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Abstract: Surface spraying, horizontal trenches, and vertical wells are the most common leachate
recirculation system used at landfills in engineering practice. In order to quantify the efficiency of
the three aforementioned recirculation systems, a hydro–biochem–mechanical-coupled model was
developed in the present work, which can describe hydrodynamic and biochemical behaviors in
food-waste-rich landfills. A typical landfill cell was modeled in COMSOL. The results indicate that
leachate recirculation can accelerate the decomposition of municipal solid waste (MSW) with food-
rich waste content, relieving acidification, improving gas generation efficiency, and consequently,
increasing the early settlement in landfills.

Keywords: municipal solid waste; landfill; leachate treatment; coupled model; numerical simulation

1. Introduction

Disposing of municipal solid waste (MSW) has been a worldwide environmental
issue for decades. Landfilling is a commonly used MSW management method all around
the world [1,2]. Due to the biochemical reaction of degradable components in MSW, the
releasing of polluted leachate and landfill gas will be a long-term process that may take
years even decades [3–6]. Therefore, it is of great necessity to reduce landfill emissions so
as to avoid long-term environmental risks [7].

Conventional sanitary landfills are designed without providing any processes to in-
fluence MSW degradation. The degradation rate of MSW is slow in the closed anaerobic
environment in conventional landfills, which results in a quite long time of landfill stabiliza-
tion process [8]. To fasten the stabilization of conventional landfills, a variety of techniques
have been proposed in engineering practice. The bioreactor landfill (BL) concept has been
proposed as a means to improve the degradation environment in landfills by using leachate
recirculation (LR) [9,10]. The test-cell and full-scale studies have indicated the following
several advantages of BL: (1) the volume of leachate to be treated by biochemical meth-
ods is reduced; (2) the leachate quality is improved with nutrients and enzymes evenly
distributed; (3) landfill gas generation and settlement stabilization are accelerated [11–19].

Surface spraying, horizontal trenches, and vertical wells are the most common LR
system used at landfills in engineering practice [20]. In order to achieve optimal design
of the LR system in a bioreactor landfill, it is necessary to investigate the distribution and
transport pattern of leachate and landfill gas in landfills. Although several mathematical
models have been proposed to interpret the gas transport in landfills [21–24], these models
mainly focus on gas transport, ignoring the influences of liquid flow on landfill gas col-
lection. Khire and Haydar [25] established a 2D finite element model to investigate the
hydraulic behaviors of injected leachate in drainage blankets. Jain et al. [26] summarized
the influences of several parameters on the characteristics of the MSW and offered charts
for designing an LR system. Reddy et al. [27] developed a two-dimensional-coupled model
to characterize the hydro–bio–mechanical process of both conventional landfills and BLs.
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Feng et al. [28] employed a 3D modeling approach to evaluate the interactions between
leachate flow and landfill gas transportation.

Based on the proposed models, several computation platforms are also programmed
for engineering applications. For instance, White et al. [29] initially developed a program
with the name of landfill degradation and transport (LDAT) to synthetically consider the
behavior and interaction between the content of a landfill, including solid, liquid (leachate),
and released gas. MODUELO [30] is another software for modeling the complicated
biodegradation of a landfill.

Even though several models have been developed in the past decades, not much
attention has been paid to the bioreactor landfills with food-waste-rich content. As a matter
of fact, MSWs in developing countries (e.g., China), is featured by a large portion of food-
type waste and high initial moisture content [31]. At the early stage of stabilization, landfills
with high food waste contents are generally associated with a high leachate production
rate and initial moisture content due to the rapid hydrolysis of kitchen waste components
after disposal. The injection of leachate could increase pore pressure inside landfills, and
it may cause slope failure or high leachate levels in landfills with high kitchen waste
content [32–35].

The paper focused on the hydraulic behaviors of leachate recirculation in bioreactor
landfills with high kitchen waste content by establishing a hydro–biochem–mechanical-
coupled model (HBM-coupled model). The effects of three LR systems (surface spraying,
horizontal trenches, and vertical wells) were investigated via the HBM-coupled model.

2. Materials and Methods
2.1. Hydro–Biochem–Mechanical-Coupled Model

The governing equations of the HBM-coupled model include the leachate flow model,
the landfill gas transportation model, the skeleton compression model of MSW, and the
solute migration model. Two Richards equations were used to describe the transport
behaviors of leachate and landfill gas in landfills, respectively. According to the mass
conservation of liquid and gas for a unit volume ∆V of MSW, the models of leachate flow
and landfill gas transportation are determined as follows:

ρw
∂

∂t
(nS∆V) = ρw∇·[

kiwkrw

µw
∇·(pw + ρwgz)]∆V + fw∆V (1)

∂

∂t
[
ρgn(1− S)∆V

]
= ∇·[

kigkrg

µg
∇·(ρg pg)]∆V + fg∆V (2)

where n is the porosity of MSW; S is the saturation; ρw and ρg are the density of leachate
and landfill gas, respectively; ∇. is the partial differential operator; kiw and kig are the
intrinsic permeabilities for leachate and landfill gas, respectively; krw and krg are the
relative permeability functions for leachate and landfill gas, respectively; µw and µg are
the dynamic viscosities; pw is the pore pressure of liquid; pg is the pore pressure of landfill
gas; f w is the source term due to leachate generation with the hydrolysis of kitchen waste;
f g is the source term due to landfill gas generation during decomposition.

The relative permeabilities of leachate and landfill gas are commonly related to liquid
saturation in landfills. The unsaturated hydraulic properties of MSW can be described by
employing the van Geunchten model [36,37] as follows:

SE =
S− Sr

Ss − Sr
=
(

1 + |αs|
1

1−m
)−m

(3)

krw = SE
1/2
[
1− (1− SE

1/m)
m]2

(4)

krg = (1− SE)
1/2(1− SE

1/m)
2m

(5)
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where SE is the effective saturation; Ss is the maximum saturation of MSW; Sr is the residual
saturation; s is the suction, s = pg − pw; α and m are dimensionless constants for the van
Geunchten model.

The hydraulic models for leachate (Equation (1)) and landfill gas (Equation (2)) can be
further expressed as

− ρwn
∂S
∂s

∂pw

∂t
+ ρwn

∂S
∂s

∂pg

∂t
+ ρwS

∂n
∂t

= ρw∇·[
kiwkrw

µw
∇·(pw + ρwgz)] + fw (6)

ρgn ∂S
∂s

∂pw
∂t +

[
n(1−S)M

RT − ρgn ∂S
∂s

]
∂pg
∂t + ρg(1− S) ∂n

∂t

= ∇·[kigkrg
µg
∇·(ρg pg)] + fg

(7)

where M is the average molecular weight of mixture gas in landfills; R is the ideal gas
constant; T is temperature.

The anaerobic degradation process of MSW can be divided into two stages simplified:
the hydrolysis of cellulolytic matter (which provides most of the methane generation
potential of MSW [38]) and methanogenesis [39]. The decomposition process can be
idealized as Equation (8). In the hydrolysis stage, the cellulolytic matter is converted into
typical volatile fatty acids (VFA, such as acetic acid), hydrogen (H2), and carbon dioxide
(CO2). There is a large amount of intraparticle water in food waste, which is the primary
source of leachate in food-waste-rich landfills. λiw is the weight ratio of intraparticle water
in food waste to cellulolytic matter, which can be estimated by composition and initial
moisture content in fresh MSW [40]. The VFA generated during the hydrolysis stage is
consumed by methanogen and transformed into landfill gas (CH4 and CO2).

C6H10O5(λiwH2O) + 5H2O
Hydrolysis→ CH3COOH + 8H2 + 4CO2 + λiwH2O

Methanogenesis→ 3CH4 + 3CO2 + (4 + λiw)H2O
(8)

The source terms of leachate and landfill gas generation during the stabilization
process are determined by a two-stage anaerobic degradation model of MSW [41]. The
generation of VFA (that is acetic acid CH3COOH in Equation (8)) is determined by the
actual hydrolysis rate of cellulolytic matter in MSW. The generation rate of VFA, mVFA, can
be simplified as a constant b (b is the maximum hydrolysis rate under optimal degradation
conditions) with correction functions to reflect the influences of degradation conditions
and substrate content [39], which can be expressed as follows:

∂mVFA

∂t
= SE fih(mc) fih(c1)b (9)

fih(mc) = 1−
(

mc(t0)−mc(t)
mc(t0)

)a
(10)

fih(c1) = exp(−khc1) (11)

where mc(t0) is the initial cellulolytic matter content in a unit mass of MSW; mc(t) is the
cellulolytic matter content at time t; a and kh are the inhibition constants of the substrate
and VFA, respectively; c1 is the VFA concentration.

The consumption of VFA is linearly related to the growth of methanogen, mMB, which
can be described by the Monod equation (Equation (13)) [42]. The accumulation rate of
VFA in leachate, f c

1, is expressed with Equation (12) as follows:

f 1
c =

∂mVFA

∂t
− 1

Y
∂mMB

∂t
(12)

∂mMB

∂t
=

SEkmaxc1c2

ks + c1
exp(−kmc1) (13)
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where kmax is the optimal growth rate of methanogen; km is the inhibition constant of
methanogen content; ks is the half-saturation constant; c2 is the concentration of methanogen;
Y is the coefficient constant of substrate yield.

Methanogen continues to grow and decay during the whole degradation stabilization
in landfills. The decay rate of methanogen is related to the size of the methanogen popula-
tion, which can be simplified as a function of methanogen concentration (Equation (15)) [37].
The accumulation of methanogen in landfills, f c

2, can be expressed with Equation (14) as
follows:

f 2
c =

∂mMB

∂t
−

∂md
MB

∂t
(14)

∂md
MB

∂t
= SEkdc2 (15)

where kd is the decay rate constant of methanogen; c2 is the methanogen concentration.
Intraparticle water release from food waste contributes to most of the leachate produc-

tion at the hydrolysis stage [3]. The liquid source term of the hydraulic model is described
as the release rate of intraparticle water. In this paper, landfill gas was considered as the
mixture of CO2 and CH4 produced by degradation. The sum of CO2 and CH4 generation
rate was the gas source term of the hydraulic model. The source terms of both liquid
and gas can be calculated according to the mass conservation in the biochemical reaction
equation (Equation (8)), the generation rate for both VFA and methanogen (Equations (9)
and (13)). The source terms of hydraulic models are listed as follows:

Leachate generation during the hydrolysis period:

fw = βl
∂mVFA

∂t
= βlSE fih(mc) fih(c1)b (16)

Landfill gas generation with methanogenesis:

fg = β2
∂mMB

∂t
=

β2SEkmaxc1c2

Y(ks + c1)
exp(−kmc1) (17)

The leachate generation and landfill gas release are related to the content of VFA and
methanogen. It is necessary to investigate the migration of contaminants with leachate flow
to estimate the hydraulic behaviors in bioreactor landfills with high kitchen waste content
accurately. The mass conservation equation for solutes (i.e., VFA and methanogen) is also
established by neglecting the effects of adsorption/desorption. The governing equation of
the solute migration model was proposed as follows:

nS ∂ci
∂t − nci

∂S
∂s

∂pw
∂t + nci

∂S
∂s

∂pg
∂t + ciS ∂n

∂t
= −∇·(civw) +∇·(Di∇ci) + f i

c
(18)

where vw is the fluid velocity of leachate; Di is diffusion coefficient matrix for both
VFA (i = 1) and methanogen (i = 2), respectively; fci is the source term of VFA (i = 1)
or methanogen (i = 2), which can be determined by Equations (12) and (14).

The compression of MSW consists of (1) primary compression due to the applied
load from subsequently landfilled waste and (2) long–term degradation compression and
mechanical creep [43,44]. The results of laboratory compression tests on MSW with high
kitchen waste content indicated that the total compression strain of landfills can be assumed
to be dependent on only the final applied load and the degree of degradation (usually
expressed as a function of elapsed time) [44]. A compression model of food-waste-rich
landfills was proposed based on the above compression mechanism. This compression
model can consider the compressibility of MSW decrease with stabilization process of
landfills, and the compression strain of landfill body can be described as follows:

εV(σ
′, t) = CC

′ log
αmσ′

σ0

[
sb∞ + (CC∞

′ − CC
′) log

αsσ′

σ0

]
{1− exp[−βs(t− tP)]} (19)
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σ′ = σT −
[
Spw + (1− S)pg

]
(20)

αm = cm1
mc(t)
mc(t0)

(21)

βm = cm2

[
mc(t0)−mc(t)

mc(t0)

]Nm

(22)

where εv(σ’,t) is the volumetric compression strain of MSW at time t with the effective
overburden stress, σ’; CC’ and CC∞’ are modified primary compression ratios for fresh
waste and degraded waste, respectively; σ’ is the effective overburden stress, which can
be calculated according to total stress σT and pore liquid/gas pressure; σ0 is preconsolida-
tion pressure; sb∞ is the sum of final volumetric strains of degradation compression and
mechanical creep under stress σ0; tp is the completion time of the primary compression;
αm and βm are the functions related to degradable component content, which are used to
describe compressibility of MSW decrease with decomposition; cm1, cm2, and Nm are the
compression rate constants.

The change of pore volume in MSW consists of (1) a decrease in the void volume,
attributable to applied loading, creep, and decomposition compression and (2) a change in
solid skeleton volume due to the solid mass loss of degradable component content. The
change of porosity of MSW can be expressed as follows:

∂n
∂t

=
∂εv(σ′, t)

∂t
+

1
ρm

∂mc(t)
∂t

(23)

where ρm is the average density of degradable component content, which is assumed as a
constant in this manuscript.

2.2. Numerical Cases of Leachate Recirculation in a Typical Kitchen-Waste-Rich Bioreactor
Landfill Cell

Surface spraying, vertical well, and horizontal trenches are the most common leachate
recirculation system used at bioreactor landfills in engineering practice. Three hypothetical
landfill cells of the same size (10 m wide and 10 m high) were established to investigate the
effects of different leachate recirculation systems in bioreactor landfills with high food waste
content. The schematic diagram of the numerical model is shown in Figure 1. MSWs in
different cases were assumed to have the same initial conditions and primary compression
due to the applied load from placed MSW has been completed. The bottom leachate
drainage systems of these models were set up so that clogging would not occur, which
means a free-draining boundary of leachate. The concentration boundaries for both VFA
and methanogen were set as the open boundary. The vertical well for leachate recirculation
in case 2 had a radius of 0.2 m and a depth of 5 m, and the size of the horizontal trench
in case 3 was 1 m × 1 m. The leachate recirculation boundaries (i.e., the top boundary of
landfill cell in case of surface spraying, the inner wall of a vertical wall, or horizontal trench
in case 2 and 3, respectively) were set to free flow for landfill gas. The daily amounts of
leachate injection were the same, that is, 150.34 kg/d, and the injection rates of leachate
for the three cases were converted according to the daily recirculation amount. The effects
of the above three leachate recirculation systems were evaluated via the HBM-coupled
model. The HBM-coupled model proposed in this paper was solved by employing the
PDE module, Darcy’s law module, and the transport of diluted species in the porous
media module of COMSOL Multiphysics 5.3. The parameter values of the HBM-coupled
model are listed in Table 1. The initial contents of MSW components were set up based
on typical components of fresh waste in China [40,45]. The biochemical kinetic parameter
values were used according to the research of Meima et al. [46] and Chen et al. [47]. The
hydraulic parameter values were determined according to the laboratory test results of
MSW with high food waste content [28,48]. Mechanics parameters were recommended
values based on a series of compression tests of kitchen-waste-rich MSW [44,49–51], and
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part of mechanics parameters (such as cm1, cm2, and Nm) were obtained by fitting from test
results of Chen et al. [44].
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Figure 1. Hypothetical cases of bioreactor landfill cells using different leachate recirculation systems.

Table 1. Parameter values of HBM-coupled model.

Parameter Values Reference

mc (dry basis, wt/wt, %) 21.4
Chen et al. [40];

He et al. [45]
ml (dry basis, wt/wt, %) 13.9

λiw (g/m3/d) 60

b (g/m3/d)
250 (kitchen waste),

100 (other)
Meima et al. [46];
Chen et al. [47]kh (m3/g) 0.1

a 2.8
kmax (d–1) 0.1

km (m3/g) 0.06
Meima et al. [46];
Chen et al. [47]

kd (d−1) 0.01
ks (g/m3) 4

Y 0.08

ki (m2) 6 × 10−12

Feng et al. [28];
Xu et al. [48]

µ (kg/m/s) 1 × 10−3 (µw), 1.4 × 10−5

(µg)
α 0.88
m 1.6
Ss 0.95
Sr 0.2

Dl,c1 (m2/s) 1.19 × 10−9

Dl,c2 (m2/s) 1 × 10−9
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Table 1. Cont.

Parameter Values Reference

n0 0.75 Li et al. [49]

CC’ 0.205
Gao et al. [50]CC∞’ 0.074

sb∞ 0.23
Chen et al. [44]βs (d−1) 0.2

σ0 (kPa) 13

ρd (kN/m3) 34 Liu et al. [51]

cm1 1.3
-cm2 2.1

Nm 1.75

3. Results and Discussion
3.1. Acceleration of Landfill Stabilization Process

Cellulolytic matter in degradable components provides most of the landfill gas gen-
eration potential of MSW [38]. The ratio of cellulose to lignin content (C/L) in MSW is
commonly used as an evaluation index of landfill stabilization [52]. The C/L decreases
gradually with the hydrolysis of cellulolytic matter. As shown in Figure 2, the C/L of MSW
close to the leachate recirculation system decreases significantly at 1000 d after the start of
leachate injection. For case 1, surface spraying makes a relatively uniform decrease in the
degradation degree of shallow MSW in the landfill cell. On the other hand, the accelerated
degradation areas in landfill are mainly located near the inner walls of the vertical well or
the horizontal trench for the case 2 and 3, respectively. The effects of applying different
leachate recirculation systems on the acceleration of the stabilization process of MSW in
a deep layer of the landfill are close. The variation of average C/L of MSW below the
leachate recirculation system (see in Figure 3) indicates that leachate recirculation has
a more pronounced accelerating effect on MSW degradation in the first 500 days, with
average C/L decreasing from an initial 3.50 to 2.90 (case 1), 2.83 (case 2) and 2.78 (case 3),
respectively. Vertical well makes the injected leachate contact with MSW of different depths
in the landfill cell, and the acceleration effect on the stabilization process of landfill is better
than other leachate recirculation systems at the early stage.

3.2. Moisture Distribution in Landfill Cell and Removal of VFA in Leachate

Leachate injection can increase moisture content in landfills directly. At the same
time, the accelerated hydrolysis of MSW caused by leachate recirculation will release more
intraparticle water in the cellulolytic matter of MSW, which will result in a further increase
of moisture content. As shown in Figure 4, the maximum saturation in landfills increases
from the initial 45% to 57% (case 1), 59% (case 2), and 62% (case 3), respectively. This
manuscript assumed that the daily total amount of leachate injected by using different
recirculation systems is the same. The horizontal trench (case 3) has the largest injection
rate of leachate because the area for injection in the horizontal trench is the smallest among
these three cases; therefore, the increase of saturation in case 3 is the most significant.
The injection of treated leachate provides a large amount of methanogen to landfills, which
can consume the VFA in fresh leachate generated by fast hydrolysis of kitchen waste
effectively. The peak concentration of VFA in leachate is lower than 2 g/L, and case 2 has
the lowest concentration of VFA (Figure 5). The removal of VFA in leachate means no
remarkable acid inhibition of MSW degradation will occur in the bioreactor landfills with
high kitchen waste content, as evidenced by the experimental results of Zhan et al. [3].
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VFA concentration calculation results were compared with the results of a pilot-scale
test [53] and laboratory-scale test [54], respectively. It can be seen from Figure 6 that the
peak value and variation pattern of VFA concentration calculated by the HBM-coupled
model are close to the experimental results. Due to the different conditions of leachate
recirculation, the peak concentration of VFA in the simulation results is different from
the measured data of Huang et al. Affected by the size of the laboratory test sample, the
recirculated leachate reached the bottom of the sample earlier in Xu’s test; thus, the VFA
concentration for the laboratory test increased faster in the early stage of recirculation.
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3.3. Landfill Gas Generation

A large amount of methanogen is introduced into landfills by injection of treated
leachate, which accelerates the methanogenesis reaction in the stabilization process of
landfills significantly. Pore gas pressure in landfills increases with the rapid generation of
landfill gas within 100 d (Figure 7). Taking the variation in pore pressure at a depth of 8 m in
landfills (below the leachate recirculation systems, points A1,2,3 in Figure 1) as an example,
it is observed that case 2 has the highest pore gas pressure at the first 50 d. The increase
of pore gas pressure slows down after 100 d, which means the landfill gas generation has
entered a stable stage for all three cases. The leachate injected or generated by hydrolysis
reaction will flow to the drainage system at bottom of landfills, high saturation will impede
the transport of landfill gas, which results in a significant increase of pore gas pressure in
landfills. The pore gas pressure at the bottom of landfills exceeds 30 kPa in all three cases at
600 d (see Figure 8). The vertical well can provide a drainage channel for the MSW inside
the landfill; however, landfill gas has to transport a longer distance to dissipate the pore
gas pressure in cases 1 and 3. Therefore, the bioreactor landfill using a vertical well has
the lowest pore gas pressure after 100 d. It is recommended to collect landfill gas by active
air extraction during leachate recirculation to avoid the adverse effects of high pore gas
pressure on the slope stability of landfills [34].
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A large-scale bioreactor experiment by using high food waste content MSW was
carried out by Zhan et al. [3,54]. The leachate drawdown and recirculation started on
346 d and pore gas pressure was measured during leachate recirculation. It can be seen in
Figure 9 that pore gas pressure increases rapidly with leachate refilling, and the calculation
results of pore gas pressure are close to the measured maximum pore gas pressure. The
pore gas pressure is dissipated due to leachate drawdown in the experiment, which is
different from the three cases. The continuous recirculation of leachate leads to a slow rise
in pore gas pressure in a later stage.
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3.4. Settlement of Landfill Cells

Figure 10 indicates the settlement process of top surfaces of landfills (points B1,2,3
in Figure 1). The fast hydrolysis of degradable components leads to a mass loss of MSW
solid skeleton, which changes the mechanical properties of MSW significantly. An obvious
degradation settlement occurs in landfills due to leachate recirculation. The settlement
rates are fast in the initial 500 d for all three cases and gradually decreased after 500 d.
The degradation compression is completed nearly 1000 d, and the maximum long-term
settlement of three cases is close, which is about 1.26 m. Case 2 has the fastest settlement rate
among the three cases; it takes about 304 d for case 2 to complete 1 m of settlement, which
means the compression strain in the landfill is 10%. However, it needs 478 d and 396 d to
reach the same compression in cases 1 and 3, respectively. The calculation results of long-
term compression strain are in good agreement with the laboratory tests of Xu et al. [54]
(Figure 11). It is worth noting that the difference in the degradation degree of MSW will
lead to differential settlements in landfills, as shown in Figure 12. For case 2, the maximum
differential settlement is 0.23 m at 350 d, which is 21.7% of the compression at point B2,
while the maximum differential settlement of case 3 is 0.23 m at the same time, which
is 22.8% of the compression at point B3. The obvious differential settlement caused by
leachate recirculation in short term may lead to a failure of landfill infrastructures, such as
cover systems, leachate collection and drainage systems, and landfill gas collection systems.
Reinforcement measures are recommended to keep the integrity of landfill infrastructures
from a potential differential settlement.
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4. Conclusions

In this paper, a hydro–biochem–mechanical-coupled model was used for modeling
leachate recirculation in bioreactor landfills with food-waste-rich content. Three LR systems,
including the surface spraying system, the horizontal trenches, and the vertical well system
were studied to compare their effects on the stabilization of a BL. The main conclusions are
summarized as follows:
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(1) The coupled model proposed in this study can well consider the hydraulic behav-
iors of LR in a BL by considering the fast hydrolysis of kitchen waste and leachate
generation due to intraparticle water release at the early stage of the stabilization
process. This model enables the investigation of the distribution of leachate and gas in
a landfill, providing useful information for the design of the LR system in bioreactor
landfills.

(2) Recirculation of leachate has significant effects on accelerating the decomposition
of MSW with high kitchen waste content, which can also remove VFA in leachate,
promote landfill gas generation, and increase the early settlement in landfills. How-
ever, leachate recirculation may lead to a significant increase in pore gas pressure and
obvious differential settlement in landfills. Active air extraction and reinforcement of
landfill infrastructures are recommended to avoid the adverse effects of LR.

(3) When the daily amount of leachate injection is certain, the vertical well can mitigate
the rapid accumulation of pore gas pressure in the landfill during the stable period
of landfill gas generation but has the fastest settlement rate, compared to the surface
spraying and horizontal trench. The closer MSW is to the LR system, the more obvious
the effect will be of the leachate injection.
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