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Abstract: Every year, the human impact on the world’s water sources becomes more pronounced.
One of the triggers to this increase is the use of ineffective wastewater and sludge treatment systems.
Recently, the number of studies of microwave processing in handling liquid municipal and industrial
waste has increased. This paper discusses heat treatment, change in properties, decomposition of
substances, removal of metals, demulsification, pyrolysis, biogas processing, disinfection, and other
topics. The findings of European, Chinese, Russian, and other authors are summarised and presented
in this review. In addition, the most notable Russian patents for microwave installations/devices and
reactors suitable for a wide variety of applications are discussed. In this article, the authors look at
microwave wastewater and sludge treatment from the perspective of practical application in various
fields of human economic activity.

Keywords: microwave irradiation (MW); wastewater (WW); wastewater/sewage sludge (WWS);
treatment technology; MW installations/devices/reactors

1. Introduction

The size of global urban water consumption can be estimated based on the total popu-
lation of Earth living in urban environments, which is more than 3.4 billion people, and the
average water consumption per human of 499 m3 per year [1]. While accurate data on the
amount of wastewater (WW) generated around the world is not available, using a calcu-
lated method based on the standard of water use and the percentage of irreversible losses
(roughly 30–35 per cent) can help us assume that more than 1100 billion m3 of wastewater
and 0.1–0.05% of that amount—wastewater sludge (WWS)—is treated and disposed of
annually in urbanised settlements. Solving high-quality WW and WWS treatment issues
leads to a decrease in the anthropogenic impact on water and land resources. New methods
and technologies, such as electromagnetic microwave irradiation (MW), may help make a
breakthrough in this field.

Microwave radiation is electromagnetic ultrahigh-frequency radiation, including
decimeter, centimetre, and millimetre ranges of radio waves with a frequency of 0.3 GHz
to 300 GHz, corresponding to a wavelength from 1 m to 1 mm [2,3]. High-intensity
microwaves are commonly used for contactless heating of objects, including stoves for
cooking food, metallurgical industry heat treatment installations, and medical devices for
treating veins. People actively involve microwaves of a particular range (frequency from 1
to 100 GHz) in radiolocation. MW reactors are increasingly adopted to neutralise various
solid and liquid wastes produced by people and industrial enterprises [4–6].

Microwave irradiation is confidently entering the wastewater (WW) and sludge (WWS)
treatment technology in the twenty-first century, primarily as an alternative to conditional
heating [4]. MW is a well-known heating and drying process used both for domestic and
industrial purposes.

This method has several advantages over conventional electric heating, including
non-contact heating, instant and rapid process with a high degree of uniformity, and precise
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heating, which induces dipolar oscillations and ionic conductivity in the medium [7,8]. In
2011, researchers conducted a comprehensive study of the existing state of MW technology
for WW treatment [9]. According to this report, using MW to decompose contaminants has
numerous advantages. For example, selectivity and reaction rate increase while reaction
time, activation energy, equipment size, and waste parameters decrease.

These benefits are primarily due to the thermal and nonthermal effects of microwave
irradiation. Many transformations with a beneficial impact on the structure and properties
of water occur in the aquatic environment under the thermal influence of MW: increased
dissolution of substances, coagulation and demulsification of pollution, activation of
various chemical reactions (including oxidation of organic matter), and degradation of
toxins; the disinfecting effect of MW is well known [10].

While the “thermal” effect of MW is well established and well understood for many
environments, the “nonthermal” remains controversial [11,12]. Some researchers [13]
believe that this type of physical impact can excite reactant molecules to higher vibrational
and rotational energy levels, causing a weakening of the chemical bonds of polar molecules
of substances. Thus, under the influence of MW, it comes out in the intensification of
substance degradation. Various reviews and research articles have been published on
specific issues using microwaves in WW and WWS treatment technologies. Table 1 shows
the main directions of research in modern science on this topic.

Table 1. Key research directions on the use of MW in WW and WWS processing technologies.

Section Direction of MW Research WW WWS [Ref./No]

Section 3.1 Heating and thermal treatment + + [3,9–27]
Section 3.2 Properties change + + [28–42]
Section 3.3 Decontamination + + [14,26,28,42–56]
Section 3.4 Decomposition of organic substances + - [9,13,22,57–81]
Section 3.5 Demulsification + - [82–90]
Section 3.6 Extraction of heavy metals + + [6,14,24,91,92]
Section 3.7 Generation of biogas - + [93–106]
Section 3.8 Pyrolysis of sewage sludge - + [107–109]
Section 3.9 Sorbent modification + - [73,110–119]
Section 3.10 Devices for WW and WWS MW processing + + [120–128]

This article provides an overview of microwave radiation used in WW and WWS
treatment systems, and additional information. The experience of Russian scientists is in-
cluded in the presented summary knowledge and world accomplishments, which consider
MW from the standpoint of promising practical applications in economic and industrial
human activities.

2. Materials and Methods

Searching for materials, the keywords “microwaves”, “microwave irradiation”, “wastew-
ater”, “wastewater/sewage sludge”, and “MW installations, devices or reactors“ were
used to scan for thematic papers and patents in Web of Science, Scopus, Google Scholar,
ELIBRARY.RU, and other outlets, without regard to publication date.

More than 120 publications related to wastewater and its sediments treatment by
microwave radiation were selected to solve practical engineering and technological prob-
lems. Most of the considered articles were written in English (99 pieces) and just several
in Russian (29 pieces). The search results were initially analysed regarding their abstract,
followed by a thorough evaluation of their context when specific criteria were met. The in-
formation provided was collected between September 2020 and May 2021. Table 2 contains
a summary of the sources used in the article.
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Table 2. Statistics of the sources used.

Paper’s Category Number [Ref./No] Country *

Magazine Site 1 [1] Russia

Reviews 28 [2–4,7–9,13,14,16,17,21,43,51,57–59,73,76,90,91,93–95,98,107,108,112,119] Australia, Taiwan, Japan, China, India, The Netherlands, Russia, Austria,
UK, Malaysia, and Serbia

Research papers 86 [5,6,10–12,15,18–20,22–42,44–47,52–56,60–72,74,75,77–89,92,96,97,99–
106,109–111,113–116,119]

Egypt, Russia, India, Austria, China, Japan, Italy, USA, UK, Malaysia,
Afghanistan, The Netherlands, Hungary, Australia, Japan, Poland, Turkey,

South Africa, Slovenia, Sweden, Canada, Korea, Denmark, Spain
Patents 13 [48–50,117,120–128] USA, and Russia

* The countries where the studies took place are presented in order of mention.



Water 2021, 13, 1784 4 of 29

3. Results
3.1. Heating and Thermal Treatment

MW has become increasingly common as a thermal method for treating wastewa-
ter and sediments in recent years, owing to its rapid and selective heating [9–15]. The
thermal effect of MW [16] describes how ultrahigh-frequency energy can be consumed by
microwave absorbers and dissipated as thermal energy. For many environments, including
water solutions, microwave heating with dielectric losses is typical [13].

Water is a positive-charged molecule (or dipole) with a negative-charged opposite
end. Dipolar polarization occurs due to intermolecular inertia, responsible for most of the
microwave heating observed in liquids. The rapid change in the electric field of microwave
radiation causes a rotation of dipoles. At the same time, the rate at which the dipole rotates
(reverses) cannot accurately correlate to the rate at which the electric field shifts direction.
It induces “internal friction” between water molecules, which leads to direct and very
uniform heating of the reaction mixture. However, reflections and refractions at local
boundaries between phases lead to the appearance of so-called “hot spots” and the effect
of “overheating”, which has been extensively discussed by researchers [15,17–21].

Figure 1 presents the schematic diagram of microwave action [3,17], illustrating
the advantages and scope of application of microwave processing. Microwave heating
penetrates the liquid and creates the rapidly changing field: dipoles (water molecules)
continuously react attempting to align in the field, which generates heat; heat is uniformly
distributed throughout the water.
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Figure 1. The scheme of mechanism of the MW water heating.

Under the influence of MW, several parameters such as strength, frequency, duration,
treatment temperature, and sample volumes [9,14,22–27] can influence the efficiency of
pollutant decomposition and mineralisation of wastewater and sediments. It is confirmed
in the materials [25–27], which use the Netherlands, Kenya, China, and other countries as
examples of MW-heating of faecal sludge (Figure 2).
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Figure 2. Dependence of temperature on the time of MW-heating of: (a) faecal sludge in Kenya, 100 g sample [27]; (b) faecal
sludge in Kenya, 200 g sample [27]; and (c) active sludge in China Reprinted with permission from ref. [25].

As a rule, the efficiency of the MW system tends to rise with the increase of power and
time of microwave irradiation [22]. It is due to the release of extra heat, contributing to the
rapid movement of water molecules. In addition, increased time and power of irradiation
amplify the decomposition of various contaminants in the water environment [9].

In some cases, the efficiency of the MW system is reduced at very high temperatures
by evaporating water and increased viscosity of the substance by overheating. Thus, it is
necessary to determine the optimal power and reaction temperature for decomposing a
particular target pollutant [9,14,17–21].

It should be noted that the technological and economic efficiency of MW heating for
the water environment is currently actively explored by contrasting it to other methods
of heating and processing [14,23,24]. The Department of Water Supply and Sanitation
(Industrial University of Tyumen, Russia) laboratory has carried out several experiments
related to the MW-heating of wastewater sludge [14,24]. Firstly, a comparison is made
between microwave and electric heating. The distinctive feature of microwave heating is
its thermal effect, which is volumetric and does not involve thermal diffusion from the
surface into the material, as conventional heating does, which explains its high thermoset
reaction rates. According to observations, ultrahigh-frequency irradiation of liquid sewage
sludge has a rapid thermal effect: samples of sludge with a 50–300 mL volume started to
boil within one to two minutes (Figure 3) [14].
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Figure 3. (a) Comparison of two methods of WWS-heating. (b) Boiling time dependence of the WWS on the sample volume
at a constant power MW.

Figure 3a compares the heating curves of sewage sludge (mixture of the raw sludge
and activated sludge) in two different ways, with the rate of heating the sludge to a given
temperature using microwaves being four to six times faster than the usual heating on an
electric stove. In addition, in the process of microwave irradiation, an improvement in the
sedimentation and compaction of WWS was obtained by 13–15% compared to traditional
convective heating to the same temperature [14].

Secondly, the maximum time for MW treatment of WWS samples to reach boiling
point [24] was determined experimentally. Figure 3b illustrates dependency t = f (V) at
constant power MW based on the experience data. Obviously, the higher the microwave
processing power, the faster the sludge samples reach the boiling point. At MW 200 W, the
heating rate of sewage sludge is 3.7–4.0 times lower than at MW 1000 W and 3–2.8 times
lower than at MW 600 W. Heating sludge with a power of 1000 W is 1.2 times more effective
than heating with 600 W. Rapid and voluminous MW-heating of wastewater and sediments
entails other positive effects discussed below.

3.2. Properties Change
3.2.1. Wastewater

Almost all researchers usually note changes in individual physical and chemical
properties of wastewater and sludge under MW influence. The scope of the study includes
such properties of water as temperature, viscosity, pH, electrical conductivity, and surface
tension. There is a change in some quality indicators of water. However, some results are
not widely confirmed, for example, the change in the structure of water under the influence
of electromagnetic radiation.

In the studies presented, water samples from 100 to 300 mL were subjected to MW irra-
diation in MW furnaces of various powers from 30 W to 900 W and frequency f = 2.45 GHz
during periods from thirty seconds to ten minutes. In some cases, experiments were carried
out on pure water [28–32] and required testing on wastewater. Table 3 provides examples
of changes in water or wastewater physicochemical properties under the influence of MW,
as measured in batch laboratory studies.
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Table 3. Changes in the physical and chemical properties of water/wastewater under the influence of MW.

Properties Mechanism, Reason Power MW Duration MW Description of Results [Ref./No]

Structure Water molecules’ excitation and
mobility 300 W 10 min More mobile, less ordered water structure and

corrugated water clusters [28,29]

Surface tension Decrease in viscosity and increase in
water molecules’ activity 30–600 W 10–120 s Water surface tension rapidly decreased at about

20–30% [30–32]

pH Extraction of carbon dioxide 300 W
800 W

10 min
5–8 min

pH: from 4.81 to 4.91
pH: from 6.04 to 7.33 [33,34]

Electrical conductivity Increase in water molecules’ activity 300 W 10 min Electrical conductivity of water samples increased by
7.8% [33]

Nanobubbles formation Surface tension change 30–100 W
100–500 W

60 s
10 s

Nanobubbles size:
200–2500 nm
400–4000 nm

[32]

Coagulation of suspended solids MW treatment, reagent addition and
sedimentation 396 W 2 min Particles’ growth process, high deposition rate [25,35]

Change in quality indicators of WW Decomposition of substances 800 W 5–10 min Decrease in WW pollution (Table 4) [14,34]
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According to earlier studies [24,25], published back in the 1980s and 1990s, the struc-
ture of water after treatment with electromagnetic radiation changes: it becomes more
mobile, less ordered, and expanded water clusters can be transformed into a corrugated
structure. However, there has been no confirmation of these conclusions or further study
on the wastewater samples in recent publications found.

According to the observations, during the microwave irradiation process, the water
surface tension rapidly decreased along with the temperature growth. Once the microwave
irradiation was turned off, the temperature quickly recovered, as expected. However, the
surface tension remained significantly below the initial value for an extended period. The
minimal surface tension depended on the MW power. Moreover, the repeated procedure
can additionally reduce the surface tension. For example, a water sample irradiated for
120 s at a power of 600 W had the surface tension decreased from 75 to 55, and this effect
persisted for one hour. There is a change to the alkaline side due to the release of carbon
dioxide. Surface tension experiments were carried out in the laboratory on specifically
constructed equipment [30,31].

The pH change is proportional to the MW treatment’s power and time: the greater
the power and duration, the more significant the pH change. Due to a rise in the water
molecules’ mobility, the electrical conductivity of water samples increased by 7.8%, from
0.9 to 0.97 (uS/cm). An improvement in the solubility of substances in water was also
observed [30]. The nanobubbles formation was observed during the MW heating of the
samples. It can be explained by a change in the surface tension [32].

The coagulation of suspended substances in wastewater under the influence of mi-
crowave irradiation is intensified during short-term treatment (one to two minutes). In
order to analyse the wastewater of a metallurgical enterprise, after the treatment of blast
furnace gases, polyaluminum chloride and phosphoric acid solutions were applied to
water samples as catalysts for the coagulation of suspended substances. As a result, the
concentration of suspended substances with preliminary microwave irradiation of the
samples was 10–15% lower. In addition, it occurs that pretreatment with MW intensifies
the reduction of turbidity and water hardness in the process of reagent coagulation [31].

Some authors also noted changes in wastewater quality indicators. Experiments
in [14], for example, showed that the quality of sewage under the influence of MW electro-
magnetic irradiation improved. Table 4 illustrates the shift in wastewater criteria following
microwave treatment. Results have been derived from batch experiments.

Table 4. Water indexes change after MW treatment [14].

Wastewater Indexes

Inlet
Concentration

before MW,
mg/L

Outlet
Concentration

after MW, mg/L
Description of Results

Suspended matters 940 850
The concentration decreases from 940 to 450 mg/L (after first

stage) and then increases to 850 mg/L (after second stage).
Efficient is 9.5%

Chemical oxygen
demand (COD) 1240 490 Efficient is 60.5%

Biological oxygen
demand (BOD) 430 250

The concentration decreases from 430 to 250 mg/L (after first
stage) and then increases to 280 mg/L (after second stage).

Efficient is 35%
Ammonium-ion 200 150 Efficient is 25%

Nitrate-ion 0 3.8
The concentration increases by reason of the destruction of

organic matters and transformation ammonium nitrogen into
nitrate–ion

Phosphate-ion 29 19 Efficient is 34.5%
Sulfates 14 2 Efficient is 85.7%

Chlorides 4.8 2.8 Efficient is 41.7%
pH 6.04 7.33 The environment became more neutral
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3.2.2. Wastewater Sludge

Microwave WWS treatment is mainly concerned with liquid municipal waste. There
are quite a lot of studies on changing the properties of activated sludge; to a lesser extent,
there are studies on a mixture of raw sediments and activated sludge, as well as studies on
raw sediment separately. Few publications on the study of the properties of dehydrated
sediments are available. Temperature and viscosity, moisture yield, compaction intensity,
and mineralisation are all features that usually put into the analysis. It is worth mentioning
that certain properties of WWS (compaction/deposition rate, resistivity, capillary suction
time, and others) change for the better until the turning point (characterised by the power
and duration of irradiation), after which they irreversibly deteriorate due to the high rate
of water evaporation.

Many observers note a high level of disinfection of all WWS types (Section 3.3). Less
attention is paid to the release of metals into the supernatant water, increasing stability,
reducing rotting, and changing the structure of wastewater sediments. Table 5 shows
variations in the physical and chemical properties of WWS under the influence of MW
(frequency f = 2.45 GHz); the results have been derived from batch experiments.

Table 5. Changes in the physical and chemical properties of WWS under the influence of MW.

WWS Properties WWS Form,
Processing Method MW Power Duration MW Description of Results [Ref./No]

Structure change

Activated sludge; a
mixture of activated

sludge and raw
sediment

450–900 W 1–10 min

Sediment’s structure
changes: the flakes
firstly expand than

collapse

[25,34,36]

Temperature

Activated sludge; a
mixture of activated

sludge and raw
sediment

300–900 W 1–10 min Rise in temperature and
rapid boiling at 100 ◦C [25,34,36]

Resistivity
(fluidity) Mixed sediments 800 W 3–4 min Decrease in viscosity

and resistivity by 5 times [25,34,36,37]

Raw sediment, mixed
sediments 550 W 6 min

A decrease of 73–84%
from the original value
for raw sediment and a
mixture of sediments

[38]

Humidity
Activated sludge, raw
sediment, and mixed

sediments
450–800 W 1–8 min Humidity decreases by

2–3% [34,36]

Moisture output

Mixture of sediments;
activated sludge with
the addition of an acid
solution and heating

to 100 ◦C

600–900 W 1–5 min

The time of capillary
absorption of the

sediment mixture is
reduced by 1.2–1.3 times;
when the pH changes to
2.0–2.4 of the activated
sludge, a reduction of 4

times is achieved

[25,34,36,37,39]

Raw sediment, mixed
sediment, fermented

sediment
500–600 W 1–1.5 min

The minimum capillary
suction time is achieved
only in the first 1–2 min

of treatment to a
temperature of 60–80 ◦C,
then it begins to increase

[38,40,41]
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Table 5. Cont.

WWS Properties WWS Form, Processing
Method MW Power Duration

MW Description of Results [Ref./No]

Compaction
(sedimentation) Activated sludge 900 W

750 W
60 s
80 s

The settling velocity
increases (the settling

time is 24 h)
[25,34,36,37]

Mineralisation
A mixture of raw

sediment and activated
sludge; activated sludge

800 W 8 min

Increase in the ash
content of the

wastewater sludge
mixture by 6.1%;
intensification of

solubilisation of organic
matter

[31–34]

Dry matter content
in the cake *

Dehydrated municipal
sediment 550 W 0.5–4 min

In the raw sediment, the
dry matter content

increases by 8%; in the
mixture and in the
fermented—by 2%.

[38]

Cake * humidity Dehydrated municipal
sediment 400 W 2 min May achieve 28% [38]

Decontamination Raw sediment, mixed
sediments 800–900 W 1–8 min

Reducing the content of
pathogenic

microorganisms by 99%

[14,26,27,31,33,34,
37,42,52]

* cake—dehydrated WWS.

Some publications [25,34,36] provide evidence of changes in the structure of wastewa-
ter sediments under the influence of MW irradiation. Microwave processing of activated
sludge has a tipping point: up to a certain length at a constant strength, the flakes firstly
expand (for example, at 900 W for the first one to two minutes), then the more extended
process (over two minutes) destroys them [25]. At the same time, the structure becomes
more homogeneous and dispersed [36].

A change in the spatial configuration of samples of a sediment mixture after MW
heating to a temperature of 75 ◦C [34,36] was observed during a microbiological analysis
using an electron microscope Micromed 2 (3–20). Figure 4 provides a view of a mixture of
raw sediment and activated sludge in a ratio of 1:2, increased by 40 times.
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The initial structure of the sediment flakes (Figure 4a) is uneven, coarse–dispersed,
with separate large conglomerates, saturated with protozoan bacteria. The species com-
position of the sample of the initial sediment mixture is as follows: filamentous bacteria,
small benthic shell amoebas, free-floating infusoria, aspidiscs, and rotifers. There are no
visible shell deformations. When analyzing images of samples of a mixture of primary raw
sediment and activated sludge under a microscope before and after microwave treatment,
when the heating temperature reaches 75 ◦C (Figure 4b), significant changes in the spatial
structure of the samples under study are visually determined. For example, the structure
of the treated sediment becomes finely dispersed and more uniform, and individual large
silt conglomerates disintegrate. In addition, when analysing the external state of bacteria,
there are visible deformations of their shells: arcella have a distorted shape, and the shells
of rotifers are crumpled [34]. During MW treatment of any sewage sludge, there is a rapid
increase in the temperature of the samples (in one to five minutes, samples with a volume
of 100–300 mL at a power of 900 to 450 W reach 100 ◦C) as a result of the thermal effect of
microwaves (see Section 3.1).

In the process of heating the sediments, there is a decrease in viscosity and resistivity
of filtration. This decrease is observed when the evaporation of moisture is not so great
until the critical moment. After microwave heating, the effect of reduced resistivity retains.
Analysis of a series of experiments showed that MW treatment of sewage sludge during
four minutes at a power of 800 W significantly reduces the specific resistance of filtration:
the initial sludge average value of resistance is 37.15 ×10−10 cm/g with an allow for an
error of no more than 10%, after microwave treatment it is 6.93 ×10−10 cm/g [34,36].
Under the further remained heating, the viscosity and resistivity can rise due to excessive
evaporation after a turning point at a certain power and length of MW–treatment, which
are calculated separately for each form of WWS [25]. It was verified in publication [37],
where for wet sludge and a mixture of sludge were obtained the best resistivity results of
a 73–84% reduction from the initial value after 180 s per minute at a processing power of
550 W. In the MW-treated fermented sediment, the maximal effect of reducing the resistivity
reached only 18% [38].

The moisture-yielding properties of WWS play a vital role in the efficiency and
duration of dewatering and volume reduction. The capillary suction period is the essential
feature of moisture loss. In the experiments, when wastewater sludge was microwave
irradiated for five minutes at a power of 0.8 kW, capillary suction time was reduced by
approximately 1.2 times relative to untreated WWS [39–41]. This is explained by the fact
that part of the bound water passes into the free state and evaporates during the MW
treatment. However, due to a prolonged process over eight minutes, the capillary suction
time increases by 2.4 times on average since significant moisture evaporation occurs and
the sediment becomes viscous [34].

The moisture release of sludge can be intensified by reducing the pH to 2.5 at
T = 100 ◦C: the capillary suction time (CST) is reduced from 37.7 s to 9.2 s (approxi-
mately four times), and the content of bound water is reduced from 1.96 ± 0.19 g/g
to 0.88 ± 0.24 g/g of dry residue [37].

Domestic wastewater sludge has a humidity of 93–99.8% and is at the initial stage
almost a highly concentrated water suspension, saturated with organic substances and bac-
terial contaminants. All WWS treatment methods aim to minimise its volume and achieve
the required conditioned state for further disposal. The decrease in volume achieved by
reducing the moisture content of the sediment to 50–70% is possible when compacting,
dewatering in natural conditions on open silt sites, and mechanical dewatering on special
equipment. Compacting usually takes from five to twenty hours, with the moisture content
of the sludge reduced by 10–15%. Better results of humidity decrease to 50–70% can be
achieved by dewatering in natural conditions, though this process takes from one to six
months. The mechanical method’s cycle duration is up to only one hour. The pace of the
processes mentioned above depend on the sediment’s ability to give off chemically un-



Water 2021, 13, 1784 12 of 29

bound moisture. The moisture yield, in turn, directly relates to the quality of composition
of the sediment and the transition of water from colloids to the free state [37].

The optimal time for MW treatment of activated sludge is 60 s at 900 W power and
80 s at 750 W [25]. At this point, the peak deposition rate is reached. With the increase of
microwave processing time, the deposition/compaction rate will again decrease.

There is an experience of long-term MW processing of WWS from 30 to 240 min at a
power of 3.4 kW. In this case, it is possible to reduce the volume of sediment by 60% due to
intensive evaporation [41].

In all forms of WWS, there is a decrease in organic matter content. Several mechanisms
mediate this response:

(1) Solubilisation occurs at certain microwave irradiation capacities (up to 900 W) and
short phase durations (up to 140 s). Organic matter is released into the soluble phase during
this process [25]. At the same time, COD levels in the sediment rise slightly as a result of
microwave irradiation’s ability to dissolve silt floccules. As a result, organic substances are
hydrolysed into simpler forms, which are easily oxidised by microorganisms [37].

(2) When the sediments are exposed to MW radiation, the oxygen molecules in the
sediments become stimulated or excited and they participate directly in the oxidative
reactions of organic matter. Various oxidising agents can be added to speed up this process
(see Section 3.4).

The ash content of WWS increases as a result of the mineralisation process (by 6–7%
for a mixture of wastewater sludge under 8 min of MW irradiation time and power of
800 W) and the stability of WWS, faecal odour, and rotting of wastewater sludge during
long-term storage decreases significantly [34].

3.3. Decontamination (Disinfection)

In the last century, the biophysical impact of the MW field on the viability and other
properties of bacteria was discovered [43,44]. The sterilising efficiency of the MW field
produced by the GZ–10A generator when irradiated for 10 min, for example, was used to
assess the biological effect of microwaves on microorganisms [45]. The bacteria’s viability
was determined by the number of colonies developed within two days on the breeding
ground. As a result, researchers discovered a bactericidal effect of pulsed and continuous
microwaves on Escherichia coli and staphylococcus cultures.

Experiments on the influence of centimetre waves on the growth of Escherichia coli
M–17 in a continuous mode (frequency 10.6 GHz, PPM = 0.1–5.5 MW/cm2) are presented
in the paper [46]. According to the material results, microwave radiation has a harmful
effect on escherichia coli (n = 10) at a power of 130 W for five minutes [47]. Water heating
and disinfection systems were invented and patented in the 1970s and 1980s [48,49].

The modern use of MW for wastewater disinfection is based on earlier studies [50,51].
Less often it is mentioned that sewage sludge is also disinfected during microwave irradia-
tion [14,26,27,31,33,34,37,42,52]. Water disinfection usually occurs at a power of MW from
300 W and higher (frequency 2.45 GHz) when heated from 45 to 100 ◦C. Therefore, the
processing time depends on the sample volume and the MW heating power. This knowl-
edge is very relevant concerning the further disposal of such liquid municipal waste. For
example, faecal sludge formed in public toilets was treated using a laboratory microwave
installation (MW) [26,27].

Total bacterial inactivation was achieved in 30–240 min after sewage sludge treatment
in a special MW reactor [42]. According to findings in [52], high–level disinfection for
enterococci and salmonella is possible to achieve in 9.5 min at MW energy consumption of
580 W·s/g and temperature 72 ◦C. In some studies [53,54], microwave irradiation proved
to effectively reduce the bacterial content of sewage sludge prior to anaerobic digestion. In
addition, a high degree of removal of faecal coliforms in the sediment is recorded in [55]
(the content of 2.66 logs or less).

Similarly, researchers [56] confirmed that a single pretreatment with microwaves
resulted in a 50% reduction of bacteria C.Perfringens. Furthermore, according to the



Water 2021, 13, 1784 13 of 29

article [14], the microwave treatment of a mixture of sewage sludge can achieve 99%
decontamination from all pathogenic bacteria subject to control.

The MW technology can be further investigated for potential expansion as a rapid
treatment alternative for faecal effluents and sediments in emergencies [26,27], such as
a pandemic.

3.4. Decomposition of Organic Substances

Organic pollution of natural and wastewater is a source of concern for scientists
and environmentalists worldwide, as these contaminants have a detrimental impact on
the natural environment, human life, and health. Approximately 3000 different organic
contaminants have been identified [57,58] and classified into three groups: (1) organic
substances of natural origin, (2) synthetic organic pollutants, and (3) chemicals reformed
in water as a result of its purification. Many organic pollutants of the second and third
groups are toxins and carcinogens [59]. Therefore, the international community is looking
for creative, highly efficient advanced oxidative water treatment technologies that involve
various pollutant exposure processes to address this problem.

In order to increase the performance of WW treatment from different contaminants
and minimise reaction time, microwave exposure should be combined with oxidising
agents OX (MW + OX), adsorbents activated carbon AC (MW + OX + AC), catalysts carbon
C (MW + OX + C), and advanced oxidation processes with the addition of UV irradiation
such as photo-Fenton (MW + OX + C + UV), direct photolysis using an electrodeless
discharge lamp EDL (MW+OX+EDL), and photocatalysis using TiO2 photocatalyst (MW +
OX + UV + TiO2) [60–72].

The review data were summarised reasonably well in the papers [9,73]. Other studies
of the efficacy of MW oxidation of organic compounds under various treatment conditions
are seen in Table 6 [22,61–72].

The addition of microwaves to oxidising agents accelerates the oxidation of organic
compounds due to dipolar polarisation. For each pollutant, the form of oxidising agents,
necessary doses, and reaction conditions (including temperature, strength, and treatment
period MW) are calculated separately [64,66]. Microwave capacity ranges from 300 W to
900 W, temperature ranges from 20 ◦C to 130 ◦C, and processing time ranges from three
minutes to one hour, depending on sample volume. Thus, the pollutant characteristics and
their resistance to temperature and chemical factors affect the variance of parameter values.

Various catalysts, such as ferromagnetic metal, transition metal oxides, various types
of activated carbons, and others, are applied to the water to increase the MW oxidation
of organic compounds. The catalysts can be added to the water in two different ways: a
suspension accompanied by sedimentation or a fixed filter plate. At the same time, the
removal efficiency for a wide range of organic pollutants is about 85–100% [9].

A promising technology for the degradation of organic pollutants, even from the
stage of mineralisation, is considered to be catalytic oxidation by moist air (CWAO) under
conditions of high temperature (180–315 ◦C) and pressure (2–25 MPa), with the addition
of catalysts [9]. The photo-Fenton process is based on the use of the Fenton reagent,
that is, a mixture of Fe2+ salt (catalyst) and hydrogen peroxide (oxidiser) in combination
with ultraviolet irradiation (UV). The study [9] provides research on the decomposition
and mineralisation of different organic pollutants and reveals that compared to Fenton
and photo-Fenton processes without MW, the decomposition rate of various pollutants
increases by at least 50 times.
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Table 6. The efficiency of MW oxidation of organic substances in WW.

Type of an Organic Substance Sample Volume Concentration Oxidizing Agent,
Catalyst, pH MW Power MW Duration,

Temperature Effect [Ref./No]

Sample was only MW-treated

Ammonia (laboratory installation) 100 mL 0.5–12 g/L Air 1 L/min
pH = 11 750 W 3 min

80 ◦C D * 98.4–96.1% [63]

Ammonia (pilot plant) 28,000 mL 2.4–11 g/L Air 30 L/min
pH = 11.6–12 4.8 kW 60 min

80–100 ◦C D * 80% [63]

With an addition of the oxidizer: MW + OX

Naphthalene Disulfonic Acid 10 mL 1.0 mmol/L H2O2 300 W
20 min
30 min
80 ◦C

D * 90% M ** 50% [64]

Dimethoate (phosphoric compound) No Data 0.1 mmol/L K2S2O8
pH = 6.8 750 W 4 min

100 ◦C D * 100% [22]

Perflurooctanic acid 50 mL 0.25 mmol/L Na2S2O8 800 W 240 min
60–130 ◦C

D * 99.3%
M ** 74.3% [66]

The photo-Fenton process: MW + OX + C + UV

Polyacrylamide (PAA) No Data 150 mg/L H2O2/AC
pH = 3

70 W
490 W 6 min D * 20%

D * 80% [61]

Pesticides (dimethoate, triazophos, malathion) 1000 mL 6.11–31.65 mg/L H2O2
Fe2+; pH = 5 80 W 120 min

25 ◦C M ** 72.1% [62]

Direct photolysis: MW + OX + EDL

Phenol 50 mL 200 mg/L H2O2 1000 W
9 min

30 min
50 ◦C

D * 90%
M ** 95% [67]

Atrazine 50 mL 50 mg/L pH = 6.3 900 W 30 min
30 ◦C D * 100% [68]

Photocatalysis: MW + OX + UV + TiO2

Methylene Blue (aromatic compound) 50 mL 100 mg/L TiO2 load
pH = 7 900 W 15 min

100 ◦C
D * 96%

M ** 50% [69]

2,4–D chlorophenoxyacetic herbicide 10 mL 0.04 mmol/L TiO2 load
pH = 4.9 700 W 20 min

200 ◦C D * 100% [70]

Bisphenol A (Endocrine disruptor) 30 mL 0.1 mM TiO2 load
pH = 6.7 1500 W 90 min

150 ◦C M ** 100% [71]

Phenol 50 mL 10 mg/L TiO2/AC 900 W 30 min
1000 ◦C D * 87% [72]

Atrazine 50 mL 20 mg/L TiO2 nanotubes
pH = 8.1 900 W 5 min

20 min
D * 100%

M ** 98.5% [72]

D *—destruction efficiency; M **—mineralisation efficiency.
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Electrodeless discharge lamp (EDL) use eliminates the issue of electrode destruction in
a conventional mercury-based UV lamp. EDL consists of a glass tube—a plasma chamber
filled under reduced pressure with argon and excitable matter (Hg, HgI2, Cd, I2, KI, P, Se,
and S) and generating UV radiation under the action of MW (direct photolysis–MWDP).
Together with microwaves and oxidising agents, MWDP is considered the most effective
by many authors [9,67,68,74,75].

Microwave photocatalysis emerged to speed up and deepen organic carbon oxidation
and mineralisation reactions, preventing secondary corrosion and iron-containing sediment
production. The TiO2 semiconductor photocatalyst is commonly used in this method
in grains, nanoporous films, and nanotubes. In addition, the TiO2 composite catalyst
supported on activated carbon TiO2/AC shows good results [9].

The authors [9,13,65,76] consider the most critical factors influencing the efficiency
of decomposition and mineralisation of organic pollutants based on comprehensive ex-
perimental experience with microwaves for the removal of organic pollutants: microwave
power (W), irradiation time (min), and exposure temperature (◦C).

In complex treatment, the optimum dosages of oxidising agents and catalysts, pH
values, and air supply parameters to the device must be determined. In addition to the
influencing factors mentioned above, the light intensity and amount of oxygen in the
solution are applied to photocatalysis and microwave photolysis reactions [70]. Thus, each
specific organic contamination must determine the optimal values of these parameters of
microwave exposure, depending on the required efficiency of destruction and mineralisation.

One urgent task of applying innovative oxidation methods is to optimise energy
consumption, particularly when using microwaves. Hence, according to the authors [9],
the least energy-intensive methods are MW+K and MW+UV+TiO2; the most energy–
intensive is water treatment using only microwaves [60]. On the other hand, MW radiation
in the pulsed mode significantly saves energy [9,60].

The prospect of using MW in wastewater treatment is more justified in the presence
of challenging organic substances that are not biodegradable.

Microwave irradiation has several practical uses, including the oxidation of synthetic
dyes in the wastewater of industrial establishments in the textile, leather, cosmetic, food,
paper, pharmaceutical, and other industries. In the presence of oxidants and catalysts, a
65–100% reduction in dye concentration can be achieved in 1.5–210 min at MW power of
150–900 W [73–75,77–80].

There is confirmation of successful MW oxidation of naphthenic acid, typical for indus-
trial wastewater of oil-producing enterprises [81]. MW can be used for complex oxidation
of wastewater containing ammonia [63], phosphorous compounds [65], phenols [9,62],
pesticides [61], PAA [62], medical preparations [9], and other elements.

3.5. Demulsification

In many recently published papers on the subject of demulsification, we find infor-
mation on MW destruction of two types of emulsions: (1) oil–in–water and (2) water–in–
oil [82,83]. In the first type, oil-in-water, the dispersive environment is water, and oil is a
dispersed phase, fragmented in water in the form of individual droplets (direct emulsions).
In the second type, water-in-oil, water is a dispersed phase in the form of individual
droplets in the oil, a dispersive environment (reverse emulsions).

Highly concentrated oil-containing or petroleum-containing industrial WW from
oil-producing and oil-refining enterprises falls into the first category, oil-in-water. Emul-
sion wastewater is also generated in the metallurgical and machine-building industries,
including the processing of metals [84,85]. Used oil emulsions, water-based oil sludge, and
other liquid waste containing more oils or petroleum products fall into the second category,
water-in-oil [23,81,86–90].

The basic features and results of several laboratory studies on microwave intensifica-
tion of the method of demulsification of industrial WW and WWS are described in Table 7.
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Table 7. Parameters and outcomes of several laboratory experiments on demulsification under the influence of MW.

Emulsion Type Water Content Catalyst (C) MW Power and
Frequency MW Duration Results [Ref./No]

Waste water, sludge and oil-in-water emulsions: sample + C + MW+ 60 min settling

Waste emulsions of the metallurgical
industry No Data NaOH (6 M)

HCl (0.12–0.6 M)
230–930 W
2.45 GHz 1–4 min 65–90% [84]

Waste oil water emulsions after
metalworking 99% Sea water 20% 700 W

2.45 GHz 40 s 92–93.2% [85]

Slurries, emulsions, and liquid waste of the water-in-oil type: sample + C/none + MW + 50–70 min settling

Crude oil 20 (60)% none 700 W
2.45 GHz 42 s Efficiency 1/td

0.085 (0.04) [82]

Crude oil 40–60% Sodium Acetate 0.2
M

360–450 W
2.45 GHz 2–3 min 93–100% [23,86]

Crude oil 50 (20)% none 900 W
2.45 GHz

1–3.5 min
2–4.5 min

85%
75% [87]

Low-temperature separation of emulsions

Oil Sludge 40% none 100 W
10 GHz 2–3 min Visual destruction of oil

globules [90]

Oil/petroleum- emulsions 30% none 45 W
0.5 GHz 10 s Visual enlargement of water

droplets in oil [83]
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The zeta potential at the interface decreases when MW is applied, and the viscosity of
oils/oils decreases due to rapid heating, which is the reason for the accelerated separation
of emulsions [86]. In addition, the presence of catalysts (alkalis, acids, salts, and other sub-
stances) accelerates the demulsification process, while the presence of anionic surfactants
slows down the emulsion separation process [23,84–86]. The primary physical charac-
teristics of MW heating were calculated after a thorough study of the heating effects of
oil/oil–water emulsions associated with microwave resonance. It was found that the aver-
age power consumption decreases with a fall of the oil content in the oil-in-water emulsion
and increases with a rise in the percentage of water in the water-in-oil emulsion [89].

Many authors emphasise that microwave irradiation is a relatively fast and, in general,
cost-effective method for separating oil or petroleum products from wastewater [84,85,89].
Additionally, MW–demulsification of water-in-oil emulsions, common in slurries, is more
effective and faster than traditional convective heating [23,82].

However, there are also some concerns. In the microwave treatment of oil sludge,
the separation of the emulsion phases occurs mainly due to rapid heating, which requires
sufficiently powerful MW generators [90]. In this instance, hydrocarbons are burned to
form combustion products (gases), which is a significant drawback when choosing the MW
method. It is also necessary to select the optimal MW power and processing time in each
case [88].

Low-temperature microwave separation of oil emulsions has been studied and the-
oretically supported [83,90]. For example, the visible coalescence of oil droplets in the
emulsion is observed at low power MW (up to 45 W) with a period of only ten seconds [83].
In another scenario, oil globules were destroyed during the experimental MW processing of
oil sludge samples with a power of only 2 W to 100 W for two to three minutes. According
to one hypothesis, low-temperature emulsion separation occurs under some conditions
due to the rupture of chemical bonds under the influence of an electromagnetic field, i.e.,
the “non-thermal effect” of microwaves [90].

In the future, it is necessary to conduct a study on the MW effective demulsifica-
tion of oil containing WW from gas stations, service stations, and surface wastewater
from highways.

3.6. Extraction of Heavy Metals

Metal ions are one of the most toxic and difficult to remove forms of WW and WWS
contamination. Chemically bound elements are one of the causes. It will be easier to
remove these pollutants from wastewater and sediments if they decompose quickly in
water. One of the obstacles to using this waste as agro-fertilisers is heavy metal ions in
the sediments.

Experimental microwave treatment of WW and WWS samples to decompose the
substance and improve the efficiency of laboratory analysis of the components was stated
in a critical review published in 1998 [91]. Microwave radiation in the presence of reagents
increases the accuracy of atomic absorption spectrometry and cathodic stripping voltam-
metry measurements of metal ion concentrations (Hg, Cd, Cr, Cu, Ni, Pb, Zn, Bi, Sn, and
others). This effect is explained by the decomposition of compounds with metals in liquid
substances under the action of MW.

The possibilities of microwave preparation of wastewater samples for determining
metal concentrations in real wastewater samples using atomic absorption and atomic
emission spectrometry with inductively coupled plasma were shown in the article [92],
which reflected this subject. Furthermore, microwave sample preparation was compared to
conventional WW thermal mineralisation. The best results were obtained under conditions
of acid treatment for aluminum (the determined ion concentration after microwave heating
increased by 1.56 times compared to treatment in a thermal mineraliser), cadmium (by
2.58 times), and iron (by 1.22 times). With an installed power of 1000 W to 2000 W,
processing time in a domestic MW oven ranged from one to five minutes.
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However, there are not enough recent scientific publications that indicate the possibil-
ity of using microwaves to facilitate the extraction of metal ions from WW and WWS. The
articles [6,14] refer to changes in the properties of sewage sludge and the MW intensifica-
tion of the release of metal ions into decanted water (Table 8). Results have been derived
from batch experiments.

Table 8. The metal ions output into decanted water [6].

Indicators

Content of Metal Ions in Decanted Water,
mg/L Increase in

Concentration of
Metals in Waterwithout MW

Treatment
Following MW

Processing

Arsenic <0.002 0.004 ± 0.002 2 times
Nickel 0.011 ± 0.003 0.020 ± 0.006 1.8 times

Mercury 0.013 ± 0.008 0.017 ± 0.010 1.3 times
Lead 0.002 ± 0.001 0.002 ± 0.001 Not observed

Chrome (6+) 0.114 ± 0.0052 0.218 ± 0.100 1.9 times

The yield of specific metal ions into decanted water (supernatant water) increases ap-
proximately 1.2–2 times after microwave treatment from five to ten minutes and subsequent
compaction of a mixture of domestic WWS (raw sediment and activated sludge).

Other studies have also observed that the yield of heavy metal ions from WWS to
water increases from 4 to 15%, especially lead, zinc, and chromium [24].

This property can be used in the technological schemes of wastewater treatment
plant (WWTP) as a pretreatment to intensify the further release of heavy metal ions from
wastewater and its sediments.

3.7. Biogas Processing

European and Asian experience in managing liquid municipal waste gives preference
to the anaerobic treatment of wastewater and sediments to produce biogas. The maximum
number of biogas plants operate in China—approximately fifteen million, and India—about
ten million. The construction of biogas plants is actively developing in Europe, especially
in Germany, with more than 9000 stations. Only 7% of the biogas produced by these
enterprises goes to the gas pipelines. The rest is used for the manufacturer’s needs. In the
future, 10–20% of the natural gas used in the country can be replaced with biogas [93–95].

The biogas market is growing much more slowly in countries with natural gas re-
sources. For example, only about 200 biogas plants operate on agricultural waste in the
United States [95]. In Russia, the production of biogas is implemented in only a few
WWTP [96].

Today, the anaerobic treatment of wastewater and sediments to produce biogas guar-
antees fuel and energy savings. However, there are problems related to the quality of
the treated material, the provision of conditions for the stability of the biodegradation of
organic matter, and the explosion hazard of biogas production [97,98].

Microwaving is a novel thermal pretreatment process for sludges that improves
digestion efficiency and, under certain conditions, can intensify the gas output by 15–32%
due to the solubilisation and hydrolysis of organic substances [99–105]. Previous studies
have shown that MW pretreatment is more effective for sludge with a high concentration of
solid particles [101,102]. It is also proved that in the thermophilic fermentation mode, the
yield of biogas from the MW-treated sediment is higher than in the mesophilic mode [99].
The results of modern studies based on [99,106] are presented in Table 9.
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Table 9. Intensification of the biogas output during the MW treatment of WWS.

Sediment MW Power and Frequency Temperature Sample Processing Conditions Description of Results [Ref./No]

Domestic wastewater sludge
mixture, ratio 48:52

1250 W
2.45 GHz 96 ◦C

500 mL samples heated in a home MW
furnace to the boiling point, then subjected
to anaerobic digestion in laboratory reactors

for 5–18 days; biogas output recorded.

With thermophilic
fermentation, the gas
output increased by

17–26%.

[99]

Dehydrated WWS 1200 W
2.45 GHz 80–160 ◦C

Samples heated and kept at a set
temperature for 1 min, then cooled for 25

min. Heating speed 7.5 ◦C/min. Further, the
samples were subjected to anaerobic

digestion in laboratory reactors for 5–20
days; biogas output was recorded.

Maximal biogas output: At
160 ◦C- on the fifth day of the
fermentation process. At 120

◦C on the tenth day.

[105]

Sludge mixture 300–600 W
2.45 GHz no data

Microwave pre-treatments were carried out
in a semi–pilot MW unit in which the flow
rate varied in the range of 5–60 L/h. Next,
anaerobic digestion of the nitrogen-treated

sludge mixture was carried out at a
temperature of 37 degrees.

The biogas production
improved by 174–210%
(depending on the MW

power and irradiated energy)

[106]
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3.8. Pyrolysis of Wastewater Sludge

Pyrolysis is currently considered to be the most promising WWS disposal technology.
The benefit of this approach is that it produces transportation-friendly fuel that can also
be used to generate thermal and electrical energy. It also enables biomass to be converted
into combustible gas, coal, liquid synthetic fuel, and chemical raw materials. Moreover, the
waste from the process can be turned into an environmentally friendly granular glazed
product for road building and the construction supply industry [107–109].

Pyrolysis, also known as dry distillation, is the thermal treatment of sewage sludge
or other carbon-containing waste by high-temperature (450–800 ◦C) or low-temperature
(200–400 ◦C) heating without air access. As a result of such process, about 50% of solid
residues (coal, charred coal, and pyrocarbon), about 20–32% of liquid products similar in
quality to crude oil (tar or primary tar-bio-oil), and 12–15% of a combination of gaseous
products (biogas) are obtained. Pyrocarbon and bio-oil are the most valuable pyrolysis
products. In the 1980s, more than 300 pilot plants for pyrolysis of precipitation, including
those that mixed solid waste and industrial waste, were built in the United States, Germany,
Italy, and Japan. However, owing to economic infeasibility and technical flaws, many of
them were eventually shut down [107].

Microwave pyrolysis is a promising method for the thermochemical conversion of
dehydrated sewage sludge into usable energy products, including bio-carbon, bio-oil,
and biogas. However, there are not many publications on this subject. The article [107]
provides an overview of the latest research on traditional and microwave pyrolysis heating.
It compares alternate approaches, examines pyrolysis products, and discusses the pros
and cons of using microwaves for pyrolysis of WWS. The structure of the residues, MW
parameters, laboratory conditions, and catalyst forms all influence the efficiency and
properties of microwave pyrolysis products.

When microwaving just the raw sample of sludge, it only dries. However, adding a
small amount of a microwave absorber to the sample (such as the char produced during
pyrolysis) leads to pyrolysis rather than drying [109].

3.9. Modification of Sorbents

Assuring sorption products for wastewater treatment should have high sorption
properties and be non-toxic, regenerable, easily disposed of, low-cost; and an affordable
raw material base. Natural materials’ major weakness as sorbents is their poorly expressed
sorption potential, which is also affected by their increased hydrophilicity. Reducing water
absorption and increasing sorption activity can be achieved by various modifications [110].

Some inorganic sorption products, such as clays, natural zeolites, and active coals,
have been shown to have increased basic surface area, porosity, and availability of func-
tional groups after MW treatment. Microwave exposure may otherwise result in a degra-
dation in the properties of coals due to the decrease in permeability [111]. Microwave
radiation seems to accelerate many chemical reactions by dozens of times, promotes rapid
volumetric heating of liquid and solid samples, and wholly and quickly removes mois-
ture [112], which is vital in sorbents’ production.

The best findings for MW treatment of sorbents based on natural materials used for
wastewater treatment (frequency f = 2.45 GHz) can be found in Table 10.
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Table 10. Results of MW processing of sorbents based on natural materials.

Sorbent Sorbent Preparation
Process MW Power Duration Temperature Description of Results [Ref./No]

Peat MW heat 60–600 W 60 min No data

Oil capacity 2.5–2.73 g/g.
With increasing power, the adsorption of iodine increases by
1.2–1.4 times (from 115 to 150 mg/g), and for methylene blue

it decreases by 2 times (from 55 to 28 mg/g)

[113]

Peat MW heat 900 W 12 min 450 ◦C Iodine adsorption activity increased from 11.4% to 19.1% [114]

Brown coal MW heat 900 W 22.5 min 315 ◦C Iodine adsorption activity increased from 18.0% to 34.9% [114]

Montmorillonite MW heat 800 W 4 min 154 ◦C Water vapor adsorption increased from 0.67 to 3.66 mmol/g [115]

Pine sawdust Grinding, drying and
MW heat 600 W 2 min 40 ◦C

Increase in the sorption capacity for petroleum products by
3.7–4 times

for initial concentrations of less than
5 mg/L and by 1.2 times for initial

concentrations of 16–35 mg/L

[110]

Rice husk Combustion in the MW
furnace No data 288 h

384 h
500 ◦C
800 ◦C

Removal of petroleum products:
78%
98%

[116]
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Intensified combined process of dye adsorption and decomposition is experienced
using a hybrid catalyst rGO-TiO2. The thermal mechanism of action on materials, especially
carbon-based, is studied in the article [80]. This process consists of local MW heating of the
area close to the catalyst’s surface, which leads to the accumulation of heat on it, i.e., the
creation of “hot spots” on the exterior, allowing processing speed to be increased.

A newly developed method for sorbent regeneration [117] is carried out in a reso-
nant container with the addition of MW, which is only used to break the intermolecular
bonds between the sorbent and the sorbate and does not result in thermal heating of
the substances.

Several authors prove [73,118,119] that the microwave effect on sorption materials
allows one to achieve an increase in their sorption activity and specific surface area, to
reduce water absorption due to a uniform and rapid effect on the material, which reduces
the time and simplifies the processing method and, accordingly, reduces material costs.

Still, there are the following main limitations of the use of microwave irradiation in
sorbent preparation technologies: an increase in energy costs; the absence of industrial-
scale magnetrons; and, due to the limited depth of penetration of microwaves into the
material of solid sorbents, small volumes are subject to processing [116].

However, the introduction of microwave processing will provide environmentally
friendly methods for the preparation of sorbing materials for wastewater treatment; efficient
and economical intensification of the processes of sorption of pollutants; and minimal
negative impact on the environment due to the reduction of reagents used at the stages of
modification, regeneration, and activation of sorbents.

3.10. Devices for MW-Processing of WW and WWS

One of the problems with the widespread scaling of MW wastewater and sludge
treatment is the lack of unified high-performance industrial reactors on the market that are
adapted for municipal needs. MW plants (installations/devices/reactors) for liquid waste
treatment are experimental equipment designed to handle small volumes.

Many scientists conduct experiments in home microwave ovens or reactors based on
them or in modular laboratory systems [8,14,36,90,108,110].

The data obtained from a patent search in the Russian database for MW installa-
tions/devices intended or possible for the treatment of wastewater and its sediments are
presented below (Table 11).
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Table 11. MW installations/devices intended (or possible for use) for wastewater and sediments treatment (Russia).

Device/Installation

Application
Domain:

Treatment of
Type of Action

Parameters: Power N,
Frequency F,

Throughput Q,
Temperature T

Patent Number,
(Year)

MW Process Setting [Ref./No]

WW WWS 1 * 2 *

Sewage treatment
installation + - - + No Data RU 116 851 (2012) Combined UV and MW water

disinfection [120]

Industrial and domestic
sewage handling

equipment
- + + - T 430–1000 ◦C

f 2.5 GHz
RU 2 552 259

(2015)

Decomposition of waste under the
combined influence of thermal and

electromagnetic fields without
oxygen access

[121]

Waste incineration chamber - + + - T 1200–1400 ◦C RU 2 573 137
(2016)

Heating of the disposed waste to the
combustion temperature [122]

Sewage sludge MW
treatment plant - + - + N 5440 W

Q 1.37 t/h
RU 2 582 415

(2016)
Disinfection of industrial, domestic,

and agricultural sewage sludge [123]

Wastewater and sediments
MW treatment and

decontamination device
+ + - +

N 2000 W
f 2.45 GHz
Q 0.1 m3/h
T 50–85 ◦C

RU 2 693 783
(2019)

MW pretreatment of sediments prior
to anaerobic fermentation [124]

Anaerobic processing plant
for liquid organic waste - + + - T 60–70 ◦C RU 2 687 415

(2019)
MW pretreatment of WWS prior to

anaerobic fermentation [125]

Electromagnetic phase
separation system for
oil–water emulsion

- + - + f 2.45 GHz RU 2 710 181
(2019)

Destruction of oil–water emulsions
(sludge from oil fields and oil

refineries)
[126]

Wastewater treatment by
irradiation with

ultra-high-frequency waves
and ultraviolet light plant

+ - - + No Data RU 193 171 U1
(2019)

Combined UV and MW wastewater
disinfection [127]

MW mobile technological
complex treatment of acid

mine water
+ - + -

N 1000 W
f 1.38 GHz

Q 150 m3/h

RU 2 739 259
(2020)

MW is used to transfer ionic and
molecular components to the

condensed phase and remove them
from the treated water

[128]

* 1—serving type, 2—flow-through type.
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4. Conclusions and Considerations for Future Research

Currently, the search for effective and economical methods for wastewater and its sed-
iments treatment continues. As the gathered review showed, there is much more research
on microwave radiation to manage wastewater and sediments. Microwave treatment of
such liquid municipal and industrial waste is of interest primarily because of the rapid
heating and improvement of the properties of the treated materials, which reduce the time
of their stay in the facilities and increase the productivity and the efficiency of the equip-
ment. Moreover, microwaves’ decontaminating effect opens up a world of possibilities for
using this process in the context of a pandemic.

Table 12 summarises the opportunities for practical implementation of MW in WW and
WWS treatment technologies in different areas of human economic and industrial activities.

Table 12. The opportunities for practical implementation of MW in wastewater and sludge treatment technologies.

No Practical Application Field Promising Areas of Practical Application of MW in
Wastewater and Wastewater Sludge Treatment Technologies

1. Municipal local services

Wastewater treatment of all types (reduction of organic matter
concentration, improvement of coagulation processes, and
decomposition of chemicals), wastewater sludge treatment

(reduction of volumes and organic matter content), an increase
of biogas production during wastewater sludge fermentation
on an urban spit, disinfection of all forms of wastewater and

wastewater sludge, and intensification of pyrolysis and
production of secondary raw materials

2. Production of drinking water Water disinfection. Treatment of water sludge in order to
reduce the volume, reducing the organic component

3. Agricultural industry

Improvement of biogas output in the fermentation of manure,
sewage sludge, and other liquid industrial waste;

decontamination of all types of wastewater and sediments; and
decomposition of pesticides in surface wastewater

4. Medical institutions, pharmaceutical industry Disinfection of all types of wastewater and waste;
decomposition of medicines in wastewater and sediments

5. Metallurgical industry and machine-building Industrial wastewater coagulation, extraction of metals from
wastewater and sediments

6. Oil and petroleum industry
Demulsification of oil-water emulsions and oil-containing
industrial wastewater, decomposition and reduction of oil

sludge volumes

7. Dairy industry
Organic matter oxidation in industrial wastewater, sludge

treatment to reduce volumes and organic matter, and
decontamination of all types of wastewater and sludge

8. Chemical industry New substances synthesis; chemical decomposition in
industrial wastewater and sediments

9. Textile industry
Dye decomposition in industrial wastewater, improving the
coagulation of contaminants; decontamination of all types of

wastewater and sludge

10. Recycling and disposal of industrial waste Decomposition of chemical, organic, and radioactive substances;
reduction of liquid waste; and decontamination

11. Sorbent manufacture Modification, regeneration, and activation of phyto–sorbents for
sewage purification

Nevertheless, along with the broad prospects for the global practical relevance of
microwaves in wastewater and wastewater sludge treatment, the main problems remain the
lack of universal technologies and industrial equipment, small volumes, and high energy
consumption. At the same time, almost all studies do not go beyond the laboratories and
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usually relate to specific environments (water and sludge samples) and require verification
and confirmation for a wide scale.

The lack of high-performance, high-efficiency, and energy-saving industrial MW
reactors designed to treat liquid municipal and industrial waste is a concern. The future
universal reactor must operate in the flow mode, be able to automatically change the MW
parameters depending on the quality of the initial flow, and have reliable human protection
from residual microwave irradiation during the process.
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