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Abstract: The “One Out–All Out” (OOAO) principle imposed by the WFD selects the worst ecolog-
ical status assessed by different biological quality elements (BQEs). Since it is a precautionary rule 
that can lead to problems of underestimation of the overall status, its amendment has been a matter 
of debate for WFD 20+. The use of fuzzy methods that express the functional relationships between 
variables in ecology and management has been gaining more ground recently. Here is attempted 
the inclusion of a fuzzy regression among the frequently monitored BQE (phytoplankton) and the 
outcome of OOAO application in six Greek lakes. The latter was determined by the comparison of 
four BQE indices in order to assess the extent to which BQEs might underpin the optimal/actual 
qualitative classification of a waterbody. This approach encompasses the uncertainty and the pos-
sibility to broaden the acceptable final EQR based on the character and status of each lake. We con-
cluded that the fuzzy OOAO is an approach that seems to allow a better understanding of the WFD 
implementation and case-specific evaluation, including the uncertainty in classification as an asset. 
Moreover, it offers a deeper understanding through self-learning processes based on the existing 
datasets. 

Keywords: ecological quality assessment; OOAO; fuzzy regression; biological quality elements; wa-
ter framework directive fitness check; monitoring 
 

1. Introduction 
The Water Framework Directive (WFD) [1], which was formally adopted in 2000, 

requires that all European Member States (MSs) have to assess the ecological status or 
potential of their inland, transitional, and coastal waterbodies. A key feature of the WFD 
is the use of the catchment-scale as the management unit, thereby allowing for the inte-
grated effects of all pressures on waterbodies to be considered [2]. In particular, it intro-
duces an innovative approach to manage and protect aquatic ecosystems in a holistic way 
rather than focusing only on specific aspects of water quality. Classification of ecological 
status or potential is based on different biological quality elements (BQEs) representing 
main ecosystem components, such as phytoplankton, benthic macroinvertebrates, other 
aquatic flora (macrophytes, phytobenthos), and fish [1]. 

Up to now, WFD complemented by its daughter and sister directives (as the Envi-
ronmental Quality Standards Directive [3], the Groundwater Directive [4], the Flood Di-
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rective [5]), has achieved the set-up of a management framework across all European Un-
ion (EU) waterbodies, including lakes, mitigating their deterioration. However, at the 
same time, around 57% of rivers and 44% of lakes in EU have failed to achieve good eco-
logical status or potential [6], while according to the WFD Fitness check [7], no substantial 
progress in waterbodies’ overall status has been made between the first and the second 
river basin management cycles. This means that waterbodies classified at less than good 
ecological status or potential must be restored, and further management responses should 
be applied to improve the overall system’s health. These responses are presented under 
the term “Program of Measures, PoMs” in the River Basin Management Plans (RBMPs) 
and target the pressures and their drivers contributing to ecosystem dysfunction [8]. The 
overall system’s classification is based on the “One Out–All Out” (OOAO) principle, 
meaning that the worst quality of any of the BQEs used in the assessment regulates the 
overall ecological status of a waterbody. 

The majority of PoMs require significant cost while, often, the lack of financial re-
sources for implementing a long list of measures can be a factor for not achieving better 
results. Thus, the diagnosis of the efficacy of each BQE in reflecting the actual status, 
which in turn guides the classification of each waterbody, is of high importance. Misclas-
sification could lead either to over-precautionary results and imposition of restoration 
costs disproportionate or neglect of the need for strict measures to target pressures. It is 
acknowledged that it is more difficult to make progress visible in the WFD goals due to 
the OOAO principle [7]. Indeed, the OOAO principle was originally set up as a precau-
tionary principle. The ecological basis for the debate on the usefulness of the OOAO prin-
ciple has been clearly demonstrated by several researchers [9–11]. They state that the 
OOAO principle is well suited when different stressors are responsible for the degrada-
tion of the individual BQEs and further, that the tendency for misclassification increases 
with the BQEs uncertainty. Waterbodies are either affected by predominant pressures 
(e.g., organic pollution or eutrophication) or by multiple pressures, which can interact in 
additive, synergistic, or antagonistic ways (e.g., nutrient enrichment, hydromorphological 
degradation, toxic substances, overfishing) [12]. At the same time, the ecological 
knowledge of the response of different organism groups to pressures varies across Europe 
[13]. In addition, new pressures are appearing (e.g., microplastic pollution, pharmaceuti-
cals, light and noise, freshwater salinization) [14]. 

The uncertainty of the BQEs and their significance for the ecological status classifica-
tion have been addressed in many studies [15–20]. Currently, in relevant EU working 
groups, there are discussions on the use of a new set of indicators, which will be based on 
BQEs, and can serve as a supplementary guide to overall status or potential. For instance, 
in assessing the progress of ecological status, since the beginning of monitoring and the 
implementation of PoMs, the comparison of OOAO with other integrative methods in 
coastal and transitional waterbodies showed a low (18%) disagreement for the coastal and 
a much higher (58%) for the transitional [21]. This can be explained by the fact that one or 
more BQEs appear to have a low or a moderate correlation with various stressors, thus 
often describing similar inconsistencies [22]. Thus, the establishment of alternative com-
bination rules is suggested [23], taking also into consideration the type I (i.e., a waterbody 
is below good status even if the waterbody in reality has good status) and type II (i.e., 
reducing the likelihood that a waterbody is classified as good status when, in reality, it is 
below good status) errors, as highlighted by Hering et al. [13]. 

Based on the above, Borja and Rodriguez [21] have suggested that MSs should avoid 
adopting this simplistic principle, although it may present an effective indication in the 
ecological status assessment. Thus, amendments on the application of OOAO or alterna-
tive approaches should be further considered. In a recent paper reporting the results of a 
survey on the suitable options of how the OOAO principle should be implemented, Car-
valho et al. [11] show that the most popular responses opted for the boosting of selected 
BQEs and the emphasis on progress reporting. Therefore, the linkage of pressures with 
ecological status sets the basis for establishing management targets and restoration 
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measures [24]. According to Carvalho et al. [11], the only state adopting management de-
cisions dependent on the strongest evidence of BQE is the United Kingdom. 

So far, the fundamental target of WFD implementation has been the development of 
assessment methods for all BQEs required in the WFD. For EU lakes, a wide variety of 
assessment methods have been developed based on different BQEs that respond to spe-
cific pressures [15,25,26] or multiple pressures [27,28]. In Greece, until recently, there were 
gaps in the assessment of the ecological quality of lakes with WFD-compatible indices. 
Five national indices [29–33], applicable in the broader Mediterranean area, were devel-
oped for all BQEs reflecting the local peculiarities. It cannot be generally stated which 
BQEs underestimate or overestimate the actual status. It is empirically observed that the 
qualitative assessment depends more on the lake type, its special traits, and the type and 
intensity of pressures that is subject to. 

Fuzzy logic in ecology has been gaining ground during the last two decades. The 
natural complexity can be reflected in fuzzy ecological modeling and scenarios simulation 
[34], while such “unconventional” data analyses can be applied for sustainability evalua-
tion [35]. These approaches allow for overcoming the usual obstacle of precise quantifica-
tion processes [36]. Moreover, fuzzy logic can assist in management planning and decision 
making by enhancing objectivity [37]. The fuzzy regression tool is useful in expressing 
functional relationships between variables, especially when the available dataset is insuf-
ficient [38]. Kitsikoudis et al. [39] employed fuzzy regression and set a fuzzy band to pro-
duce the lower and upper acceptable limits (left and right boundaries) of critical Shields 
stress. Thus, the ambiguity of selecting a threshold can be avoided, and a smoother tran-
sition to the actual state can be provided [40,41]. 

In this study, we first assessed the strictness of the OOAO application based on dif-
ferent ecological assessment approaches and BQEs (phytoplankton, macrophytes, and 
benthic macroinvertebrates). Then, we examined a method utilizing fuzzy logic to express 
the functional relationships between two variables. fuzzy regression was applied for phy-
toplankton (as the main BQE for lakes and more frequently monitored) and OOAO that 
derived from all available BQE indices. This approach took place to assess the extent to 
which different BQEs can underpin the optimal/actual qualitative classification of a wa-
terbody. 

2. Materials and Methods 
2.1. Study Area 

As a case study, we used the BQEs from six natural lakes in northern and central 
Greece (Figure 1). These lakes are included in the National Water Monitoring Network, 
while one of them is transboundary (Doirani), shared with the Republic of North Mace-
donia. According to the Hellenic typology [29], these lakes belong to two types: (a) warm 
monomictic, deep, natural lakes with mean depth >9 m (type GR-DNL, 3 lakes) and (b) 
polymictic, shallow lakes with mean depth 3–9 m (type GR-SNL, 3 lakes). The studied 
lakes are characterized by a variability in their limnological and trophic state attributes 
(Table 1). 
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Figure 1. Map of the studied lakes. 

Table 1. Limnological characteristics of the studied lakes. OL, oligotrophic; MT, mesotrophic; ET, 
eutrophic. 

Lake Altitude 
(m.a.s.l.) 

Mean Depth 
(m) a 

Maximum Depth 
(m) a 

Lake Area 
(km2) a 

Trophic 
Status 

Doirani 142 4.5 5.5 32.4 * ET 
Lysim-
achia 

16 3.5 7.7 13.0 ET 

Ozeros 22 3.8 6.1 10.4 ET 
Vegoritis 510 26.1 52.4 47.4 MT-ET 

Volvi 37 12.5 27.3 72.9 ET 
Yliki 80 20.9 38.5 21.6 OL-MT 

a Data available from the national monitoring program implemented by the Greek Biotope-Wet-
land Centre (EKBY), * approximately 44% of the lake area being within the territory of Greece. 

2.2. Biological Assessment Methods 
In the present study, each BQE was assessed by one index, except for benthic ma-

croinvertebrates, as follows: 
Phytoplankton: Hellenic Phytoplankton Assessment System (HeLPhy), which is 

composed of four metrics, i.e., chlorophyll-a, total biovolume, modified Nygraard index, 
and biovolume of cyanobacteria and responds to eutrophication [29]. 

Macrophytes: Hellenic Lake Macrophytes (HeLM), which consists of two metrics, i.e., 
trophic index and maximum depth of colonization and responds to eutrophication [30]. 

Benthic macroinvertebrates: Greek Lake Benthic Invertebrate Index (GLBiI), which is 
composed of three metrics, i.e., the number of taxa, the Simpson’s diversity index in the 
profundal and sublittoral zones, and the relative contribution of Chironomidae (%) family 
in the profundal zone [32]; and Hellenic Lake Littoral Benthic Invertebrate Assessment 
System (HeLLBI), which is composed of three metrics, i.e., relative abundance of Odonata 
(% of abundance classes), average score per taxon, and Simpson Diversity Index [33]. The 
GLBiI responds to eutrophication, while HeLLBI to hydromorphological alterations and 
eutrophication. 
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Specifically, phytoplankton samplings took place during the warm period, in the pe-
lagic zone, covering the euphotic zone water column (2.5 × Secchi disk depth) using a 
Nansen type sampler. Benthic macroinvertebrates from the profundal/sublittoral zones 
were sampled in spring and autumn, with the use of a grab [32]. Littoral benthic macroin-
vertebrates were sampled in spring using the three-minute kick/sweep method with 
standard hand net (500 μm mesh size) [33]. Regarding macrophytes, sampling took place 
during the vegetative period, and the belt transect-mapping method was applied [30]. Fi-
nally, the dataset used comprised 46 lake years with phytoplankton EQRs, 11 with mac-
rophyte, 6 with profundal/sublittoral zoobenthos, and 7 with littoral zoobenthos EQRs. 

For each assessment method, as requested by the WFD, the Ecological Quality Ratio 
(EQR) was calculated as each index value was divided by the reference condition values, 
ranging from 0 (bad) to 1 (high). The reference values for GLBiI were estimated by the 
hindcasting procedure for each lake and do not correspond to actual reference sites’ val-
ues, while for the rest of the indices, the reference values are presented in Appendix A 
(Table A1). The class boundaries were evenly spaced for all BQEs (i.e., high > 0.8, good: 
(0.8–0.6), moderate: (0.6–0.4), poor: (0.4–0.2), bad ≤ 0.2), and thus, the comparison among 
them was feasible. EQR values for each BQE were available at different time intervals 
(Table 2). The values for the application of the OOAO principle were estimated for the 
two river basin management cycles (2012–2015 and 2016–2019). Analyses were applied 
using different combinations for integrating multiple BQEs at waterbody level. These 
combinations were: 
(a) OOAO: the lowest EQR of BQEs was attributed for the whole waterbody; 
(b) average: the arithmetic average of the EQRs for all BQEs was calculated and rounded 

to the nearest class; and 
(c) median: the median of EQRs for all BQEs was calculated and rounded to the nearest 

class. 

Table 2. Frequency of monitoring for each biological quality element. P, phytoplankton; M, macro-
phytes; B-L, littoral zoobenthos; B-SP, sublittoral/profundal zoobenthos. 

Lake 
1st Monitoring Period 2nd Monitoring Period 

2012 2013 2014 2015 2016 2017 2018 2019 
Doirani P P, M P, B-SP P P, M P  P 

Lysimachia P P P, M, B-SP P, B-L P P, M P, B-L P 
Ozeros P P P, M, B-SP P, B-L P P, B-L P P 

Vegoritis P P, M P, B-SP P P, M P P, B-L P 
Volvi P P, M P, B-SP P P, M P, B-L  P 
Yliki P P P, M, B-SP P, B-L P P P P 

It is worth noting that we performed all the statistical analyses based on the above-
mentioned BQEs since in Greece, for these monitoring periods, data for lakes are limited 
only to those. Moreover, we did not use diatoms since the national index based on diatoms 
is under development and not available yet. 

2.3. The Proposed Fuzzy Regression Model 
The data of the fuzzy regression can be either fuzzy or crisp. Usually, the data are 

rather crisp numbers, and thus, the uncertainty arises from the adopted fuzzy model, that 
is, from the fuzzy coefficients. In this work, we deal only with crisp data. Fuzzy regression 
analysis gives a fuzzy functional relationship between the dependent and independent 
variables [42]. In contrast to the statistical regression, fuzzy regression analysis has no 
error term, while the uncertainty is incorporated in the model by using fuzzy numbers 
[39,43]. 

From a computational point of view, according to the Tanaka [44] approach, the 
problem of fuzzy linear regression is finally formulated as a constrained optimization 



Water 2021, 13, 1776 6 of 19 
 

 

problem. In the case that symmetrical fuzzy triangular numbers are used, the problem is 
transformed into a linear programming problem [45,46]. The main fuzzy concept that is 
used in fuzzy linear regression is the fuzzy number. The general description of fuzzy 
numbers can be found in Klir and Yuan [47]. Usually, fuzzy triangular symmetrical num-
bers are used. Since in the examined problems there is a lack of data, the authors selected 
the simplest membership function, which is the fuzzy symmetrical triangular number, to 

avoid any overtraining. Hence, here, A~  means a fuzzy triangular symmetrical number 
(Figure 1), which has the membership function (μΑ) presented below: 

( ) 1

0

i i
A i

a
, if c a c

a c
 −

− − ≤ ≤ +μ = 



i
i i

a a a  (1) 

Many times, the fuzzy triangular symmetrical numbers are denoted as ( ),A c= a . 
The membership function expresses the degree according to which a member of the real 
axis (in general, the general set) belongs to the examined fuzzy number. The fuzzy num-
bers can be described as “approximately (or almost) ai” (e.g., almost one). The term ai rep-
resents the central value and the term c the semi-width (Figure 2). 

The fuzzy linear regression model proposed by Tanaka [44] and Tanaka et al. [48] has 
the following form in this study: 

0 1j jY A A x= +  with  j = 1,…, m  (2) 

where xj is the independent variable (here, the phytoplankton index), m is the number of 
data, and jY is the fuzzy predicted value of the dependent variable (OOAO principle) 
considering the jth data. In other words, the fuzzy linear regression uses fuzzy numbers 
as coefficients instead of crisp numbers. 

 
Figure 2. Fuzzy triangular symmetrical number “almost a”. 

In addition, as it will be explained below, the fuzzy estimation of the dependent var-
iable jY  must contain the observed data yj (Figure 3). The observed data are crisp num-
bers (OOAO principle), whilst the fuzzy regression provides a fuzzy estimation of the 
OOAO. 

For instance, if the regression concludes to  

( ) ( )0.0457,0.0457 1,0 ,j jY x= − +  (1) 

this means that the main parameter that influences the OOAO is the phytoplankton index 
(xj). However, an uncertainty arises from the constant term (−0.0457, 0.0457). In contrast, 
if the model concludes to: 

( ) ( )0.4237, 0.0137 0,0j jY x= +  (2)



Water 2021, 13, 1776 7 of 19 
 

 

this means that the phytoplankton index has no influence in the evaluation of the OOAO. 
Then the outcome, that is, the OOAO (fuzzy) estimation, will be a fuzzy tube parallel to 
xx’ axis, and the estimation will be between [ ] [ ]0 0 0 0,  0.4374,0.41a c a c+ − = . The fuzzy 
constant term expresses the determinant influence of the other indices. 

The h-cut set of the fuzzy number A (with 0 < h ≤ 1) is defined as follows (Figure 3): 

[ ] { }( ) ,AhA a hα μ α= ≥ ∈ℜ  (3) 

where ℜ  is the real number axis. 

 
Figure 3. Triangular fuzzy number, its h-cut (is a crisp set), and zero-cut (α-, α+). 

Notice that the h-cut set is a crisp set determined from the fuzzy set according to a 
selected value of the membership function and, alternatively, a fuzzy set can be practically 
derived from a significant number of h-cut sets. In case of h = 0, the above definition of 
Equation (3) can be modified without the equality in order to describe the zero-cut [39]. 

The constraints express the concept of inclusion of the observed data (which are crisp 
numbers) within the produced fuzzy band. In general, the inclusion of a fuzzy set A into 
the fuzzy set B with the associated degree is defined as follows: 

[ ] [ ]h h
A B⊆  (4) 

In our case, the set A is a crisp set whilst the set B is a fuzzy set. Therefore, for each 
point of data, the observed dependent variable yj (OOAO) must be included into the pro-
duced h-cut of the fuzzy number jY  (blue line in Figure 4). 

 
Figure 4. The concept of inclusion in the case of fuzzy linear regression. 

According to the presented methodology, the selection of the used h-level is depend-
ent on the quality of data. Another interesting point is that even if the initial definition of 
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the inclusion property incorporates all the h-cuts, the definition of inclusion that is used 
in Equation (4) is based on a unique (pre-selected) level h instead of all the values. 

In this study, since the data are crisp (for each individual data), the set A is only a 
crisp value (a point of data that must be included in the produced fuzzy band), and the 
fuzzy set B is a fuzzy triangular number. Hence, the inclusion constraints in our problem 
become [40,49]: 

 
(5) 

where a1, a0 are the centers of the coefficients that correspond to the independent variable 
(phytoplankton index) and the constant term correspondingly. The terms c1, c0 indicate 
the semi-widths of the coefficients that correspond to the independent variable and the 
constant term correspondingly. More analytically, the term ( ) ( )1 0 1 0a a (1 ) c cj jx h x+ − − +  

expresses the left boundary of the h-cut of the fuzzy number jY , whilst the term 

( ) ( )1 0 1 0a a (1 ) c cj jx h x+ + − +  expresses the right boundary of the h-cut of the fuzzy num-

ber jY . 
In case that there is not enough data, as in our case, the minimization of the achieved 

fuzzy band is proposed. Indeed, it is obvious that if the produced fuzzy band has a large 
magnitude, then it will contain all data. However, no functional fuzzy relation would be 
produced. 

Even if, initially, Tanaka [45] proposed the minimization of the semi-width of the 
fuzzy coefficients, finally, he proposed the sum of the semi-widths (fuzzy spreads) for the 
produced dependent variable for all the data: 

( ) ( )1 0 1c c c
m m m

R L
j 0 j

j=1 j=1 j=1
y - y = 2 x = 2 mc + x

   
+   

   
  

 
(6) 

where ,R Ly y  are the right-hand boundary and the left-hand boundary, respectively, 
of the fuzzy set, which are the boundaries of the zero-cut. 

Therefore, in condition of fuzzy triangular numbers as coefficients and by using the 
mentioned objective function, the problem of fuzzy linear regression is concluded to a 
linear programming problem [39,43]. The linear programming can be solved by using a 
plenty of commercial packages. In addition, the linear programming has very good math-
ematical properties, for instance, a local minimum solution is global and hence, in contrast 
with the no linear optimization, in this case, the LP provides a global optimum solution. 

In the examined case (by using fuzzy triangular symmetrical numbers), the equation 
concludes to: 

1

m

0 ij
j=1

J = min mc + c x
 
 
 

  (7) 

subject to restrictions: 

( ) ( )1 0 1 0a a (1 ) c cj j jy x h x≥ + − − +  (7a) 

( ) ( )1 0 1 0a a (1 ) c cj j jy x h x≤ + + − +  (7b) 

c1, c0, ≥ 0, where j = 0, 1,…, m (7c) 

The above mathematical functions, 

( ) ( ) ( ) ( )1 0 1 0 1 0 1 0a a (1 ) c c , a a (1 ) c cj j j jx h x x h x+ − − + + + − +  present the lower and 

( ) ( ) ( ) ( )1 0 1 0 1 0 1 0a a (1 ) c c a a (1 ) c c , 1,...,j j j j jx h x y x h x j m+ − − + ≤ ≤ + + − + =
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the upper boundaries, respectively, of the corresponding h-cut of jY . As jy ,  the jth ob-
served data is meant, considering the dependent variable, which in this application is a 
crisp number. 

It is well known that the solution for any other cut-level, h’ can be obtained from the 
optimal h-cut-level solution as follows [50,51]: 

1,
1
h
h

− =  ′− 
hch' hA a  (8) 

the term h means the initial h-cut and the term h’ means the new level h’. From Equation 
(8), it is obvious that the new level h’ affects only the semi-widths. Hence, in case that 
there is not enough data, after the solution that is achieved from h = 0, the optimal solution 
for any other level h’ can be achieved. The total fuzzy band will be: 

( ) ( )1
1

J J
h′ =
′−h 0c c  (9) 

The term ,′h 0c c  are the matrices which represent the semi-width of the solution with h’ 
and for h = 0, respectively. For instance, the new matrix of the semi-width for h = 0.5 will 
be equal to: 

0.5 2h= = h=0c c  (10) 

2.4. Tested Scenarios and Basic Interpretation 
The testing that we included in our research was split in two distinct scenarios:  
Scenario a: the fuzzy regression was applied between phytoplankton, as the most 

sensitive and more frequently monitored BQE, and the OOAO values. The values for 
OOAO were generated using the unique yearly EQR values of phytoplankton, but the 
same values were kept for the indices of macrophytes and benthic macroinvertebrates for 
all years within each monitoring period (2012–2015 and 2016–2019). That is, the EQR val-
ues of these indices were extended beyond their actual monitored year (Table 2). Accord-
ing to the WFD, the monitoring frequency of macrophytes and benthic macroinvertebrates 
for operational monitoring is once every three years. 

Scenario b: the fuzzy regression took place between phytoplankton yearly EQR val-
ues and the OOAO values generated using the yearly EQR values of phytoplankton and 
only the values of the indices of macrophytes and benthic invertebrates corresponding to 
the year they were actually monitored (Table 2). 

The presented fuzzy regression model is applied between the yearly values of the 
independent (phytoplankton index) variable and the quality expressed by the dependent 
variable (OOAO). Therefore,, when the coefficients of the phytoplankton index have low 
values, that is, small central value (ai) and semi-width (ci), then it is obvious that the other 
quality indices affect the OOAO. On the other hand, if the coefficients of the phytoplank-
ton index have a high value, which is large central value and significant semi-width, then 
the phytoplankton index significantly affects the OOAO. To work properly, there has to 
be originally a wide range of EQR values from all indices included in the regression. When 
a lake has quality values only within an EQR class range, it “cripples” the lake, not allow-
ing it to go beyond these values. When both EQR values in both axes are identical, the 
Phytoplankton index “commands” the OOAO, and in that case, the observation value is 
placed closest to the central fuzzy value. The boundaries designate the maximum accepta-
ble value for the OOAO principle acknowledging every value in the dataset. That means 
that the final acceptable assessment value can be within the range set by the central value 
plus or minus the semi-width (ci, the second coefficient). This coefficient is the uncertainty 
created by the existing dataset at hand each time. When a boundary value falls over an 
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existing observed value, this means that another BQE designated the range of acceptable 
values. It can be easily understood that the higher the x (phytoplankton) coefficient value, 
the more important is phytoplankton for the OOAO principle. Similarly, the larger the 
second coefficient is, the wider the acceptable ranges. It should also be noted that for every 
new added value in the dataset (i.e., values for 2020, 2021, etc.), the regression can produce 
a slightly differentiated equation, meaning new semi-widths and thus new acceptable 
EQR ranges. 

3. Results 
3.1. BQEs Comparison and Status Classification Approaches 

The ecological status assessed for the case-studied lakes differ up to two quality 
scales (Table 3). The macrophyte-based index appears to be the most lenient, while the 
index based on macroinvertebrates of the sublittoral and profundal zones appears as the 
strictest. On the other hand, the index based on the macroinvertebrates of the littoral zone 
remains more “austere” than phytoplankton, except in the cases of Vegoritis and Lysim-
achia (Table 3). The results for both monitoring periods using the OOAO principle end in 
16.7% of the cases in poor and good ecological quality and 66.7% in moderate, while when 
using the median and average approach, the results were similar, classifying the cases at 
50% moderate and 50% good ecological quality. As for the final classification, the OOAO 
principle, selecting the worst case, showed the poorest ecological status, downgrading up 
to two scales the status assessment, whereas the median and average indices’ EQRs were 
more kind in total, reflecting the quality distance among BQEs mentioned above. 

Table 3. Ecological quality of six Greek lakes, based on multi-metric indices for different biological 
quality elements. The ecological status assessed by the “One Out–All Out” (OOAO), median, and 
average approaches. Quality color scale and Ecological Quality Ratio values are presented. P, phy-
toplankton [29]; M, macrophytes [30]; B-SP, sublittoral/profundal zoobenthos [32]; B-L, littoral zoo-
benthos [33]. 

Lake Type Lake Monitoring Period P M B-SP B-L OOAO Median Average 

D
ee

p 

Vegoritis 
1st (2012–2015) 0.66 0.75 0.54  0.54 0.66 0.65 
2nd (2016–2019) 0.64 0.62  0.69 0.62 0.64 0.65 

Volvi 
1st (2012–2015) 0.45 0.70 0.41  0.41 0.45 0.52 
2nd (2016–2019) 0.46 0.71  0.44 0.44 0.46 0.53 

Yliki 1st (2012–2015) 0.77 0.69 0.34 0.48 0.34 0.59 0.57 
2nd (2016–2019) 0.75    0.75 0.75 0.75 

Sh
al

lo
w

 Doirani 1st (2012–2015) 0.56 0.77 0.69  0.56 0.69 0.68 
2nd (2016–2019) 0.57 0.77   0.57 0.67 0.67 

Lysimachia 
1st (2012–2015) 0.59 0.59 0.39 0.51 0.39 0.53 0.51 
2nd (2016–2019) 0.53 0.42  0.63 0.42 0.53 0.52 

Ozeros 1st (2012–2015) 0.71 0.45 0.53 0.49 0.45 0.51 0.55 
2nd (2016–2019) 0.72 0.62  0.52 0.52 0.62 0.62 

3.2. Implementation of the Proposed Methodology 
3.2.1. Fuzzy Regression Scenario A 

In the cases of the Vegoritis and Volvi lakes, the estimated OOAO values form a tube 
parallel to the xx’ axis (Figure 5a,b). This means that the phytoplankton index has no sig-
nificant influence on the water quality classification for the examined lakes. To be precise, 
phytoplankton has a negligible coefficient (0.0025) for Lake Vegoritis, while for Lake 
Volvi, phytoplankton has no effect in shaping the OOAO values (Figure 5a,b). In this case, 
it is obvious that all the other indices rather than the phytoplankton index influence the 
OOAO. In contrast, the OOAO equation for Lake Yliki is proportional to the phytoplank-
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ton index, while the semi-width indirectly indicates the influence of the other indices (Fig-
ure 5c) encompassing the generated uncertainty (0.3123), which is also dependent on phy-
toplankton EQR. 

  
(a) (b) 

  
(c) 

Figure 5. Graphical representation of the fuzzy regression for the OOAO (“One Out–All Out”) principle (dimensionless) 
with respect to phytoplankton index (dimensionless) in case of Scenario A for three deep natural lakes: (a) Vegoritis, (b) 
Volvi, and (c) Yliki. 

Accordingly, Figure 6 depicts the fuzzy regressions for shallow natural lakes. A sim-
ple line is produced for Lake Doirani (Figure 6a) since the phytoplankton index has the 
lowest value among the indices, and hence, it is identical with the OOAO values, demon-
strating no uncertainty. In Ozeros and Lysimachia lakes, the produced fuzzy curves rep-
resent a tube almost parallel to the xx’ axis (Figure 6b,c). In Lake Lysimachia (Figure 6b), 
a fuzzy coefficient (0.4038) is produced from the EQR values generated from all other in-
dices than the phytoplankton one. Hence, the final ecological status would be within the 
range of 0.4038 ± 0.0138. The OOAO values for Lake Ozeros are slightly dependent on 
phytoplankton (0.0038) (Figure 6c). 
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(a) (b) 

 
(c) 

Figure 6. Graphical representation of the fuzzy regression for the OOAO (“One Out–All Out”) principle (dimensionless) 
with respect to phytoplankton index (dimensionless) in case of Scenario A for three shallow natural lakes: (a) Doirani, (b) 
Lysimachia, and (c) Ozeros. 

3.2.2. Fuzzy Regression Scenario B 
It seems that performing a fuzzy regression with phytoplankton EQR values (one for 

each year of the monitoring period) and two values for all other indices (one per four 
years) shapes the OOAO in favor of phytoplankton due to reduced yearly EQR compari-
sons. So, regardless of the lake type (shallow or deep), the independent variable (phyto-
plankton index) becomes a driving factor for the regression (Figures 7 and 8). In all lakes, 
the OOAO values are almost equivalent to that of the phytoplankton index, except in the 
case of Lake Ozeros (Figure 8). In that case, the phytoplankton coefficient is also high 
(0.7865), and the uncertainty is phytoplankton related, in contradiction with Lysimachia, 
Yliki, and Volvi lakes, where the uncertainty is an independent term. 
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(a) (b) 

 
(c) 

Figure 7. Graphical representation of the fuzzy regression for the OOAO (“One Out–All Out”) principle (dimensionless) 
with respect to phytoplankton index (dimensionless) in case of Scenario B for three deep natural lakes: (a) Vegoritis, (b) 
Volvi, and (c) Yliki. 
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(a) (b) 

  
(c) 

Figure 8. Graphical representation of the fuzzy regression for the OOAO (“One Out–All Out”) principle (dimensionless) 
with respect to phytoplankton index (dimensionless) in case of Scenario A for three shallow natural lakes: (a) Doirani, (b) 
Lysimachia, and (c) Ozeros. 

4. Discussion 
Assigning nature to boxes is difficult, and therefore, it is a challenge to fulfil the re-

quirements of the WFD to define an overall ecological status, considering the ecosystem 
as a whole and using multiple BQEs in different waterbody types. The OOAO principle, 
where the status is based on the lowest score of any of the BQEs, is a precautionary rule 
that can lead to the strictest classification of waterbodies’ ecological status [52]. In this 
study, we attempted to consider combinations for multiple BQEs to assess ecological sta-
tus in two different lake types. Moreover, we performed a fuzzy method to overcome the 
obstacle of the blind application of the OOAO approach, taking into account the manda-
tory monitoring periods according to the WFD. 

As for the mere EQR values comparison, the macrophyte-based index appears as the 
less strict index, with an exception in the case of Lysimachia, possibly because it focuses 
on the euphotic littoral zone. It is considered that the abundance and the composition of 
plant species very often have a quite wide ecological scale [19,20]. Additionally, which 
BQE reflects better the lake quality is a matter of the lake itself, since all differ according 
to their morphometry and hydrology, and they are usually subjected to different pres-
sures. Even within a lake, multiple BQEs can respond differently in various lakes’ parts, 
seasons, and time scales [53,54]. According to previous studies [21,52,55] regarding the 
different approaches to evaluate the overall status, the OOAO principle was the most con-
servative, downgrading the ecological status of lakes. The OOAO principle is also consid-
ered as an inadequate tool for addressing progress or deterioration in status [56], as it 
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masks the real changes that WFD implementation can achieve, especially in cases where 
PoMs have been implemented with delay. The suggested fuzzy method in all scenarios 
retains the strictness of the OOAO principle but in a way that the main BQE (i.e., phyto-
plankton) can be boosted and the character of each lake showcased. This approach comes 
in line with the most voted choices in a query posed to all experts and attendees during 
EU WFD 2017 e-conference [11]. Moreover, the fuzzy regression can keep learning the 
waterbody as the dataset expands. In Scenario A, using repeatedly the same value for the 
indices of macrophytes and benthic invertebrates for four consecutive years, is a bias 
against the main BQE (i.e., phytoplankton) for lakes status classification as the regression 
frames any picture that this BQE could give. This was depicted by the fuzzy regression 
that generated tubes parallel to xx’ axis and the equations that lessened the importance of 
phytoplankton. The only exception was Lake Yliki because EQR values were based on 
macroinvertebrate and macrophyte indices, which were not available during the second 
monitoring period (2016–2019), hence affecting the OOAO and consequently the fuzzy 
regression. This bias is imposed by the WFD recommendations requiring different moni-
toring frequencies for each BQE responding to different life spans and community varia-
bility. Regarding Scenario B (using only the value when the BQEs were monitored), one 
would claim that it is biased in favor of phytoplankton, but we deemed that this approach 
allows the main BQE (i.e., phytoplankton) to express the yearly quality variation, respect-
ing the OOAO principle when other BQEs were also monitored. In any of the scenarios, 
this fuzzy method enables the experts to assess if the most often monitored BQE (i.e., phy-
toplankton) plays a crucial role in defining the OOAO values. This enables the assessment 
of the waterbody with the uncertainty expressed by the boundaries, which work as a 
safety net. Additionally, it guides the experts to check which of the other BQEs character-
ize better the qualitative status of the lake. 

As for the progress reporting of individual BQEs, according to Carvahlo et al. [11], 
this requires a larger (lakes and monitoring years) dataset to apply a statistically solid 
fuzzy regression. However, to evaluate the progress as expressed by indices is an ambi-
tious task, given the result is practically often a circumstance of the relationship among 
the nature of administrative governance, the nature of PoMs taken [57], and the minimum 
of WFD obligations (along with the expected lag from the waterbody). Thus, the frame-
work for overall ecological status classification should in fact include a form of elasticity. 
It is expected that different governance approaches for the same nature of measures could 
end in diverse results due to design and implementation progress. Tsakiris [58] high-
lighted that the first RBMPs showed a significant progress on the fulfilment of environ-
mental objectives, while the second reporting period did not support the same rate in pro-
gress [59,60]. Following the OOAO principle as safer, only 20% of the EU waterbodies 
showed improvement in their status [61] despite costly measures [62]. Instead, there was 
a call for more stringent nutrient thresholds [63,64], signifying the need for new ap-
proaches for the sustainability of WFD 20+. Moreover, Greece and especially its lake basins 
host mainly agroecosystems, where diffuse pollution cannot easily be tackled, and green 
infrastructure measures need more time to pay off in quality status terms [8,57]. This issue 
is aggravated under the Mediterranean climate prism and some specific hydromorpho-
logical characteristics (i.e., shore alterations, high water retention time). Moreover, a six-
year period for RBMP cycles renewal can be considered as adequate for reporting progress 
in ecological point of view, but such a period can hinder trends and the effectiveness of 
policy measures [56] or include the possible benefits from action plans in a management 
point of view. The next step that goes beyond the OOAO principle, and is nowadays un-
der consultation [56], is the use of new quality indicators which are focused on implemen-
tation shifts (i.e., pressure reduction, PoMs application) [56]. Novel reporting protocols 
can perhaps improve the digitalization and administrative simplification but add extra 
burden on MSs to follow the changes. It is unclear, though, if this change can positively 
impact the OOAO principle in any means. 



Water 2021, 13, 1776 16 of 19 
 

 

In this study, we suggest the development of an overall assessment that will be based 
on the precautionary OOAO principle through the fuzzy OOAO approach, which we con-
sider that it enables a better implementation of the WFD and allows for a case-specific 
evaluation, including the uncertainty in classification as an asset. We argue that such an 
approach offers a deeper system understanding through self-learning processes based on 
the existing datasets, while it also recognizes the different character of the lakes and adds 
a special gravity to the most sensitive and most frequently monitored BQE. However, we 
believe that all BQEs should be monitored, as freshwater ecosystems are highly complex 
systems [65], and an efficient management should depend on multiple components [66]. 
Additionally, all BQEs samples should be taken in a timing able to support a more proper 
application of OOAO (as it was treated in Scenario B) under the same environmental con-
ditions (i.e., meteorological, hydrological) to establish more stable stressor-response rela-
tionships. 

5. Conclusions 
1. The inclusion of a fuzzy regression among the frequently monitored BQE (phyto-

plankton) and the outcome of OOAO (determined by the comparison of four BQE 
indices) application in lakes encompasses the uncertainty and the possibility to 
broaden the acceptable final EQR based on the character and status of each lake; 

2. The fuzzy OOAO is an approach that seems to allow a better understanding of the 
WFD implementation and case-specific evaluation, including the uncertainty in clas-
sification as an asset; 

3. It offers a deeper understanding through self-learning processes based on the exist-
ing datasets; 

4. As for the progress reporting of individual BQEs, this requires a more complete da-
taset to apply a statistically solid fuzzy regression. 
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Appendix A 

Table A1. Reference values of phytoplankton, macrophytes, and littoral invertebrates indices. 

Index Metrics Lake Type GR-DNL Lake Type GR-SNL 

HeLPhy 

Total Phytoplankton Biovolume (mm3 L−1) 1.29 0.74 
Cyanobacteria Biovolume (mm3 L−1) 0.01 0.01 

modNygaard Index 1.03 1.11 
Chlorophyll a (μg L−1) 1.56 3.59 

HeLM TIHelm 7.14 7.14 
Cmax (m) 12.2 6.1 

HeLLBI 
ASPT 5.47 5.47 

Odonata (% AC) 16.67 16.67 
Simpson 0.80 0.80 
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