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Abstract: Providing an accurate prediction of water quality parameters for improved water quality
management is a topical issue in the aquaculture industry. Conventional prediction methods have
shown different challenges like a poor generalization, poor prediction accuracy, and high time
complexity. Aiming at these challenges, a novel hybrid prediction model with ensemble empirical
mode decomposition (EEMD) and deep learning (DL) long-short term memory (LSTM) neural
network is proposed in this paper. In this innovative hybrid EEMD-DL-LSTM model, firstly, the
integrity of the datasets is enhanced by applying moving average filtering and linear interpolation
techniques of water quality parameter datasets pre-treatment. Secondly, the measured real sensor
water quality parameters dataset is decomposed with the aid of the EEMD algorithm into disparate
IMFs and a corresponding residual item. Thirdly, a multi-feature selection process is applied to
make a careful selection of a strongly correlated group of IMFs with the measured real water quality
parameter datasets and integrate them as inputs to the DL-LSTM neural network. The presented
model is built on water quality sensor data collected from an Abalone farm in South Africa. The
performance of the novel hybrid prediction model is validated by comparing the results against
the real datasets. To measure the overall accuracy of the novel hybrid prediction model, different
statistical indices, namely the Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean
Square Error (RMSE), and Mean Absolute Percentage Error (MAPE), are used.

Keywords: water quality prediction; deep learning; long-short term memory; ensemble empirical
mode decomposition; neural network; aquaculture; data filling; correlation analysis

1. Introduction

In traditional aquaculture farming, the experienced aquafarmers’ observation and
empirical judgment were sufficient to indicate and predict issues related to farm health.
This form of management using tacit knowledge is gradually getting impractical for two
main reasons—the number of experienced farmers is reducing, and the scale of the farms
is growing. Hence, it is getting pertinent to use machine learning tools to understand
and predict such issues in a timely manner. One aspect is monitoring the fluctuations
of water quality parameters, e.g., dissolved oxygen, pH, temperature, salinity, etc., that
are known to adversely affect the aquaculture environment. In some cases, even slight
variations above or below the normal, optimal water quality parameter conditions may
lead to physiological stress on the aquatic life, which can impact their feeding, breeding
and increases susceptibility to diseases [1,2].

In recent years, the application of various machine learning techniques and methods
has been explored for developing water quality parameters prediction models [3–6]. As
a result, these models have become topical research hotspots in the field of aquaculture
and water engineering. Presently, research studies in the field of water quality forecast-
ing are mainly focusing on enhancing the applicability and accuracy of these predictive
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models using emerging technologies. To this end, varieties of new technologies, namely
statistical analysis tools, Neuro-Fuzzy Inference System (ANFIS), machine learning, and
artificial neural networks (ANNs), are being researched for the improvement of water
quality parameters prediction models [7–9]. Some studies have adjudged artificial neu-
ral networks as the most preferred and reliable technique for the development of water
quality parameters forecasting models because of their impressive suitability to irregular
and nonlinear situations. As an example, Sheng et al. [10] and Chen et al. [11] conducted
studies on a back-propagation (BP) neural network (NN), which is a typical representative
of ANNs, and demonstrated that its enhanced algorithms have effective applicability to
water quality parameters forecasting with obvious merits in forecasting nonlinear prob-
lems. Another variation, the radial-basis function (RBF) NNs, which has also been broadly
applied in aquaculture, offers the advantage of a simplistic structure, the ability to globally
approximate arbitrary functions with precision, and fast training speed [11–14].

However, the ANNs used by Chen et al. [11], which include BPNN and RBFNN,
have the weakness of a long-term dependency problem. Research has shown that DL
long-short term memory (LSTM) NN can overcome the above-mentioned weakness and
can provide efficient applicability and reliability for water quality parameter prediction [1].
Additionally, combining the ensemble empirical mode decomposition (EEMD) method
with DL-LSTM NN has demonstrated clear advantages over traditional LSTM NNs in
terms of improved water quality parameter prediction accuracy in the aquaculture en-
vironment [1]. In this paper, a unique hybrid EEMD-DL-LSTM NN-based water quality
parameters prediction model is proposed that overcomes the above-identified shortfalls in
the literature [11–14].

The major approaches for water quality parameters prediction include the grey sys-
tem theory technique, support vector regression machine technique, Markov technique,
and time-series technique [13–18]. However, these widely applied approaches have cer-
tain drawbacks, which include the weak generalization problem, limited computational
efficiency, and poor, unreliable forecasting accuracy. Consequently, these traditional ap-
proaches can hardly meet the growing requirements of precision aquaculture.

In recent years, different models have been proposed for water quality parameters
forecasting in the aquaculture environment based on ANN and DL [17,19–21]. Some
of these prediction models have applied a BP neural network approach in combination
with different activation functions, such as tansig, logsig, and purelin, to develop a water
quality forecasting model in aquaculture. Wijayanti [20] proposed a short-term prediction
model based on a smooth support vector machine (SSVM) for aquaculture water quality
management. Similarly, a water quality forecasting model for smart mariculture that
applied a deep learning bi-directional stacked simple recurrent unit (Bi-S-SRU) network
has been proposed in [21]. Many other prominent studies on water quality parameters
forecasting models based on DL-LSTM have also been carried out [22,23]. The advantages
of these prediction models include high fault tolerance, robustness, and good fitting of
complex non-linear relations. However, they all share a common disadvantage because
they use single-scale characteristics of the data for model training, thereby obtaining only
the surface features of the datasets.

However, multi-scale prediction techniques have been shown to obtain more than
single-scale features for the predicted signals by applying a decomposition method to
the original signal [24,25]. Through the decomposition process, each sub-sequence of
the original signal can reveal the signal’s distinct intrinsic features. The empirical mode
decomposition (EMD) technique has widely been used for decomposing original signals
into their intrinsic multi-scale features [26]. Forecasting techniques based on multi-scale
characteristics of the original signal have been predominantly applied in various fields,
such as wind power prediction [27,28], traffic flow forecasting [29–31], and rainfall predic-
tion [32]. In the field of the aquaculture industry, Li et al. [24] used the EEMD technique
to propose a hybrid prediction model based on the multi-scale features of the original
signal to improve the prediction accuracy of Dissolved Oxygen (DO) concentration in a
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fishpond. Results of the proposed hybrid prediction model demonstrate the advantage of
an EEMD method for predicting DO content in intensive aquafarming. The review of these
related studies shows that hybrid prediction models based on multi-scale characteristics
of the real data are suitable for water quality parameter prediction in the aquaculture
industry. Hence, this paper proposes a novel hybrid EEMD-DL-LSTM NN-based water
quality parameters prediction model for the aquaculture industry through the combination
of an EEMD technique with DL-LSTM NN.

Although the hybrid prediction model proposed in [24] is similar to the novel hybrid
EEMD-DL-LSTM NN-based water quality parameters prediction model proposed in this
paper, their study adopted the least squares support vector regression (LSSVR) and BPNN.
However, in theory, a linear system can be solved by LSSVR, but solving a large dataset
becomes impractical due to its high computational complexity, thereby limiting the merits
of adopting LSSVRs in large-scale applications. Similarly, the long-term dependency
problem associated with BPNN and RBFNN makes our proposed novel hybrid EEMD-DL-
LSTM prediction model a unique solution because LSTM can overcome this problem.

2. Methods and Materials
2.1. Study Area Description and Datasets Analysis

Abagold Limited is a South African abalone (Haliotis midae) hatchery, grow-out, and
processing facility situated in the New Harbour of Hermanus, South Africa. Characterized
by injections of the warm Agulhus current and cold Benguela current, Walker Bay is prone
to frequent upwelling of cold, nutrient-rich water in the summer months (November–
March) interjected by warm water events. Historically, this has resulted in algal blooms,
which can affect the production of aquaculture facilities. The farm is a land-based, flow-
through system housing some 650 tons. Data was collected via Xylem WTW IQ Sensor Net
probes [33], situated in the primary and secondary sumps distributing incoming seawater
to the farming platforms (see Figure 1).
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A total of 20,730 sets of non-linear and non-stationary water quality parameters time-
series data were collected at Abagold between November 2020 and January 2021. The
water quality parameters included dissolved oxygen, turbidity, temperature, and pH. The
collected datasets are shown plotted as line graphs in Figure 2a–d. The trend variations of
DO (mg/L), turbidity (NTU), pH (m/L), and temperature (◦C) are shown in Figure 2a–d
between November 2020 and January 2021.
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(a) dissolved oxygen, (b) turbidity, (c) pH, and (d) temperature.

2.2. Data Filling and Correction

Non-linear and non-stationary water quality parameters time-series dataset defects
usually result in an excessive deviation between the measured original water quality
parameters values and the prediction results. The basis of an accurate time-series analysis
and the development of effective and reliable predictive models is high-quality sample data.
To provide a concise, accurate dataset for the prediction model and improve prediction
accuracy, the measured water quality parameters data were pre-processed, as discussed
below. Generally, the issue of missing data is inevitable with automatic water quality
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monitoring systems. The water quality parameters such as dissolved oxygen, turbidity, pH,
and temperature were automatically measured throughout the day at 5-minute intervals. To
fill in any missing data, the filling-in approach, called a linear interpolation algorithm [34],
was applied to achieve a better estimation effect that can accurately approximate the
missing data values. In data analysis, the linear interpolation algorithm took the ratio of
two known data points and one unknown data point as a linear relationship. Therefore,
to obtain the missing, unknown water quality parameter value, the linear interpolation
technique applied the slope of the presumed line to compute the time-series dataset
increment. Hence, the data set was completed.

Definition 1. The nature of the measured parameters.

An installed automated freshwater monitoring system at the Abagold measures time-
series water quality factors at a constant time interval everyday which can be denoted as β,
then n length time-series of the measured water quality factors datasets is defined as (1)

Si,n = {(Xi, 1, T1), (Xi, 2, T2), · · · , (Xi, n, Tn)} (1)

where Xi, l represents the value of the measured ith time-series water quality factor by
the automatic sensory monitoring system at time Tl (1 ≤ i ≤ β, 1 ≤ l ≤ n), and at other
given Tl , the time interval is constant at ∆T = (Tl+1 − Tl) = 5 min. Therefore, if the
original value Xi, l is missing, its estimated value X̂i, l can be obtained with the problem
of minimum, which is given as

∣∣X̂i, l − Xi, l
∣∣ changed into the missing value estimation

problem. Based on the measured data Xi, x and Xi, y at time Ti, x and Ti, y, respectively,
the linear imputation function L(t) could be formulated for the time-series water quality
parameters monitoring systems as:

L(t) = Xi, x +

(
Xi, x − Xi, y

Ti, x − Ti, y

)
·(t− Ti, x). (2)

For any missing time-series water quality parameters data at any given moment,
the linear interpolation algorithm firstly finds the two closest moments Ti, x and Ti, y(

Ti, x < t < Ti, y
)
, and estimates the lost data value at time t with the help of the known mea-

sured data Xi, x and Xi, y of Ti, x and Ti, y moments based on Equation (2), i.e., X̂n = L(t).

2.3. Data Correlation Analysis

This study applied the Pearson’s correlation coefficient technique to analyze the
existing correlations between the measured time-series water quality parameters such
as dissolved oxygen, turbidity, water pH, and temperature to the Abagold aquaculture
farm. To better understand the existing correlations between two variables, the Pearson’s
correlation coefficient technique [35] has been widely used as a data analyzing technique,
which is also described as the quotient of co-variance and standard deviation between two
variables. The Pearson’s correlation coefficient system was used after cleaning and pre-
processing the sensor-measured time-series water quality factors, to analyze the existing
correlations between the required parameters. Table 1 contains the correlations among
the measured water quality parameters obtained through data analysis and calculations.
Table 1 shows that the dissolved oxygen has an extremely strong negative correlation
with turbidity but maintains a moderate strong positive correlation with water pH, and a
strong negative correlation with temperature. Dissolved oxygen and turbidity are inversely
related because the upward or downward variation of one affects the other in the opposite
direction. Regarding the literature value for such a type of correlation, when there is a high
level of turbidity in an aquaculture water body, it means there would be less dissolved
oxygen for living organisms to breath effectively [36]. Therefore, if the turbidity increases
to a certain unhealthy level, the fishes would start getting stressed and sick due to an
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obvious lack of dissolved oxygen, which can lead to fish death, thereby negatively affecting
aquatic life populations.

Table 1. Data correlation analysis results.

Dissolved Oxygen Turbidity pH Temperature

Dissolved Oxygen 1 −0.09677 0.54826 −0.14893

Turbidity −0.09677 1 −0.03914 −0.05654

pH 0.54826 −0.03914 1 0.55366

Temperature −0.14893 −0.05654 0.55366 1

Additionally, it was shown that the water temperature shares a moderately strong
positive correlation with water pH. Finally, it is also shown in Table 1 that turbidity has
a very strong negative correlation with the pH and water temperature. This means that
a high level of turbidity increased the overall aquaculture water body temperature since
suspended particles tend to absorb more heat. Therefore, these factors led to a reduction in
dissolved oxygen.

3. Prediction Model Design

The proposed prediction model comprises two-stage processes to improve the over-
all accuracy and minimize the error margin of the water quality parameters prediction
results. The first stage of the two processes applies the EEMD technique to decompose the
time-series dataset into a series of disparate intrinsic mode functions (IMFs) and uses a
multi-feature selection process to select a set of strongly correlated IMFs that aid towards
enhancing the absorption features. In the second stage, the selected set of strongly corre-
lated IMFs are integrated into inputs for the DL-LSTM neural network. The implementation
processes of the EEMD approach and DL-LSTM NN are presented in Sections 3.1 and 3.2,
respectively.

3.1. EEMD Method

The EMD technique [37] is a self-adaptive, non-linear data signal decomposition ap-
proach, which decomposes the time-series datasets into separate IMFs and a corresponding
residual item by the use of a recursive process with each distinct time-scale feature. The
time-series signal x(t) is decomposed via a unique sifting process [38] into distinct n units
of Zi IMFs and ensemble the Rn trend as expressed in (3).

x(t) =
n

∑
i=1

Zi + Rn (3)

Each of the corresponding outcomes of the decomposition process (n units of Zi
IMFs) generally maintain high orthogonality to one another, with each IMF representing a
special range of frequency and energy. Therefore, the summation of all the separate n units
of Zi IMFs is usually equal to the measured original water quality parameters datasets.
According to Rilling et al. [39], each of the resultant IMFs must meet two conditions, namely:

(1) The total number of extrema and the zero-crossings of IMFs must be equal or, at most,
differ by one.

(2) The mean of local minima and local maxima envelopes is zero at any point.

Admittedly, the nature of the original time-series datasets signal x(t) does not always
meet the definition of the IMFs because a vast part of the original datasets consists of
disparate frequencies. Hence, to ensure that x(t) satisfies the definition of the IMFs, the
EMD method applies the sifting process. The application of the sifting process helps in the
aspect of:

(1) Ride waves identification and eradication, and
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(2) IMFs’ wave profiles refining to obtain more symmetric wave profiles.

Finally, the procedures of the applied datasets signal x(t) decomposition method are
summarized as shown below:

(a) Determine all the extrema of the signal x(t).
(b) Apply the linear interpolation technique between minima (respectively, maxima) with

envelopes, emin(t){resp.emax(t) }.
(c) Compute the mean of the envelopes m̂j(t) =

{emin(t)+emax(t)}
2 , with j representing the

number of iterations.
(d) Then, extract the detail Zi = x(t)− m̂j(t).
(e) Repeat step (a) to step (d) until the IMFs converged with Zi(t) satisfy the definition of

the IMFs.
(f) Repeat step (a) to step (e) to determine the residual Rn(t), with Rn(t) = x(t)− Zn(t).

In accordance with the stopping criteria [39], the sifting process aids the refining of the
above procedure by repeating step (a) to step (d) on the signal R(t) till it has a zero-mean.
The result of the signal decomposition can only be considered as an effective IMF once
the zero mean is achieved. Subsequently, the corresponding residual Rn(t) of the signal is
generated by applying step (f).

During the sifting process, the use of the stopping criterion ensures that the generated
IMFs via the EMD decomposition method meet the acceptable IMF conditions given above.
The stopping criterion is implemented through standard deviation (σ) size reduction by
sifting the results twice as expressed in (4).

σ =
T

∑
t=0

[
|Zi−1(t)− Zi(t)|2

Z2
i−1(t)

]
(4)

The acceptable value of σ is typically within the range of 0.2 and 0.3 [1]. In practice,
the sifting process is terminated automatically once the computed σ value lies within the
acceptable range of 0.2 and 0.3.

Despite the significant contributions of the EMD method in different applications,
its ability in handling signal processing problems remains insufficient due to its strong
dependence on the signals’ frequencies and amplitudes, as well as their differences. The
ensemble EMD (EEMD) method is a refined form of EMD, which can improve the efficiency
of the signal decomposition process and overcome the inherent shortcomings of mode
mixing [1], which is generally associated with the traditional EMD method. With the EEMD
method, before the decomposition of signals, a uniformly distributed Gaussian white noise
is added to limit the adverse effect of the mode-mixing problem of the conventional EMD
method [40]. With the aid of this process, the EEMD algorithm is able to overcome both the
challenges of multi-dimensional computation and mode mixing [41].

In the EEMD method, the amplitude and the ensemble number of the added Gaus-
sian white-noise Wi(t) are predetermined and initialized. Firstly, disparate uniformly
distributed Gaussian white noise Wi(t) with the same amplitude in accordance with the
number of data signals within the ensemble will be introduced to the original water quality
parameters signal x(t) by M times to generate M different modified signals xi(t), as shown
in (5).

xi(t) = x(t) + Wi(t); i = 1, 2, 3, · · · , M (5)

Secondly, the conventional EMD method decomposition process is performed on each
of the modified signals xi(t). For instance, if the modified signal’s decomposition generates
separate n units of Zi IMFs and a corresponding residue item as a trend, then applying
the EEMD approach would generate M × n IMF signals with distinct n trends Rin(t).
Therefore, xi(t) can be rewritten as shown in (6).

xi(t) =
n

∑
j=1

Zij(t) + Rin(t); i = 1, 2, 3, · · · , M (6)
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Furthermore, the EEMD method resolves the mode mixing problem by averaging the
resulting IMF set Fj(t) and the derived residue trend R(t).

Fj(t) =
1
M

M

∑
i=1

Zij(t); i = 1, 2, 3, · · · , n (7)

R(t) =
1
M

M

∑
i=1

Rin(t) (8)

For large amounts of datasets, the error δn incurred during the decomposition process
due to the addition of the uniformly distributed Gaussian white noise can be obtained via
the empirical formula in (9)

δn =
ω√
K

(9)

where δn represents the final standard deviation, ω denotes the amplitude of the applied
uniformly distributed white noise, and K represents the total number of ensembles. Then,
using the above empirical formula, Wi(t) can be given by (10) as:

Wi(t) = ω × noise(t) (10)

The original water quality parameters time-series datasets are effectively decomposed
by the EEMD technique into n ensemble mode functions and one corresponding ensemble
residual item. For every frequency band, the disparate mode function components that
are contained within the band are uniquely dissimilar and can vary according to variation
of the water quality parameters time-series dataset x(t). Similarly, the derived ensemble
residual item indicates the original data signal x(t) trend.

3.2. DL-LSTM Neural Networks

DL-LSTM NNs [22,23,42] are a special type of recurrent NN (RNN) with a significant
improvement and the ability to learn long-term dependencies, which gives it an advantage
over other artificial NNs such as BPNN, RBFNN, etc. Figure 3 illustrates a typical schematic
diagram of a traditional RNN node with the previous hidden state represented by ht−1,
activation function by F , current input sample by Xt, current output by yt, and the
current hidden state by ht. As depicted in Figure 3, all RNNs generally have the form of
chain repeating modules of NNs. These repeating modules generally have a very basic
structure in standard RNNs, like a single tanh layer only. However, DL-LSTM, which stores
information with the aid of purpose-built memory cells, maintains a similar chain-like
structure but with a different structured repeating module (see Figure 4). As illustrated in
Figure 4, there are four distinct interacting layers in a DL-LSTM cell.
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The equation below illustrates the calculation processes involved in DL-LSTM NNs.

(a) Forget gate equation:

Ft = σ
(

W f × [ht−1, xt] + b f

)
(11)

where Ft denotes a vector with values ranging from 0 to 1, b f is the bias of the forget gate,
σ represents the logistic sigmoid function of the gate, and W f is the weight matrix of the
gate. The sigmoid layer helps in determining whether new information is relevant for
updating or irrelevant and discarded. Each relevant new information that passed through,
is assigned a weight which ranges from −1 to 1 by tanh function to determine its level of
importance. In both input and output gates, as shown (12) through (15) below, similar tanh
function sigmoid layer operations are repeated.

(b) Input gate equations:

It = σ(Wi × [ht−1, xt] + bi) (12)

C̃t = tan h(Wi × [ht−1, xt] + bi) (13)

(c) Output gate equations:

Ot = σ(Wo × [ht−1, xt] + bo) (14)

ht = Ot × tan h(Ct) (15)

(d) Cell state equation:

Ct =
{
(Ft × Ct−1) +

(
It × C̃t

)}
(16)

where Wi and Wo denote the weight matrices of the input gate and output gate, tanh is a
hyperbolic tangent function, while bi and bo denote the network bias vectors.
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3.3. Proposed Unique Hybrid EEMD-DL-LSTM NN-Based Water Quality Parameters
Prediction Model

The proposed new hybrid prediction model is shown in Figure 5. With the novel
hybrid model, measured real water quality parameters content datasets are decomposed
through the EEMD algorithm into different components to increase the forecasting accuracy
of the new model with a minimized error margin. The detailed step-by-step procedures
demonstrated in Figure 5 show the three important key stages that precede the development
of the novel hybrid EEMD-DL-LSTM NN-based water quality parameters prediction model.
Under the first stage, the original signal decomposition method is applied to decompose the
measured water quality parameters dataset x(t) into various IMFs and the corresponding
residual item Rn(t) in the input layer of Figure 5. A unique iterative sifting process is used
to perform the original signal x(t) decomposition as expressed in (17).

x(t) =
n

∑
i=1

Fi(t) + Rn(t) (17)Water 2021, 13, x FOR PEER REVIEW 11 of 20 
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In the second stage, the different IMFs and the corresponding residual item Rn(t) is
utilized for the prediction by the DL-LSTM NN after normalization in the hidden layer
of Figure 5. Lastly, a reverse normalization operation is performed on the individual
prediction results of the DL-LSTM NN before efficiently combining all the individual
prediction results together using a summation operation, with the aid of the summation
function, to get the final predicted values, as shown in the output layer of Figure 5. As
clearly illustrated using the extended novel hybrid model with manifold hidden DL-LSTM
layers (LSTM1,1, LSTM1,2, . . . , LSTMm,1, up to LSTMm,n) in Figure 5, individual hidden
layers of the stacked DL-LSTM is equipped with various memory cells thereby, earning
the proposed prediction model the term deep learning NN method [42]. The flowchart in
Figure 6 demonstrates the entire proposed water quality parameters prediction process.
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4. Performance Evaluation Metrics

For the evaluation of the hybrid EEMD-DL-LSTM NN-based water quality parameters
prediction model, four performance evaluation metrics were introduced to evaluate its
prediction accuracy. The metrics are described as shown below:

Definition 2. MAE measures the overall prediction accuracy for continuous time-series data. It is
used to measure the average magnitude of the total incurred errors over a set of predictions without
considering their direction. Error, in this case, refers to the difference between the original measured
water quality parameters values and the predicted values for those parameters. During performance
evaluation, it is usually applied as a reference to compare the merits and demerits. The formula of
this evaluation metric is given as:

MAE =
1
D

D

∑
i=1
|Oi − Pi| (18)

Definition 3. MSE calculates the mean average of the squared prediction errors over all the
instances in the test dataset and the formula given as:

MSE =
1
D

D

∑
i=1

(Oi − Pi)
2 (19)

Definition 4. RMSE is a quadratic scoring principle that measures the average magnitude of the
prediction error. It provides the mean prediction error that is rather more sensitive, especially to
extreme original measured values. The resultant changes in the evaluation index can stand as the
benchmark for the effectiveness and reliability test of the predictive model. The formula of RMSE is
expressed as:

RMSE =

√√√√ 1
D

D

∑
i=1

(Oi − Pi)
2 (20)

Definition 5. MAPE is an evaluation metric that measures the size of the prediction error in
percentage terms. It does not only measure the deviation between the original measured water
quality parameters values and the forecasted values, but it also considers the ratio between the
deviation and the original measured values. The formula of MAPE is given as:

MAPE =
1
D

D

∑
i=1

∣∣∣∣Oi − Pi
Vi

∣∣∣∣. (21)

In (18), (19), (20), and (21) above, D represents the number of data points in the dataset, Oi
and Pi denote the original measured water quality parameters values and the predicted values,
respectively. The closer these four performance evaluation metrics tend towards 0, the higher the
overall forecasting and fitting accuracy of the proposed hybrid model.

5. Results and Discussion

This study applied hourly centered moving average values to the original-measured
water quality parameters time-series data from the Abagold Farm. Additionally, the EEMD
technique, which is an effective and reliable approach for non-linear, non-stationary time-
series signal decomposition, was applied for decomposing the water quality parameters
datasets signals. Decomposing the water quality parameters dataset is an essential aspect
of the proposed novel hybrid EEMD-DL-LSTM prediction model for predicting short-range
values of the water quality parameters content. The original water quality parameters
sensor data was decomposed through the application of the EEMD method into eight (8)
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different stable IMFs and a corresponding residue, as depicted in Figures 7–10 for dissolved
oxygen, turbidity, pH, and water temperature, respectively. For improved performance, the
amplitude of the introduced white noise in the EEMD method was set to 0.2 [37]. Finally,
the EEMD method extracted a set of sub-band signals, which were applied within the
decomposition stage of the novel hybrid EEMD-DL-LSTM NN-based prediction model. A
summation of the low-frequency IMFs was used to extract the EEMD trend.
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The novel hybrid EEMD-DL-LSTM prediction model used seventy-five percent (75%)
of the pre-processed real water quality parameters dataset as a learning data sample
(training dataset) as well as performed DL and carried out model training. The remaining
twenty-five percent (25%) of the actual sensor monitoring water quality parameters data
of 5th to 18th January 2021 was used as the test dataset. The predicted results were
compared with the real monitored water quality parameters data. The set of measured real
experimental water quality parameters datasets such as dissolved oxygen, turbidity, pH,
and water temperature from the South African Abagold Farm indicated that the proposed
novel hybrid prediction model yields valuable results and outperforms other similar water
quality parameters prediction models in terms of high accuracy and low time cost. For
the purpose of fair performance comparison, this study used the MAE, RMSE, and MAPE
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error evaluation methods for pH, temperature, dissolved oxygen, and turbidity in Table 2;
and run time(s), MAE, MSE, RMSE, and MAPE error evaluation methods for dissolved
oxygen in Table 3, which were the same error evaluation methods used in the reference
models in [2,23], respectively. The overall prediction accuracy of the proposed model was
highly improved with a minimized time complexity because of the multi-feature selection
process carried out by the EEMD method to make a selection of the strongly correlated
group of IMFs components with the measured real water quality parameter datasets and
integrating them as inputs for the DL-LSTM neural network, unlike the related models
that do not apply the EEMD method. Similarly, in Table 2, a comparison of prediction
accuracy for individual water quality parameters against a similar model [2] is shown.
The results, as depicted in Figure 11a–d, indicated that our proposed model could be very
useful for deployment as an early warning system in an aquaculture environment. These
impressive results further buttressed the importance of applying this model in aquaculture
water quality management. Furthermore, the designed and development of a non-complex
user-friendly graphical user interface (GUI) with menus and buttons can go a long way
to enable aquafarmers, even in sub-urban locations, to apply the proposed model using a
desktop computer with basic configuration and less technical hands-on training.

As shown in Figure 11a–d, it was concluded that the forecasted water quality parame-
ters values had a good agreement with the real sensor monitored values from the aquafarm
water, which indicated that the proposed novel hybrid EEMD-DL-LSTM prediction model
performed well with high accuracy in predicting the water quality parameters. The predic-
tion outcome demonstrated the potential of applying hybrid DL artificial neural networks
for an accurate prediction of the water quality in an aquaculture environment, which can
proffer a reliable and effective foundation for the formulation of efficient water quality
protection policies and measures for high productivity yielding aquafarming industry.

A comparison of the efficiency of the new hybrid EEMD-DL-LSTM prediction model
was performed against other similar hybrid models, such as the conventional LSTM pre-
diction model, namely the LSTM and Sparse Auto-encoder (SAE) prediction model, BPNN
prediction model, and SAE-BPNN prediction model, as contained in a study conducted by
Li et al. [23], as shown in Table 3. The tabulated prediction error statistics in Table 3 indicate
a higher prediction accuracy of our proposed model and outperforms other similar water
quality parameters prediction models with respect to the prediction error margins of the
predicted water quality parameters data. The performance gain is due to the application of
the EEMD algorithm by our proposed novel hybrid EEMD-DL-LSTM prediction model
to effectively perform the decomposition of the original signals to obtain its constituent
separate essential sub-sequences. Furthermore, the new hybrid prediction model is able
to acquire more features of the original data signals with the aid of the decomposition
mechanism for the predicted signals. This further leads to an improved prediction accuracy
with a minimized error margin, as opposed to other similar prediction models [23], which
considered only single-dimensional inputs. Although the hybrid SAE-LSTM prediction
model [23] obtained the smallest error margin regarding the overall forecast accuracy,
compared to other prediction models that were proposed in [23], the statistics presented in
Table 3 further show that the proposed novel hybrid EEMD-DL-LSTM prediction model
in this paper outperformed the SAE-LSTM forecasting model, as a result of the applied
EEMD algorithm.
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Table 2. Comparison of prediction accuracy for individual water quality parameters against a similar modelx. Not applicable (NA) is used in this table because the reference model [2] did
not include error statistics for DO and turbidity in their paper. x DL-LSTM model [2] and our proposed novel hybrid EEMD-DL-LSTM NN prediction model.

MAE RMSE MAPE

pH Temperature DO Turbidity pH Temperature DO Turbidity pH Temperature DO Turbidity

DL-
LSTM

EEMD-
DL-

LSTM

DL-
LSTM

EEMD-
DL-

LSTM

DL-
LSTM

EEMD-
DL-

LSTM

DL-
LSTM

EEMD-
DL-

LSTM

DL-
LSTM

EEMD-
DL-

LSTM

DL-
LSTM

EEMD-
DL-

LSTM

DL-
LSTM

EEMD-
DL-

LSTM

DL-
LSTM

EEMD-
DL-

LSTM

DL-
LSTM

EEMD-
DL-

LSTM

DL-
LSTM

EEMD-
DL-

LSTM

DL-
LSTM

EEMD-
DL-

LSTM

DL-
LSTM

EEMD-
DL-

LSTM

0.0042 0.0140 0.0421 0.0251 NA 0.0262 NA 0.0309 0.6236 0.0407 0.0519 0.0325 NA 0.0355 NA 0.0291 0.0092 0.0074 0.0850 0.0073 NA 0.0075 NA 0.0078

Table 3. Comparison of prediction accuracy and run time (s) against similar models *.

Statistical Evaluation Metrics BP Model SAE-BP Model DL-LSTM Model SAE-LSTM Model EEMD-DL-LSTM Model

Run Time (s) 3.4000 9.1000 22.0000 28.2000 2.3700

MAE 0.3000 0.2580 0.1000 0.0690 0.0375

MSE 0.1352 0.0953 0.0166 0.0077 0.0024

RMSE 0.3680 0.3090 0.1290 0.0880 0.0489

MAPE 0.0310 0.0270 0.0100 0.0070 0.0072

* BP model, RBF model, LSTM model, LSTM and Sparse Auto-Encoder (SAE; SAE-LSTM), and SAE-BPNN prediction models are proposed in [23], and our proposed novel hybrid EEMD-DL-LSTM NN
prediction model.



Water 2021, 13, 1782 17 of 19

Water 2021, 13, x FOR PEER REVIEW 17 of 20 
 

 

 
Figure 11. Comparison of real water quality parameters values and the predicted values: (a) dissolved oxygen, (b) turbid-
ity, (c) pH, and (d) temperature. 

Table 2. Comparison of prediction accuracy for individual water quality parameters against a similar modelx. Not appli-
cable (NA) is used in this table because the reference model [2] did not include error statistics for DO and turbidity in their 
paper. x DL-LSTM model [2] and our proposed novel hybrid EEMD-DL-LSTM NN prediction model. 

MAE RMSE MAPE 

pH 
Tempera-

ture 
DO Turbidity pH 

Tempera-
ture 

DO Turbidity pH 
Tempera-

ture 
DO Turbidity 

DL-
LST
M 

EEMD
-DL-

LSTM 

DL-
LST
M 

EEMD
-DL-

LSTM 

DL-
LST
M 

EEMD
-DL-

LSTM 

DL-
LST
M 

EEMD
-DL-

LSTM 

DL-
LST
M 

EEMD
-DL-

LSTM 

DL-
LST
M 

EEMD
-DL-

LSTM 

DL-
LST
M 

EEMD
-DL-

LSTM 

DL-
LST
M 

EEMD
-DL-

LSTM 

DL-
LST
M 

EEMD
-DL-

LSTM 

DL-
LST
M 

EEMD
-DL-

LSTM 

DL-
LST
M 

EEMD
-DL-

LSTM 

DL-
LST
M 

EEMD
-DL-

LSTM 
0.004

2 
0.0140 

0.042
1 

0.0251 NA 0.0262 NA 0.0309 
0.623

6 
0.0407 

0.051
9 

0.0325 NA 0.0355 NA 0.0291 
0.009

2 
0.0074 

0.085
0 

0.0073 NA 0.0075 NA 0.0078 

Table 3. Comparison of prediction accuracy and run time (s) against similar models *. 

Statistical Evaluation 
Metrics 

BP Model SAE-BP Model DL-LSTM Model SAE-LSTM Model EEMD-DL-LSTM Model 

Run Time (s) 3.4000 9.1000 22.0000 28.2000 2.3700 
MAE 0.3000 0.2580 0.1000 0.0690 0.0375 
MSE 0.1352 0.0953 0.0166 0.0077 0.0024 

Figure 11. Comparison of real water quality parameters values and the predicted values: (a) dissolved oxygen, (b) turbidity,
(c) pH, and (d) temperature.

6. Conclusions

In addition to the pre-processing and analysis of the original sensor monitored water
quality parameters datasets from the Abagold Farm, this study proposed a unique hybrid
EEMD-DL-LSTM prediction model for improved water quality parameters prediction accu-
racy. The proposed novel hybrid prediction model was designed through the combination
of an EEMD algorithm with deep learning LSTM NN. The EEMD approach was utilized
for decomposing the measured real datasets into separate constituents of distinct IMFs and
a corresponding residual item. Furthermore, the EEMD algorithm used a multi-feature
selection process to make a careful selection of the strongly correlated group of IMFs with
the measured real water quality parameters datasets and integrate them as inputs to the
deep learning LSTM neural network. A set of measured real experimental water quality
parameters datasets from the South African Abagold Farm indicated that the proposed
novel hybrid prediction model yields valuable results and outperforms other similar water
quality parameters prediction models in terms of high accuracy and low time cost. These
results are indicated in Figure 10 and buttressed the importance of applying this model to
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aquaculture water quality management. In this study, a univariate prediction model was
proposed and evaluated. For further study, a hybrid multivariate prediction model will be
explored to develop a broader water quality prediction solution.
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