponding to the lower (40 €/MWh) and upper (75 €/MWh) fuzzy
boundaries) was considered, resulting in an interval midpoint benefit of 57.5 €/MWh. The
basic (corresponding to full satisfaction of the proposed water demand scenario under
present and future hydrologic conditions with a very low exceedance probability) and
the mean excess monthly water volume (m3) and the corresponding probable benefit (in
million €) from allocating these water volumes to hydropower production for the simulated
historic and future IPCC climatic scenarios are given in Figure 7.
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Figure 7. Basic and excess mean monthly hydropower energy production (million MWh) and corresponding probable
benefit (million €).

Additionally, the unit benefit for water allocated to irrigation was also based on the
results of Bekri et al. [49] for the Alfeios basin (i.e., from the Flokas irrigation scheme). The
irrigation water demand (dry period) in the Alfeios basin extends officially from May to
September, whereas in most years, it could be further extended from April up to October,
due to the dry climatic conditions. An official agreement for stable water released from
the Ladhon HPS in order to satisfy irrigation demand for the months of June, July and
August has been arranged. In most cases, additional water releases are required. By
estimating the probable net income from the agricultural production of the lower Alfeios
irrigated crop pattern, taking into account the farmer, the cost of production, the cost of the
irrigation canal (associated with the water charge to the farmers from the general irrigation
organization) and the organizational structure of local irrigation organizations (the charges
of the local irrigation organizations), a lower (0.166 €/m3) and an upper (0.205 €/m3) value
of the unit irrigation benefit is estimated [49]. We used the interval midpoint (0.185 €/m3)
in the computational process of the total benefit from the irrigation water volume. The
basic (corresponding to full satisfaction of the proposed water demand scenario with a
very low exceedance probability) and mean excess monthly water volume (m3) and the
corresponding probable benefit (in million €) from allocating these basic and excess water
volumes for irrigation for the simulated historic and future IPCC climatic scenarios is
given in Figure 8. The irrigation benefit together with the hydropower benefit for the wet
(November to April) and dry (May to October) months for the current period and for the
near and far future was estimated and given in Figure 9.
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Figure 8. Basic and excess (mean) monthly irrigation water volume (million m3) and corresponding
probable benefit (millions €).

Figure 9. Irrigation benefit (in million €) together with the hydropower benefit (in million €) for the wet (November to
April) and dry (May to October) months, for the current period and for the near and far future.

Since, as mentioned above, the simulated runoff data for present and past conditions
(simulated runoff of 1956–2004) and for the future runoff projections based on the IPCC
climatic scenarios deviated in some cases from the measured data, the conclusions were
based on the relative change of hydropower and irrigation benefit for the near and far
future compared to the historic period. More precisely, in Figure 10, the hydropower and
irrigation benefit from the mean excess water as a percentage of the total hydropower
and irrigation benefit (including benefit from basic and excess water) is provided. The
hydropower benefit was divided into two periods: (a) wet (November to April) and (b)
dry (May to October) period. The hydropower energy benefit from the excess water in
the wet period corresponded to the two thirds of the total benefit, i.e., 68% of the total
benefit derived from the historic simulated runoff (1956–2004). In the near future under the
climate change effect, this percentage was only slightly reduced to 67% for the optimistic
climatic scenario and to 61% for the pessimistic scenario. In the far future, this percentage
was slightly reduced to 66% for the optimistic climatic scenario and drastically reduced to
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34% for the pessimistic scenario. Finally, comparing the hydropower benefit derived from
the historic measured runoff data and the stochastic simulation, a small reduction, ranging
from 5 to 10%, mainly in October, November and in April is noticed.

Figure 10. Irrigation benefit together with the hydropower benefit for the wet (November to April) and dry (May to October)
months, for the current period and for the near and far future.

5. Conclusions

Adapting the operation and management of existing reservoirs, with given storage
capacity and management strategy, to future hydrologic alterations due to climate change
effects and changing water demands, is a key challenge for the water security related
to human needs. The active storage reduction of existing reservoirs over time, due to
sediment transport and deposition, intensifies the need for reassessment of their supply
capacity and management resilience. To overcome this challenge, a general methodological
framework was proposed in this paper and was applied to a case study, i.e., Ladhon
Reservoir (Greece). Based on the historic meteorological and hydrologic timeseries, the
reservoir water availability in the near and far future was estimated: (i) by using the two
extreme (best—RCP 2.6 and worst—RCP 8.5) climate change IPCC scenarios [15], and (ii)
by stochastic simulation and projection. The climate change effect on the monthly water
inflows into Ladhon Reservoir was estimated, with a small reduction in the near and far
future under the optimistic climatic scenario (with the highest reduction of 26% in October),
and under the pessimistic scenario with a medium reduction (up to 40%) in the near future
and a high reduction of more than 50% throughout the year in the far future.

The novel methodology for multiple-year regulation of reservoir active storage capac-
ity [44] was properly modified and used to determine a basic monthly operating scheme
with low probability of exceedance (<5%) for the present and future active reservoir storage
capacity (affected by the active storage reduction due to sediment deposition). Considering
the reservoir storage reduction over time due to sedimentation, reservoir active storage ca-
pacities of 46.2, 40.95 and 36.105 × 106 m3 were estimated corresponding to the present year,
the near future (2050) and the far future (2070). For these cases, the exceedance probabilities
and the mean monthly excess water volumes, and their 95% confidence intervals, for the
historic and future hydrologic conditions were computed. The corresponding exceedance
probabilities with respect to the reservoir volumes for 1 year of the regulation period were
4%, 9% and 25% for the current period. The corresponding exceedance probabilities in the
near and far future, under the optimistic IPCC climate scenarios, were 0–9%, 3–25% and
10–48% and under the pessimistic IPCC climate scenarios, 35–95%, 60–98% and 80–99%.
The effect of the active storage reduction over time due to sedimentation on the water
supply reliability of the reservoir for the proposed water demand gave a reduction of 5%
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for the current period, up to 16% under an optimistic future climate change scenario and
89% under a pessimistic future climate change scenario. The corresponding effect on water
supply reliability, for the stochastically simulated runoff using CASTALIA, was expressed
by a reduction of 17% for the design active storage, 25% for the current active storage and
32% for the far future active storage volume, which all lay between the corresponding
pessimistic and optimistic values given previously. Then, excess water releases, additional
to the basic operation scheme, were stochastically simulated for the future projections,
which enabled the adaptation to a multiple-purpose water supply management strategy.

The probable total benefit from water allocated to the various water uses was de-
termined for all future projections together with their corresponding level of reliability
(exceedance probability). Selecting a reservoir operation scheme with higher risk (i.e., non-
satisfying the excess water demand above the basic water demand) involved higher excess
water volume and higher benefits, and vice versa. In this way, the reservoir operators
and the involved decision makers can investigate the tradeoffs between the probabilistic
plausible hydrologic realizations of the alternative reservoir operation schemes and the cor-
responding levels of security or reliability along with the corresponding probable benefit.
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Appendix A

Table A1. Statistical characteristics of time series of measured mean monthly inflows into Ladhon Reservoir (1956–2012)
and water releases (1960–1971 and 1996–2012).

Months 10 11 12 1 2 3 4 5 6 7 8 9

Inflows into the reservoir (×106 m3)
Mean 20.72 26.99 56.51 69.50 74.17 74.43 56.37 41.34 28.76 23.08 19.92 18.54

Standard
deviation 6.02 12.80 36.57 38.79 34.61 30.58 19.69 13.84 9.15 6.77 5.08 4.34

Maximum 42.43 87.14 160.09 179.02 163.95 126.98 95.72 78.8 56.66 45.48 33.4 28.02
Minimum 10.2 12.08 14.73 15.96 16.61 16.02 14.57 14.09 9.95 9.99 10.18 10.32

Water releases for hydroelectric power generation (×106 m3)
Mean 24.41 28.64 44.86 57.55 63.35 68.71 52.93 38.37 29.11 29.78 26.01 24.22

Standard
deviation 9.88 11.34 23.14 25.01 22.51 28.25 23.16 14.06 9.22 7.87 6.86 10.49

Maximum 41.55 68.93 90.20 93.79 88.35 94.19 89.08 78.08 55.31 51.50 38.81 48.74
Minimum 6.07 10.89 8.50 13.56 10.30 4.68 1.98 8.60 14.56 15.33 13.77 7.72
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Table A2. Statistical characteristics of historic and future monthly water inflows into Ladhon Reservoir (in ×106 m3) and
corresponding changes (%).

Months 10 11 12 1 2 3 4 5 6 7 8 9

Historic measured (1956–2012)
Mean 20.72 26.99 56.51 69.50 74.17 74.43 56.37 41.34 28.76 23.08 19.92 18.54

Standard deviation 6.02 12.80 36.57 38.79 34.61 30.58 19.69 13.84 9.15 6.77 5.08 4.34

Historic simulated runoff (1957–2004)
Mean 14.45 27.65 54.69 73.06 79.31 70.97 57.41 38.46 22.96 16.46 12.77 11.18

Standard deviation 7.75 14.08 28.59 34.64 30.52 27.67 22.54 16.55 9.29 3.30 2.38 3.52
Deviation of simulated from

measured runoff (%) −30% 2% −3% 5% 7% −5% 2% −7% −20% −29% −36% −40%

Monthly runoff changes (%) of the future IPCC climate change scenarios (IPCC, 2015)
compared to the historic simulated runoff (1957–2004)

Opti-RCP2.6-2050 −12% −25% −23% −24% −14% −6% 1% 5% 5% 1% −2% −9%
Pessi-RCP8.5-2050 −39% −39% −37% −30% −27% −31% −29% −28% −22% −19% −23% −31%
Opti-RCP2.6-2070 −26% −23% −20% −15% −14% −14% −13% −11% −9% −9% −12% −17%
Pessi-RCP8.5-2070 −61% −55% −53% −57% −57% −58% −54% −51% −43% −42% −48% −56%
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Table A3. Statistical characteristic of historic and future monthly water inflows into Ladhon Reservoir (×106 m3) derived from the IPCC climatic scenarios in the near (2050) and the far
(2070) future and the stochastic simulation (15,500 stochastic scenarios of 10 years duration).

Mean Monthly Runoff (In 106 m3)

10 11 12 1 2 3 4 5 6 7 8 9

(1957–2012)
measured historic

Mean 20.7 27.0 56.5 69.5 74.2 74.4 56.4 41.3 28.8 23.1 19.9 18.5
Standard deviation 6.0 12.8 36.6 38.8 34.6 30.6 19.7 13.8 9.2 6.8 5.1 4.3

Maximum 42.43 87.14 160.09 179.02 163.95 126.98 95.72 78.8 56.66 45.48 33.4 28.02
Minimum 10.2 12.08 14.73 15.96 16.61 16.02 14.57 14.09 9.95 9.99 10.18 10.32

(1957–2004)
simulated historic

Mean 14.4 27.7 54.7 73.1 79.3 71.0 57.4 38.5 23.4 16.5 12.8 11.2
Standard deviation 7.7 13.9 28.3 34.3 30.2 27.4 22.3 16.4 8.5 3.3 2.4 3.5

Maximum 39.8 80.5 119.8 144.5 140.0 143.7 104.8 79.4 51.3 27.2 18.2 23.6
Minimum 5.4 7.6 5.7 16.7 17.0 18.9 17.6 14.6 11.4 9.0 6.4 4.6

(1957–2004)
RCP2.6-2050

Mean 12.8 20.9 42.2 55.5 67.9 66.7 58.2 40.6 24.5 16.7 12.5 10.2
Standard deviation 7.3 12.3 24.2 31.7 29.5 27.6 22.9 17.5 9.5 3.6 2.5 2.9

Maximum 37.0 67.6 103.1 123.4 130.1 141.1 107.4 84.9 55.3 28.8 18.1 20.2
Minimum 4.8 4.2 3.8 11.7 14.1 16.1 17.1 13.6 10.5 8.1 5.3 3.4

(1957–2004)
RCP8.5-2050

Mean 8.9 16.9 34.5 50.9 57.9 49.1 40.7 27.6 18.2 13.3 9.8 7.7
Standard deviation 6.4 11.4 21.4 30.8 29.2 25.4 19.9 13.5 6.5 3.5 3.0 3.0

Maximum 30.5 54.7 92.3 116.0 121.9 122.7 87.6 63.3 39.0 20.6 15.8 16.6
Minimum 0.3 0.3 0.0 7.0 6.2 7.7 8.6 6.8 4.5 2.8 0.9 0.0

(1957–2004)
RCP2.6-2070

Mean 10.7 21.4 43.6 61.9 68.1 61.1 50.2 34.2 21.2 15.0 11.2 9.3
Standard deviation 6.7 12.3 24.9 33.1 30.0 27.0 21.8 15.7 7.9 3.3 2.6 3.1

Maximum 32.9 65.5 106.1 131.8 131.1 135.3 98.2 74.3 47.3 24.0 16.9 20.3
Minimum 2.5 3.3 2.0 11.8 10.9 14.1 12.8 10.6 7.8 5.5 3.2 1.7

(1957–2004)
RCP8.5-2070

Mean 5.7 12.4 25.8 31.1 33.9 29.5 26.2 19.0 13.4 9.6 6.7 4.9
Standard deviation 5.8 10.3 18.2 24.2 22.9 19.9 15.3 10.6 5.9 4.2 3.3 3.0

Maximum 26.6 44.1 78.9 87.3 91.2 99.1 68.7 49.3 29.3 17.8 13.7 12.8
Minimum 0.0 0.0 0.0 0.0 2.1 3.1 2.8 1.6 0.2 0.0 0.0 0.0

15,500 stochastic
scenarios- 10

years (2012–2021)

Mean 17.4 20.8 29.8 29.0 42.3 43.3 42.1 30.5 21.7 17.8 16.3 15.8
Standard deviation 5.9 9.5 21.9 20.7 39.4 31.0 29.4 19.2 12.1 8.6 6.2 5.1
Variance coefficient 9.1 113.4 2790.2 1553.0 1357.9 645.0 267.5 111.8 50.6 22.9 12.2 7.3

Maximum 27.2 37.7 60.9 78.4 104.2 97.9 101.4 67.9 43.5 33.1 27.4 25.0
Minimum 10.6 10.7 0.0 1.1 0.0 5.3 15.5 13.0 9.0 8.3 9.4 10.5
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Table A4. Mean monthly excess water volumes (×106 m3) as derived from (a) the historic measured runoff data (1956–2004),
(b) 200,000 generated random sample from the historic simulated runoff data (1956–2004) and (c) the 15,500 probabilistic
scenarios (using CASTALIA).

Mean Monthly Excess Water (×106 m3)

Months Historic Measured
(1956–2004)

Historic Simulated (1956–2004)
–(Sample 200,000)

Average Stochastic– 15,500
Probabilistic Scenarios–

CASTALIA

Oct. 1.7 0.0 0.8
Nov. 10.6 0.9 8.4
Dec. 42.6 22.9 42.0
Jan. 60.9 61.1 61.8
Febr. 66.1 72.4 66.9

March 67.2 64.4 66.9
April 40.4 41.5 40.1
May 25.4 22.5 25.2
June 2.1 1.3 2.5
July 0.4 0.0 0.5
Aug. 0.0 0.0 0.1
Sept. 0.6 0.0 0.9
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