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Abstract: Safe water is becoming a scarce resource, due to the combined effects of increased 

population, pollution, and climate changes. Water quality monitoring is thus paramount, especially 

for domestic water. Traditionally used laboratory-based testing approaches are manual, costly, time 

consuming, and lack real-time feedback. Recently developed systems utilizing wireless sensor 

network (WSN) technology have reported weaknesses in energy management, data security, and 

communication coverage. Due to the recent advances in Internet-of-Things (IoT) that can be applied 

in the development of more efficient, secure, and cheaper systems with real-time capabilities, we 

present here a survey aimed at summarizing the current state of the art regarding IoT based smart 

water quality monitoring systems (IoT-WQMS) especially dedicated for domestic applications. In 

brief, this study probes into common water-quality monitoring (WQM) parameters, their safe-limits 

for drinking water, related smart sensors, critical review, and ratification of contemporary IoT-

WQMS via a proposed empirical metric, analysis, and discussion and, finally, design 

recommendations for an efficient system. No doubt, this study will benefit the developing field of 

smart homes, offices, and cities. 

Keywords: Internet-of-Things; water quality; smart water tank; smart city; smart home; smart 

offices; smart embedded systems 

 

1. Introduction 

Water is essential for life on earth. Yet, numerous countries are facing shortages of 

freshwater [1–3]. This alarming issue strongly motivated them to utilize other available 

resources instead. For example, Gulf countries are acquiring freshwater from the sea 

through a tedious desalination process [4,5]. Increased costal industrialization and 

resulting water pollution, however, is making this process even more challenging. Other 

countries are processing rainwater to obtain freshwater [6]. However, lately climate 

change is affecting rainfalls, which is putting into jeopardy this option [7–9]. 

Countries where freshwater is more accessible are unfortunately not safe from water 

related issues [10–12]. Water pollution has been reported for years as a growing concern 

[13]. For example, the America Clean Water Foundation established the water monitoring 

day (called the EarthEcho Water Challenge) in 2003 [13,14]. Its main agenda is to spread 

public awareness regarding water pollution. Both the United States Environmental 

Protection Agency (USEPA) and World Health Organization (WHO) are constantly 

providing updates and recommendations on how to cope with the newly detected water 

contaminants and diseases [15–18]. 

On the top of pollution and studies pointing out to global-warming’s impact on water 

resources [19–21], the World Water Council (WWC) is predicting a global population 

Citation: Jan, F.; Min-Allah, N.; 

Düştegör, D. IoT Based Smart Water 

Quality Monitoring: Recent 

Techniques, Trends and Challenges 

for Domestic Applications.  

Water 2021, 13, 1729. 

https://doi.org/10.3390/w13131729 

Academic Editor: Talis Juhna 

Received: 22 May 2021 

Accepted: 9 June 2021 

Published: 22 June 2021 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2021 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 



Water 2021, 13, 1729 2 of 38 
 

increase by 40% to 50% over the next 50 years [22]. This significant growth, in conjunction 

with urbanization and industrialization, may greatly increase the overall water demand. All 

aforementioned pointers are indicating a potential global water crisis coming. 

In the eve of such a water crisis, freshwater is commonly turning into an industrial 

product. Under the municipality control in urban areas, it is often stored in 

overhead/underground tanks, sometimes for extended period prior to consumption [23]. 

Continuous monitoring of water quality is thus necessary, to classify water for its suitable 

application and prevent waste. For example, water that is not good for drinking can be 

used for cleaning purposes. 

Recently, motivated by the progress in Internet-of-Things (IoT), several IoT-based 

solutions have been devised to water monitoring [19–21,24]. Most commercial systems 

(e.g., Hach guardian blue, Canary, optiEDS, Libelium Inc., Biz4Intellia, and Bluebox) have 

reported enhanced efficiency as opposed to previous systems centered around older 

technologies [19,25]. However, these systems are either very costly or their architectures 

are closed for public usage [19,26,27]. Therefore, the usage of such commercial systems 

has been limited to developed countries only. This act led to a plethora of studies to devise 

cheap and reliable IoT-based smart solution to water monitoring, aiming to benefit from 

the communication infrastructure already existing for smart applications [28,29]. 

As an open research area of concern, several related review/survey articles have been 

published to highlight progress in the sensor and wireless communication technology, 

cloud services, and computing devices among others. In [30], authors present an excellent 

review on WSN technology for leak detection, but the article offers no contents on water 

quality monitoring. While Pule et al. [31] focus their survey on environmental monitoring 

with emphasis on water, they mainly cover WSN technology missing new IoT based smart 

systems. Similarly, Ahmed et al. [19] centered their review paper around water quality 

monitoring, covering all technologies including WSN, but new IoT based systems. Geetha 

and Gouthami [32] in their review paper also included the real-time dimension of smart 

water quality monitoring systems but kept a rather generic scope while covering IoT based 

techniques. Damor and Sharma [24] in their review paper made a first attempt to cover IoT 

based systems, but a critical analysis, and comparison of methods is missing. In their study, 

Banna et al. [21] provide a survey of existing and emerging sensors technologies for water 

monitoring. However, it also has given very less attention to IoT based systems. Adu-manu 

et al. [20] published an exclusive review on water quality monitoring using WSN 

technology. This is a great resource of knowledge, but unfortunately only covers up to 

WSN-based water monitoring systems and needs to be extended to include the new IoT 

applications in the same field. In [25], the Public Utilities Board Singapore provides a success 

story of the application of commercial smart-water monitoring technologies for managing 

water distribution network. However, as we mentioned earlier, these commercial systems 

are generally expensive and can hardly be widely adopted. Finally, Pujar et al. [33] and Li 

et al. [34] address in their recent respective review papers smart water systems, but they fail 

to focus on the quality aspects of the water. 

As highlighted above, available reviews that are focusing on new IoT technologies 

fail to focus on water quality, and reviews centered around water quality monitoring 

systems are weak in reporting about IoT technologies and consequent smart systems. 

Additionally, to the best of authors’ knowledge, no contemporary review is dedicated to 

domestic water applications, although maintaining the quality of drinking water above a 

minimum threshold is vital [15,17,35,36]. 

Aiming to fill the research gap, this study offers an in-depth literature review on IoT-

WQMS for domestic water. Thus, major contributions of this study are: 

 Definition of a new evaluation-rubric considering standard requirements for drinking 

water; 

 Systematic comparison of contemporary IoT-WQMS, highlighting weaknesses and 

strengths;  

 Recommendations to design an efficient IoT-WQMS for drinking water. 
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The rest of this article is structured as follows: Section 2 offers background 

knowledge to better understand the freshwater crisis. It also reminds important water 

quality index (WQI), and WHO safe limits for drinking water. Section 3 details water 

quality monitoring techniques, highlighting the evolution of water monitoring methods 

from traditional to smart water monitoring, including the related IoT technology and 

common WQM sensors. Section 4 offers a critical review of contemporary IoT-WQMS for 

domestic water. All systems have been evaluated via a newly developed empirical rubric, 

which is mainly based on the WHO standard-parameters of drinking water. Section 5 

provides detailed discussion and analysis, with pros and cons of contemporary IoT-

WQMS. Moreover, it offers a set of useful recommendations to design an efficient IoT-

WQMS. Finally, Section 6 concludes this study. Table 1 shows the acronyms used in this 

article. 

Table 1. Acronyms used in the article. 

Acronym Description Acronym Description 

AWQI Acceptability Water Quality Index PCB Printed circuit boards 

BRB belief rule-based  PPM Parts per million 

C-Cl chloramines PR Pressure 

Cl Chloride PVC Polyvinyl chloride 

Cl2 
amount of residual chlorine present in water as 

dissolved gas 
RC Residual chlorine  

CO2 Carbon Dioxide SLM Sensors layer module 

CSM Cloud services module  SLM-CM Communication-module 

DO dissolved oxygen  SLM-DM Digital-module 

DWQI Drinking water quality index  SLM-SM Sensors-module 

EC Electrical conductivity  SoC System-on-Chip 

FC Fecal coliform  SPI Serial peripheral interface  

F-Cl Free chlorine  T Temperature 

FR Flow rate  TC Total coliform 

GWM Gateway module t-Cl Total Chlorine 

HOCl Concentration of free chlorine TDS Total dissolved solids 

HWQI Health water quality index  TH Total hardness 

IoT Internet of Things TSS Total suspended solids  

IoT-

WQMS 
IoT based smart water quality monitoring systems Turb Turbulence 

LDR Light dependent resistor UIM User interface module  

LoS Line-of-site  USEPA 
United States Environmental Protection 

Agency  

LPG Liquified Petroleum Gas  VDA Vector distance algorithm  

ML Machine learning WHO World Health Organization  

mV milli-volt  WQI Water Quality Index 

NTU Nephelometric Turbidity Unit  WQMS Water Quality Monitoring System 

Ocl Hypochlorite ion  WSN Wireless Sensor Network 

ORP Oxidation reduction potential WWC World Water Council  

2. Background 

This section provides details about the prominent water concerns (e.g., pollution), 

water quality, water quality index, safe limits for drinking water, and WQM sensors. 
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2.1. Water Background and Existing Conerns 

There is a visual misconception that most of earth is made of water (Figure 1). While 

71% of earth surface is covered with water, this ratio is smaller as compared with its total 

volume [37,38]. Around 97% of total earth water is available in oceans, which is not 

directly useful for agriculture, humans, and plants due to heavy salt content [16]. Only 

the remaining 3% of total earth water exists in the form of freshwater [39]. Unfortunately, 

around 69% of it is also trapped in polar-icecaps and glaciers. In addition, approximately 

30% of it is groundwater. Consequently, around 1% of freshwater is available for humans 

[37,38]. In addition to its scarcity, freshwater is today under paramount stress due to many 

challenges such as [40]: 

1. High consumption in urban areas; 

2. Heavy consumption in industrial applications; 

3. Used largely in agricultural activities; 

4. Affected by climatic changes due to global-warming phenomenon. 

Combined with the uneven distribution of water around the world, a large human 

population does not have access to safe water. Therefore, thousands of humans die and 

get affected every year due water-borne diseases such as malaria, cholera, polio, dengue, 

and typhoid, etc. [41]. 

 

Figure 1. The blue marble, courtesy of Nasa [42]. 

2.1.1. Seawater Desalination 

Due to heavy salt contents, direct drinking of seawater may cause dehydration in 

humans, and it may thus become fatal if consumed for longer periods. In many water-

scarce countries, freshwater is running short due to drastic urbanization and 

industrialization growth. However, to overcome this issue, such countries are now 

acquiring freshwater from seawater through a desalination process, e.g., reverse osmosis 

[4]. This process basically removes the dissolved salt contents and other minerals from 

seawater if any. For potable water, minerals are added to get water quality according to 

WHO/USEPA standards. Water desalination is a costly process, which needs considerable 

energy, manpower, and funds. 

2.1.2. Groundwater Depletion 

Groundwater exists beneath earth’s surface, which is stored in and moves gradually 

through the geologic formations (called aquifers) of the sand, soil, gravel, and rocks 

[43,44]. Water can easily flow through spaces existing in such objects. However, the speed 
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at which water flows from one point to another greatly relies on size of spaces and how 

well they are linked together. 

The literature reveals groundwater exists everywhere around our globe, but its 

resources are distributed unevenly by nature [37,40]. Is the water table under the earth 

surface shallow or deep? May its level rise or fall? Answering these questions generally 

relies on many factors. For example, melting of snow/glaciers and heavy rainfalls 

generally causes the level of the water table to rise. On other hand, its level may fall due 

to over water pumping. The term water table means the depth by which voids and 

fractures in rocks or soil-pore spaces get fully saturated with water (Table 2) [43,44]. 

Table 2. WQI parameters correlation-matrix. 

 TC FC TDS TSS TS TH DO EC Cl T Turb pH ORP T-Cl F-Cl C-Cl 

TC  1               

FC                 

TDS                 

TSS                 

TS                 

TH                 

DO                 

EC                 

Cl                 

T                 

Turb                 

pH                 

ORP                 

T-Cl                 

F-Cl                 

C-Cl                 
1 The symbol  indicates correlation between two parameters. 

Though the water table gets recharged through rains and melting snow, glaciers, and 

icecaps, it also discharges naturally from the earth’s surface at seeps and springs. In 

addition, water from water table is also withdrawn for the municipal, agriculture, and 

industrial usage through pumps, bores, and tube-wells. Notably, the level of water table 

is decreasing significantly in many countries such as India, Pakistan, Oman, and Saudi 

Arabia [40,43,45,46]. This issue occurs when water is withdrawn from water table at a rate 

higher than its recharging via precipitation. This act also results in land subsidence, higher 

pumping cost, water quality degradation, dry wells, and water reduction in lakes and 

streams as well. Notably, this issue could be mitigated to some extent if public awareness 

about water crisis is developed. For example, we can save water if we consume less water 

while taking bath, wash a full machine load of clothes, do not pollute water sources, turn 

off water taps properly, use a low flush toilet, time watering plants in gardens, use 

automatic sprinklers to water gardens, utilize rainwater (e.g., watering gardens), report 

water control agency if any damage to water supply is noticed, utilize wastewater after 

treatment, and timely repair of any water leakage. 

2.1.3. Water Pollution 

The liquid water is highly vulnerable to contamination because it can dissolve more 

substances than any other available liquid can [36]. Water pollution occurs when any 

harmful matter (e.g., chemical and microorganisms) contaminates a water body (e.g., 

pond, river). In fact, it deteriorates water quality and makes it toxic [36]. 

 Groundwater Pollution: It happens when contaminants (e.g., pesticides, fertilizers, 

and industrial waste) enters an aquifer. An aquifer is typically made up of sand 
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stones, gravel, or fractured rock [40]. This act makes the concerned aquifer unsafe for 

human usage. Notably, the removal of such contaminants from groundwater can be 

very costly and even more difficult, if not impossible. It is observed a polluted aquifer 

may stay unusable for a relatively long period, probably for thousands of years [40]. 

Groundwater can spread contamination farther from original polluting point. It 

happens because it can seep into oceans, lakes, and streams [16,43,44]. 

 Surface Water Pollution: The USEPA, in a recent survey, reported almost half of 

rivers and streams, and more than one-third of lakes, in the United States (US) are 

not suitable for drinking, fishing, or even swimming [16]. It is observed that nutrient 

pollution (e.g., nitrates and phosphates) is a major contaminant amongst well-known 

sources. No doubt, all animals and plants generally need such nutrients to grow 

properly, but its excessive usage in agricultural activities can pollute water resources. 

In addition, surface water is also polluted by waste discharge from industries as well 

as municipal and individual dumps [16]. 

Moreover, water can also be contaminated by natural pollution. For example, it is 

contaminated with the minerals (e.g., manganese, calcium, iron, and arsenic) when it 

passes through the rocks. The major sources of natural pollution include animal waste, 

volcanoes, silt from the storms, floods, and algae blooms. Collectively, pollution from all 

sources can result in water contaminants such as pesticides, nutrients, suspended matter, 

organics, bacteria/virus, heavy metals, turbidity, synthetic chemicals, thermal pollution, 

petroleum hydrocarbons, and anti-fouling chemicals [32,36]. These pollutants may result 

in nutrient enrichment and eutrophication, increasing stress to the aquatic life, a decrease 

in the oxygen level and light availability to aquatic life, and alteration of habitats. 

2.2. Water Quality 

Contaminated water is harmful to humans and can degrade plants and aquatic life 

[16,32,36]. It may carry microorganisms such as bacteria, virus, and pathogens. According 

to the WHO [21,41] millions of people die every year due to water borne diseases. 

Literature indicates more pathogenic microorganisms may emerge and spread via water 

in the coming future [16]. It may happen because of high population growth, agricultural 

magnification, climate changes, and increased migration. Another reason as to why these 

microorganisms may emerge is their ability to develop resistance against disinfectants. 

Water obtained from different sources is not mandatory to be pure and free from 

contagious microbes. For example, freshwater acquired from some sources (e.g., 

groundwater) may generally be fit for domestic applications. However, it could not be 

true for other sources such as water acquired from ponds, lakes, rivers, or rains. Due to 

this reason, it is necessary to monitor water quality continuously so that the spread of any 

damage to consumers could be prevented timely [19,32,47,48]. In general, water quality is 

defined as: “The water suitability for a particular application (e.g., drinking), which is 

based on its physical, chemical and biological characteristics” [20,31,32]. 

 Monitoring water quality: Is water flowing out from the kitchen-tap good or bad for 

drinking? Addressing this query needs specialized scientific measurements to be 

performed on samples of target water to predict its suitability. In general, water quality 

is monitored by extracting a set of basic characteristic parameters (e.g., dissolved 

oxygen, turbidity, and salinity) from a sample and comparing them with USEPA/WHO 

recommended standards [20,31,32]. Finally, water quality acceptance is accomplished 

in accordance WHO/USEPA standards for the concerned application. 

 Online quality monitoring systems: Such systems first collect data regarding critical 

quality measuring parameters (e.g., physical, chemical, and microbial) of the target water 

using sensors. Then, these systems analyze the acquired data to detect any possible 

deviations in water-quality standards. In case an anomaly is detected, these systems may 

generate an early warning to consumers/authority. These systems can also suggest 
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remedial measures to rectify detected issues if any [20,32]. In addition, they may also 

predict future trends in water quality using the machine learning (ML) techniques. 

2.2.1. Water Quality Index (WQI) 

Many stakeholders such as WHO/USEPA are continuously working on developing 

guidelines and standards related to water quality. Though the list of water quality monitoring 

(WQM) parameters is very large [16], a limited set of significant WQM parameters is generally 

utilized to monitor water quality [19,31,35,49,50]. On the basis of such parameters, a water 

quality index generates a single number expressing the overall quality of water acquired from 

a target locality at a specific time. The main objective of WQI is to transform complicated water 

quality data into some understandable form of information. 

WQI has been controversial among researchers, which seems a bit logical because a 

single number alone may not portray the entire picture of water quality. It is because a 

large number of WQM parameters are generally ignored while computing it. In a broader 

sense, it basically offers a general idea about the overall water quality. Notably, the WHO 

generally recommends three common indices [18]: 

1. Drinking water quality index (DWQI): It involves all WHO recommended guidelines 

including microbes. 

2. Health water quality index (HWQI): It involves microbial and health related quality 

measuring parameters. 

3. Acceptability water quality index (AWQI): It involves quality measuring parameters 

needed for acceptability only. 

In brief, HWQI involves parameters that may have adverse effects on human’s health. 

It is more concerned with consumers’ perception of water quality. Its main objective is to 

assess parameters related to water taste and odor. Notably, it is a relevant index, which 

involves both AWQI and HWQI. Note, these indices only give an overall picture of water 

quality, with no guarantee whether it is bad or good against a particular application [16]. 

2.2.2. Common WQI Parameters for Domestic Water 

Communities living around globe use different sets of USEPA and WHO 

recommended WQM parameters to compute WQI of drinking water [19,32]. The 

following text highlights some WQI parameters commonly utilized by traditional 

laboratory-based methods while measuring water quality [19–21]: 

 Total coliform (TC): It includes bacteria usually present in soil, animal and human 

waste, etc. The fecal coliforms belong to class of TC, which are generally found in feces 

and guts of humans and animals. The membrane filtration, most probable number, 

multiple tube fermentation, and minimal medium ONPG methods are commonly used 

to measure TC. Its unit is the number of organisms/100 mL (milliliter). Coliform 

bacteria are usually harmless to humans, but its presence is a signal of disease-causing 

pathogens. Commonly observed symptoms include general flu-type symptoms (e.g., 

abdominal cramps, fever, and diarrhea) and gastrointestinal upset. 

 Fecal coliform (FC): It is a subgroup of total coliform. Its most common member is 

Escherichia coli (E-Coli). These are bacteria existing in waste and intestines of both 

cold- and warm-blooded humans and animals. FC are not pathogenic by themselves, 

but its presence means other pathogenic organisms may exist. The membrane 

filtration, most probable number, multiple tube fermentation, and minimal medium 

ONPG are common methods to measure FC. Its measuring unit is number of 

organisms per 100 mL. 

 Total dissolved solids (TDS): It represents remains of both organic and inorganic 

soluble solids present in water such as magnesium, calcium, sodium, potassium 

cations, etc. It is highly correlated with salinity because water becomes saline if it 

increases beyond a minimum threshold. Its major sources include pesticides, sewage 
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treatment, fertilizer, flood water, etc. The gravimetric method is generally used to 

measure it in mg/L. 

 Total suspended solids (TSS): It represents the amount of remains of both organic 

and inorganic material suspended in water. It is correlated with light absorption in 

water. An increase in TSS may result in more light absorption, which will let water 

absorbs less oxygen. This act may have adverse effects on aquatic life. The 

gravimetric scheme is generally utilized to measure it in mg/L. 

 Total solids (TS): It represents total amount of dissolved and suspended solids in 

water. In general, dissolved solids are sulfur, calcium, phosphorous, nitrate, iron, etc. 

Suspended solids may include silt and clay particles, plankton, algae, etc. It affects 

water clarity, and its excess can decrease passage of sunlight through water, which 

in turn affects photosynthesis process of aquatic plants. Due to this act, water will 

heat up and retain more heat, which may have adverse effects on aquatic life. High 

concentration of TS may make drinking water relatively indigestible, which may 

affect humans. In addition, extremely low or high TS may also affect the efficiency of 

industrial processes using such raw water and wastewater treatment plants. It is 

measured using gravimetric scheme in mg/L. Major sources of TS are municipal and 

industrial waste, fertilizers, soil erosion, and road runoff. 

 Total hardness (TH): It determines suitability of water for domestic or industrial 

applications. It is the concentration of magnesium and calcium present in water. It is 

generally measured using a titration method with an EDTA solution. Hardness is 

given in terms of equivalent quantity of calcium carbonate (CaCO3) in mg/L or parts 

per million (PPM). Hardwater for humans is not harmful, instead it may be beneficial 

because it can fulfill the dietary needs of basic minerals such as magnesium and 

calcium. The major drawback of hardwater is formation of the calcium carbonate 

when heated. Heating leaves deposits on heating elements and pipes so their 

efficiency decays. 

 Dissolved oxygen (DO): It represents oxygen solubility in water. Oxygen in water is 

generally produced during photosynthesis process or absorbed from atmosphere. It 

plays an essential role for aquatic life. Its access in drinking water is good because it 

makes its taste relatively better, but it may corrode water pipes. In addition, it is 

highly important for aquatic life. For example, when its level falls below 5 mg/L, 

aquatic life goes under stress. An electric meter or Winkler titration scheme is 

generally utilized to measure it. 

 Electrical conductivity (EC): It represents water ability to conduct electric current. 

Though it is not involved directly, but it helps in measuring water ionic contents. 

This aspect is utilized to measure alkalinity, hardness, and some solids dissolved in 

water. Specific electrical methods are utilized to measure it. 

 Chloride (Cl): It is naturally available in water and measured though titration method 

in mg/L (i.e., milligram per liter). Its excess may not damage humans, but water taste 

may become saltier if it exceeds a minimum threshold, say 250 mg/L. In addition, 

excessive Cl may be harmful for agricultural activities. It increases electrical 

conductivity of water, due to which corrosiveness increases. In metallic pipes, it 

reacts with metal ions due to which soluble salts are formed. This act also raises the 

level of metals in water. 

 Temperature (T): It affects water’s chemistry. At higher temperature, the rate of 

chemical reactions increases, e.g., more minerals from rocks surrounding water, 

especially groundwater, can dissolve at higher temperature. Due to this act, electrical 

conductivity will increase. It has great effect on aquatic life because it affects 

dissolved oxygen and rates of gasses transfer. It is often measured in Celsius. 

 Turbidity (Turb): It represents haziness or cloudiness of water, which is mainly 

caused by suspended particles invisible to our naked eyes, e.g., fine organic and 

inorganic matter, clay and silt, algae, or soluble colored organic compounds [51]. Its 

unit is the Nephelometric Turbidity Unit (NTU), which is measured using 
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Nephelometer or Turbidity meter. It plays an important role in the overall water 

quality. Higher turbidity may cause higher risks in humans to develop 

gastrointestinal diseases. Additionally, an increase in turbidity means less light for 

photosynthesis due to which aquatic life may be affected. It may increase water 

temperature because suspended particles can absorb more heat. 

 Potential of hydrogen (pH): Water with pH of 7 is considered as neutral. However, a 

value from 0 to 6 indicates acidity, while a range from 8 to 14 means alkalinity. Water 

with pH values from 6.5 to 8.5 is generally safe for human drinking [16]. It is 

measured using pH electrodes and electrometry. Acidic water is naturally corrosive 

and soft. Drinking acidic water can cause serious diseases, e.g., diarrhea, kidney 

disease, vomiting, and liver disease. In addition, it can also leach metals from fixtures 

and pipes, due to which aesthetic issues may happen, e.g., laundry staining. Drinking 

alkaline water may also cause serious diseases, e.g., gastrointestinal issues. It may 

create aesthetic issues such as coffee having a bitter taste. In addition, it may cause 

deposits in the plumbing and degrade efficiency of electric water heater, heating 

elements in industry, etc. 

 Oxidation reduction potential (ORP): It is also known as the REDOX. It is 

measurement of a substance capability to either reduce or oxidize another substance. 

In general, an ORP meter is used to measure ORP in millivolt (mV). A positive 

reading means the substance is an oxidizer (i.e., acceptor of electrons), whereas a 

negative reading means it is a reducer (i.e., donors of electrons). To kill unwanted 

pathogens and bacteria in water, generally chlorine having a high ORP is added. 

Oxidation will attract electrons from cell membranes, bacteria’s DNA, and proteins. 

In addition, oxygen also has high ORP due to which it can disinfect water. 

 Total chlorine (T-Cl): It represents the sum of free and combined chlorine. The levels 

of T-Cl need to be measured precisely. It is necessary to identify the amount of 

appropriate solutions, which need to be added to water in order to maintain the 

residual levels of free chlorine. Numerous municipalities intentionally add chlorine 

to water to help kill harmful microorganisms (e.g., viruses and bacteria) that could 

make us sick if ingested. 

 Free chlorine (F-Cl): It is also known as the free chlorine residual, chlorine residual, 

or residual chlorine. It indicates the level of water potability. It is the amount of 

residual chlorine (RC) present in water as a dissolved gas (Cl2), hypochlorite ion 

(OCl−), and/or hypochlorous acid (HOCl). A test kit capable to measure free-Cl will 

show the total amount of Cl2, OCL−, and HOCL. Its unit is mg/L. It is generally used 

to disinfect contaminated water. F-Cl in water is tested through pool test kits, digital 

colorimeters, or color-wheel test kits. Its presence in water means water is protected 

from recontamination during storage and free from most disease-causing pathogens. 

 Combined chlorine (C-Cl): It is also known as Chloramines. It represents residual 

chlorine in water, which is chemically combined with ammonia or organic amines 

generally found in polluted or natural water body. Ammonia is, sometimes, added 

deliberately to public water supply through a chloramination process. When free-Cl 

makes contact with different contaminants, it transforms into C-Cl (chloramines), 

which is less capable of disinfecting water. Chloramines may irritate the mucous 

membranes, cause red-eyes and eye-stinging, irritate respiratory systems, and reduce 

the disinfection power of free-Cl. 

As shown in Table 2, most WQI parameters have strong correlation with each other. 

For example, DO decreases with a rise in temperature and vice versa. ORP gives an 

indication of FC [48]. Similarly, higher turbidity means higher level of TSS [35]. 

2.2.3. WHO/USEPA safe Limits of Drinking Water 

WQM parameters commonly used in contemporary IoT-WQMS include EC, pH, 

Turb, ORP, Free-Cl, RC, TDS, T, DO, sodium, fluoride, manganese, magnesium hardness, 

calcium hardness, and hydrogen sulfide [20]. Table 3 shows threshold limits of these 
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parameters, which are recommended by WHO/USEPA for drinking water. For optimal 

values and corresponding effects, developers should consult detailed explanation in 

[16,17]. For safety, researchers and other stakeholders are advised to strictly adhere to 

WHO/USEPA safety guidelines of drinking water. 

Table 3. WQM parameters safe limits for drinking water. 

Parameter Comments Safe Limits Unit 

EC 
It is the ability of an aqueous solution to allow electric current. It is 

generally used to measure salinity in water. 
300~800 µS/cm

pH pH log[H ]   ; effective hydrogen-ion concentration. 6.5~8.5 pH 

Turb Solids suspended in water, which hurdle with light transmission. 1.0~5.0 NTU 

ORP 
It indicates the ability to either accept or release electrons via a chemical 

reaction.  
650~700 mV 

Free-Cl It is responsible to chlorinate microbes in water. 0.2~5.0 mg/L 

RC 
Residual chlorine is the amount of chlorine which remains in water after 

chlorination.  
2.0~3.0 mg/L 

TDS It is the amount of organic and inorganic materials. 600~1000 mg/L 

T It has high correlation with DO and pH. 10°~22° C 

DO Amount of oxygen dissolved in water. 5.0~6.0 mg/L 

Sodium A common mineral existing in the form of salt (Sodium chloride). 30~60 mg/L 

Fluoride 
When fluorine reacts with minerals in soil/rocks, then fluoride salt is 

developed.  

4 or 2  

(secondary 

standard) 

mg/L 

Manganese  This mineral exists in rocks/soil.  <0.1 mg/L 

Magnesium- 

hardness 

This is amount of the magnesium salt. It affects water taste and may leave 

deposits on heating elements, etc. 
50~100 mg/L 

Calcium- 

hardness 

It is amount of calcium salt and may degrade performance of detergents, 

etc.  
75~100 mg/L 

Hydrogen sulfide It is formed when sulfur and sulfate-reducing bacteria react in water.  0.05~0.1 mg/L 

2.3. WQM Sensors 

A sensor can detect events or changes in its environment and transfer the acquired 

information to other electronic devices such as embedded microprocessors [52]. WQM 

sensors are capable to detect chemical, physical, and biological properties of water. It is 

known WQI contains around 100 parameters related to water quality [18]. Among these 

parameters, WHO/USEPA recommends a small set of parameters to determine quality of 

drinking water [19–21,32]. This is logical because it is impossible for the commercial 

market to offer sensors against each parameter. Fortunately, most WQM parameters have 

a high correlation among themselves (Table 4) [18,19,32]. 

Table 4. WQM sensors for IoT-WQMS. 

Sensor-Model Parameters Vendor Comments 

WQ101 [53] T Global water  A Xylem brand; Fully encapsulated electronics. 

WQ401 [53] DO Global water A Xylem brand; Fully encapsulated electronics. 

WQ600 [53] ORP Global water A Xylem brand; Fully encapsulated electronics. 

WQ730 and WQ720 [53] Turb Global water  A Xylem brand; Fully encapsulated electronics. 

WQ-COND [53] EC Global water  A Xylem brand; Fully encapsulated electronics. 

WQ201 pH Sensor [53] pH Global water  A Xylem brand; Fully encapsulated electronics. 

FC80 free chlorine sensor [54] Free-Cl 
Fierce-

Electronics  
Product of Electro-Chemical Devices. 

Proteus water sensor for real-time 

detecting E.coli bacteria [55] 
E-Coli Libelium  

Multi-parameter probe. It applies fluorescence to monitor COD, BOD, TOC 

and Total coliforms (and variations there upon) in real-time. 
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Based on this logic, commonly used WQM parameters in IoT-WQMS are turbidity 

(Turb), pH, free-Cl, oxidation reduction potential, dissolved oxygen, electrical 

conductivity, temperature (T), and E-Coli. Table 4 details some recommended WQM 

sensors for these parameters, which are available in market. In addition to individual 

sensors, multiparameter sensors’ modules also exist in market [20,21]. 

3. Water Quality Monitoring Systems 

This section presents an overview of water monitoring techniques from traditional 

to WSN to smart monitoring. 

3.1. Evolution of Water Quality Monitoring Schemes 

As mentioned earlier, maintaining water quality at a recommended level is highly 

demanded for humans. In this context, humans have been devising numerous water 

quality monitoring schemes, which are highlighted in the following text. 

3.1.1. Traditional Water Quality Monitoring 

In most developing countries, water quality is still monitored using traditional 

laboratory-based methods [19,21]. It comprises following steps: 

 Manually collecting samples from water source (e.g., lake); 

 Transporting samples to concerned laboratory; 

 Performing analysis to detect contamination and microbes if any; 

 Predicting overall water quality in context with WQI. 

Though traditional schemes are still dominant in many developing countries, they 

have some limitations: (i) specialized equipment/tools/apparatus and expert personnel are 

generally required to assess water quality, (ii) results can be lost/exchanged with other 

samples’ reports due human-error, (iii) equipment may be obsolete, (iv) developing a 

state-of-the-art facility and its subsequent maintenance is costly, (v) lack of predicting 

future-trends and real-time feedback, (vi) properties of water may deviate due to samples 

transportation delays and (vii), finally, data manipulation errors (e.g., round-off errors) 

may also occur. Most importantly, longer delays in generating the water quality reports 

may be disastrous if people keep on using pathogenic water. For example, microbiological 

analysis may take 24~48 h to quantify fecal coliform bacteria [21,41]. In case of longer 

delays in getting reports, the consumption of contaminated water may result in the loss 

of humans. 

3.1.2. Enhanced Traditional Water Quality Monitoring 

With advances in sensors technology, traditional water quality measuring techniques 

were slightly improved. In such systems, expert personnel started measuring some water 

parameters on-site using portable sensors [20]. Though this act relatively improved 

traditional methods, but majority of above-mentioned issues were still intact. For 

example, such schemes were still unable to offer real-time feedback about water quality, 

spatial resolution was limited because data was still collected manually, transport delays, 

etc. [19–21]. 

3.1.3. WSN-based Water Quality Monitoring 

With further advances in portable sensors, communication and computing 

technologies, researchers approached towards using WSN technology. 

In brief, WSN-based water quality monitoring systems [19,33] work as follows: First, 

an embedded microprocessor-based gadget (also called node) reads specific water 

properties using portable sensors (e.g., pH) installed on-site. Next, it processes acquired 

data locally if required. After that, it transfers data to a main station (e.g., server computer) 

using a wireless communication media (e.g., ZigBee, Wi-Fi and LoRaWAN), where all 
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required processing and analysis are then carried out. Finally, results are updated, and 

feedback is sent to relevant consumers and/or water authorities if needed. 

3.1.4. WSN and Machine Learning (ML) Techniques Based Water Quality Monitoring 

Though WSN greatly resolved some plights of previous systems, these systems 

inherit limitations, e.g., high energy requirements, compromised security, low 

communication speed, storage issues, high installation/maintenance costs, etc. In parallel, 

researchers also involved ML techniques to assess water quality using a small number of 

WQM parameters and predict about future trends [19,25,56,57]. No doubt, this act greatly 

enhanced efficiency of the WSN systems, but most of the aforementioned issues were still 

unresolved such as cost of infrastructure, spatial resolution, etc. 

3.1.5. Smart Water Quality Monitoring 

Finally, researchers resorted towards application of IoT technology. With IoT, water 

can be monitored in real time from any location of the world using a combination of 

portable sensors, digital computing devices, communication media (e.g., TCP/IP 

protocols), and internet services [58,59]. IoT-based water quality monitoring is also known 

as smart water quality monitoring [60–67]. These systems have been deployed to monitor 

water quality for domestic applications [21,68], water used in agriculture [69–71] and 

aquaculture [72–75], municipal waste recycle [70], etc. In addition, these systems monitor 

water quality in lakes [76–80], rivers [81], etc. In contrast with previous water monitoring 

systems, IoT-WQMS aesthetically resolved many issues. The following text highlights its 

major contributions: 

 Low-cost: This technology uses existing commercially available communication 

infrastructure; therefore, the overall cost of developing an IoT-WQMS is reduced. 

 Increased spatial-resolution: Since the backbone of IoT-technology is the Internet, 

ideally there should be no spatial limitations. 

 Low computational-cost: Heavy computational load is generally transferred to cloud 

servers, e.g., Ubidots IoT-Platform [82]. Due to this act, developers can use any 

ordinary processor-based node (e.g., NodeMCU (ESP8266) kit) instead of a hi-tech 

computing device, such as Raspberry Pi 4 Model-B, DE1 SoC FPGA board, etc. [52] 

 Low energy-requirements: After shifting heavy computational load to cloud server, 

the local nodes must perform small tasks and stay mostly in sleeping mode. Due to 

this act, a small battery could easily operate Sensor’s nodes in remote areas. 

 Provision of real-time feedback: These systems can easily provide real time feedback 

to both end-users and relevant water authority via an SMS, email, Twitter, Facebook, 

etc. 

 Improved water quality: Developers can easily integrate analytical tools (e.g., ML 

techniques) in a cloud server to infer some WQM parameters based on measured 

values of WQM parameters using sensors. In addition, future water trends could also 

be predicted using ML techniques [82]. 

3.2. A Typical IoT-WQMS Model 

A typical IoT-WQMS comprises four basic modules (Figure 2): 

 Sensors layer module (SLM); 

 Gateway module (GWM); 

 Cloud services module (CSM); 

 User interface module (UIM). 
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Figure 2. High level IoT-WQMS model. 

These modules are detailed explicitly in following text. 

 SLM: It plays a critical role in the overall efficiency of an IoT-WQMS. It is because all 

other subsequent modules greatly rely on its output. Therefore, any malfunction 

(e.g., sensors biofouling) in this module may lead to inaccurate reporting of water 

quality [20]. Biofouling (called biological fouling) is unwanted accumulation of 

microorganisms (e.g., algae) on sensors’ surface being submerged in water. In 

general, a typical SLM comprises three submodules: Sensors-module (SLM-SM), 

Digital-module (SLM-DM) and Communication-module (SLM-CM). Briefly, SLM-

SM first reads data from WQM sensors (e.g., Ph). Next, SLM-DM processes data, 

updates local displays if any and transfers it to the SLM-CM that transfers data to a 

target cloud server (e.g., Ubidots IoT-Platform [82]) via a local Wi-Fi router or a 

GSM/GPRS modem. Note, many commercial kits offer SLM-SM, SLM-DM, and SLM-

CM modules built-on the same printed circuit board (e.g., Arduino Nano 33-IoT). 

Otherwise, a communication shield (e.g., ESP8266 transceiver module or DTMF 

enabled SIM900 GPRS/GSM shield) could also be plugged in another microprocessor 

based electronic kit (e.g., Arduino Uno) if desired. 

 GWM: As SLM is responsible to transfer data to a GWM, i.e., a local gateway. A 

gateway allows communication between a device-to-cloud, device-to-device, or 

network-to-network. Though it may be costly, but for an optimal performance and 

strong security, developers are encouraged to use recently developed IoT-gateways 

[83]. These gateways are capable to perform numerous critical functions, e.g., 

protocol translation, device connectivity, security, updating, management, data 

filtering and processing, etc. In case a local gateway is not available, then developers 

may also use a DTMF-enabled SIM900 GPRS/GSM shield to transfer data to cloud 

server. 

 CSM: It provides a flexible, efficient, and scalable model to deliver services and 

infrastructure required to empower IoT-enabled devices and applications [82]. In this 

concern, many cloud services have already been available in market [82], e.g., Blynk-

, Adafruit-, and Ubidots IoT-Platforms. Using these platforms, developers can easily 

store, visualize, and analyze sensors data. In addition, IoT-things (e.g., water-pump) 

could also be accessed and managed more comfortably. Cloud servers are capable to 

predict future trends in water quality and can inform end users via an alert (e.g., 

Twitter) in case any anomaly is detected. Notably, most of these cloud services are 
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not cost free, and therefore, customers must need to pay for commercial activities if 

any. 

 UIM: Almost all contemporary cloud IoT-Platforms provide an interface to end-

users. These platforms can send messages via an SMS, Facebook, Twitter, email, etc. 

In addition, these service providers also facilitate end users via their mobile apps, 

which can be installed easily on a smart phone. For example, with Arduino IoT cloud 

app [84] being installed on a smart phone, end-users can quickly connect, manage 

and control their own IoT-things (e.g., sensor) from any location of the globe. 

4. Review of IoT-WQMS for Domestic Water 

This section provides a review of contemporary work on IoT-WQMS for domestic 

water. The research methodology was as follows: First, authors downloaded a set of 140 

articles using the Google chrome search engine, individual journals’ websites, IEEE 

Xplore, and other sources. In this concern, different phrases and keywords were used for 

searching purpose, e.g., IoT-based water monitoring, IoT-based water quality monitoring 

systems, water quality review, water leakage survey, water leakage review, water quality 

survey, smart water monitoring systems, Internet-of-Things based water quality 

monitoring systems, Internet-of-Things based domestic water quality monitoring, etc. 

Next, the authors manually inspected these articles on a one-by-one basis. It was 

observed that 9 articles were developed on general reports, 11 on pipes leakage detection, 

10 on water-management (e.g., auto-reading of meters, bills generation, and water-grid 

monitoring), 5 on flood-level monitoring, 18 on water level monitoring in tanks, 15 on the 

agriculture and aquaculture, 14 on the auto-controlling water pump, 17 on water control 

in smart cities, 10 review/survey articles on water quality and leakage detection, and the 

rest were focused on quality monitoring of domestic water. 

As detailed in Introduction section, authors have had acquired a set of 10 

survey/review papers on the water monitoring, but almost all of these were not focused 

on smart monitoring of domestic water quality. Moreover, the papers being published on 

domestic water quality control were further filtered to pinpoint only those articles that 

were cited by contemporary works continuously. In this regard, some lower ranked 

conference and journal papers were excluded from this survey. Finally, authors decided 

to consider only 20 articles (3 conference papers and 17 journal articles) in this study. 

As highlighted in Section 2.2.2., WHO/USEPA suggested three types of water quality 

indices, i.e., DWQI, AWQI, and HWQI. In general, these indices contain many parameters 

related to water quality. In traditional laboratory-based methods, generally many such 

parameters are used while monitoring water quality. However, it may not be feasible for 

IoT-WQMS, because currently so many WQM sensors are not available. As highlighted in 

Table 2, many WQM parameters have high correlation among themselves. Therefore, to 

benefit from this fact, most researchers [32,35,48,68] agreed upon on using most 

prominent WQM parameters in IoT-WQMS for domestic water. These parameters are as 

follows: 

 Potential of hydrogen (pH); 

 Turbidity (Turb); 

 Temperature (T); 

 Oxidation potential reduction (OPR); 

 Electrical conductivity. 

Some relevant WQM parameters could also be inferred based on measured values of 

these five parameters using ML schemes. For example, ORP has strong correlation with 

the sanitizing power of free chlorine or any other reducing/oxidizing chemicals [85]. 

Measuring ORP is empirical, precise, and does not need any user interpretation. In 

addition, concentration of free chlorine can be inferred based on measured values of pH, 

T, and ORP [48]. Similarly, the amount of dissolved oxygen in water can be inferred from 

its correlation property with T [86]. Likewise, total suspended solids (TSS) and total 
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dissolved solids in water could be inferred form measured value of turbidity [35]. 

Similarly, EC could be utilized to infer estimate of alkalinity, hardness, and some solids 

dissolved in water. Based on WQM parameters and analytical tools (e.g., ML techniques), 

authors propose the following empirical rubric: 

� = (2�� + 2�� + 2.5�� + �� + ��) + 1.5 (1)

where � represents the overall rating of a contemporary IoT-WQMS. The symbols ��, 

��, ��, ��, ��, and � represent pH, Turb, ORP, T, EC, and ML tools, respectively. These are 

binary variables, i.e., a variable value is set to one if corresponding parameter is involved 

in IoT-WQMS or else zero. Since current literature reveals no Thump-rule to ratify 

contemporary IoT-WQMS with, therefore the authors assigned weights to variables used 

in Equation (1) empirically, which is entirely based on their importance. It seems 

expedient because all WQM parameters do not contribute equally when computing water 

quality. For example, turbidity (or TSS/TDS) and pH could be felt while looking at water 

appearance through a glass and/or drinking. We also assigned a higher weight to ORP, 

because it could not be felt when humans drink water containing pathogenic 

microorganism. Compared with T and EC, we assigned higher weight to because ML 

techniques are capable to infer other important parameters (e.g., DO, coliform bacteria, 

and salinity) based on measured values of few WQM parameters. No doubt, further 

improvement/modification in this rubric is possible, which we are planning to probe into 

in future work. The following text presents a comprehensive survey of contemporary 

work being published on IoT-WQMS for domestic water. 

Ahmed et al. [19] published their work on water monitoring. In the first part, the 

authors present a comprehensive review on traditional laboratory and WSN-based water 

quality monitoring schemes. However, its second part proposed an IoT-WQMS for 

domestic water. This system comprises four basic modules: (i) sensing, (ii) coordinator, 

(iii) data processing and analysis, and (iv) storage and core analytics. The authors claimed 

for the usage of four sensors (Figure 3), but the sensing module shows only pH, turbidity, 

and temperature, and the sensor for TSS is thus missing from diagram. In the coordinator 

module, an Arduino kit collects data from sensors and transfers it to an on-site PC via a 

ZigBee device. For both modules, authors did not provide any hardware specifications 

(e.g., model). The third module takes in data from coordinator module and stores it locally 

into MySql-database. 

Due to large data availability, data filtering and analysis were done to extract useful 

information and explore hidden trends. Finally, the fourth module preprocesses received 

data and transfers useful data to a cloud server vis REST web-services. This module 

applies various ML schemes (e.g., ANN and K-means clustering) to analyze data and 

determine a suitable application of water, e.g., drinking. They also claimed for an 

Application dashboard being developed in cloud. End users can view water quality via a 

desktop PC and/or smart phone. To summarize, its first part is much informative and has 

contribution, but the second one is just compiled at abstract level. For example, the 

proposed system has not been validated experimentally. In addition, they did not provide 

any technical details about sensors (e.g., model, range, and vendor). Due to these 

deficiencies, the second part may not be helpful to relevant community. Table 5 shows a 

summary of this approach. 
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Figure 3. IoT-WQMS proposed in [19]. 

Geetha and Gouthami [32] published their work on real-time smart water quality 

monitoring. In the first part, they offered a review of IoT-based water monitoring schemes. 

In the second part, they proposed an IoT-WQMS to monitor quality of in-pipe domestic 

water. This system is focused on monitoring pH, temperature, turbidity, and electrical 

conductivity. In addition, they also monitored water level in a water tank. For pH, they used 

a three-in-one pH meter (no technical detailed provided). For conductivity, the sensor used 

was YL-69. The models for other sensors are not specified. Notably, authors did not use any 

ML techniques to improve predictability of water quality. Decisions are purely based on 

preset threshold values of these parameter in accordance with WHO standards. 

In brief, this system functions as follows: First, the TI CC3200 Wi-Fi Launchpad reads 

sensors via its 12-bit ADC module. This card is based on a 32-bit powerful MCU (i.e., ARM 

Cortex M4 core) with a built-in Wi-Fi module. It is a suitable choice for analog signal 

conditioning, processing, logging, and transferring data to cloud. Its programming is 

done in the ENERGIA IDE. Next, it processes data and updates a local LCD. Then, it sends 

data to a local Wi-Fi router through its built-in Wi-Fi module. Finally, a local Wi-Fi router 

transfers data to Ubidots IoT-platform [87], where the authors had developed a 

dashboard. Ubidots is an excellent service, but it offers limited resources for free of cost 

and developers need to pay fee for commercial activities [82]. In Ubidots server, sensors 

data is compared with preset threshold values. If any WQM parameter has deviated from 

its nominal range, then an SMS is sent to the phone of the end-user. 

This system is validated on water samples polluted manually with salt and soil. 

Experimental results are discussed. Though using few WQM parameters without machine 

learning techniques are not enough to properly predict water quality, it is still a better 

option, because it may avoid drinking of water containing high level of dirt, acidity, 

alkalinity, salinity, etc. A main drawback of this system lies in its conductivity sensor, i.e., 

YL-69 (Figure 4). The bared metallic strips of this sensor have direct connection with water 

while measuring conductivity. It is fine for a short time, but these metals may get corroded 

if they remain submerged for longer. A similar issue also exists in Ref. [88]. 
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Figure 4. A typical YL-69 sensor, with necessary parts [32]. 

Damor and Sharma [24] published an article on IoT-based water monitoring system. 

Its first part offers a review, but the second part proposes an IoT-WQMS. Only pH and 

turbidity were considered. In addition, the authors also used an Ultrasonic senor 

(HCSR04) to monitor water level in an overhead tank and control the water pump 

automatically. Using two WQM parameters does not fulfill the minimum requirement of 

WHO/USEPA standards of drinking water [19,21]. No machine learning techniques were 

utilized to infer other WQM parameters and make the overall decision relatively better. 

Authors have used the Arduino Uno kit as a front-end interface. This card is centered 

around ATmega328 (8-bit MCU), which is relatively rich in peripherals (e.g., ADC, 

memory, digital I/O, I2C, and SPI) generally required for analog signal conditioning, 

processing, and logging. First, this gadget reads sensors via its 10-bit ADC module. Data 

is processed locally to extract useful information. Next, it serially shifts data to a 

NodeMCU. This card is based on ESP8266 SoC, which is produced by the Espressif 

Systems. ESP8266 is a low-cost Wi-Fi microchip, which has full TCP/IP stack and a 

powerful 32-bit MCU. Then, NodeMCU transfers data to the ThingSpeak IoT-Platform via 

a local Wi-Fi router. ThingSpeak service is cost free for limited resources only and 

developers have to pay if commercial activities are required [82]. In ThingSpeak, authors 

had developed a dashboard for the visual presentation of sensors data and water level in 

target tank. End users can check water quality and its level in respective tanks via the 

ThingSpeak app. 

To summarize, the authors presented this article quite poorly. They provide no 

technical specifications about sensors (e.g., model). Experimental results were not 

discussed. A main drawback of this system is the usage of Arduino Uno and NodeMCU 

together. Since NodeMCU is based on ESP8266 SoC, which has all peripherals (e.g., ADC 

unit, digital I/O, timers/counters, memory, 32-bit CPU, and Wi-Fi module), therefore it 

alone is enough for analog signal conditioning, processing, logging, and transferring data 

to cloud server. Though NodeMCU has only one ADC module, but the designers could 

use a simple digital multiplexing chip to utilize this module for many analog inputs. 

Simitha and Subodh [86] published their work on IoT/WSN-based water quality 

monitoring system for smart cities. As shown in Table 5, this system considered pH, 

turbidity, temperature, and dissolved oxygen. Instead of using a sensor to compute 

dissolved oxygen, authors utilized a table showing temperature correlation with 

dissolved oxygen. Authors utilized DS18B20 to measure water temperature. It is a 

waterproof temperature sensor with 12-bit built-in ADC module and one-wire digital 

communication interface. For pH, they used a complete module (Model: E201-C-9). This 
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kit has a BNC connector, pH probe, and the requisite circuitry for signal conditioning of 

pH. The output of such sensors is generally sensitive to changes in temperature. The kit 

automatically rectifies this issue using output of DS18B20. Technical details (e.g., model) 

are not provided for the turbidity sensor. The circuit’s simulation was done in Proteus 

IDE. Final testing and simulation of system were performed in Arduino IDE. 

Briefly, the system functions as follows: First, Arduino Uno kit reads data from 

sensors, conditions it if not already, processes data, updates a local LCD for end-users, 

and transfers data to a LoRa transmitter (i.e., SX1278 Ra-02 LoRa) via its serial peripheral 

interface (SPI). Next, the LoRa transmitter transfers data wirelessly to a LoRa receiver 

being interfaced with an ESP32 Wi-Fi kit. The LoRa module is based on LoRaWAN 

protocol, which is a low-power wide area network (LPWAN) wireless communication 

technology. Due to LoRa technology, distance between sensors and communication 

modules can be 3~8 km (for urban to rural area, respectively), which is much better than 

ZigBee, WiMAX, Wi-Fi, Bluetooth, etc. The same LoRa chip can be used as both 

transmitter and receiver. All received data parameters are updated in Serial-monitor 

console of Arduino IDE. Then, ESP32 kit access a local Wi-Fi router to transfer data to 

ThingSpeak IoT-platform for visual purposes. The ThingSpeak has communication with 

a Raspberry Pi card equipped with a local display. It seems the Raspberry Pi card and 

local display have been used for the control room, but the authors did not mention 

anything about this mystery. Users can check water quality via their smart phones. To 

summarize, overall presentation of article is fair. Its performance can be improved if ML 

techniques are also incorporated. 

Ibrahim et al. [89] published a low-cost IoT-based solution to measure turbidity of 

domestic water in tanks equipped with water filters. In this study, authors developed an 

indigenous light detection unit to measure turbidity. For experimentations, they used a 

combination of an LDR (i.e., light dependent resistor) and an LED (i.e., light emitting 

diode) fixed inside a PVC (polyvinyl chloride) pipe. They recorded turbidity readings for 

two unique positions: 180° and 90° between LDR and LED. The measured output signal 

(voltage) from designed circuit versus TSS in target water-sample was analyzed and 

graphed in two setups: (i) in total darkness and (ii) in presence of ambient light. In 

addition, the authors also performed comparative analysis for the designed sensing-unit 

submerged into still-water and water flowing in pipe. 

The complete IoT-based turbidity monitoring systems works as follows: The sensor 

is read by Arduino Intel Galileo Gen 2 board, which is based on a 32-bit MCU. Next, it 

sends data to an ESP826 Wi-Fi transceiver module plugged in a mini-PCI slot of a Galileo 

board, which transfers data to ThingSpeak IoT-Platform via a local Wi-Fi router. ESP826 

Wi-Fi transceiver has an integrated TCP/IP protocols, which is customized for Wi-Fi 

networking solutions with two general purpose digital I/O pins only. Data in the cloud is 

recorded and all visual displays are updated. If turbidity is found higher than a preset 

threshold value, then motor is turned ON to flow out water from the concerned tank to a 

connected filter unit for the rectification purpose. Water from filter unit then flows back 

into same tank and turbidity sensors are read again. If turbidity is still high, then motor is 

kept ON. Otherwise, motor is turned OFF automatically. This way, the water tank is 

cleaned automatically. 

Programing and simulations of this system were performed in Arduino IDE. Results 

are detailed explicitly. On average, this is a good notion for automatic monitoring of 

turbidity in water tanks equipped with a filter unit. However, some limitations of this 

system include its poor protection against conducting leads of LDR/LED (Figure 5) or wiring 

not protected from environmental effects, e.g., alkaline water can corrode metals when 

contacted directly. Due to this fact, efficiency of sensors may be degraded if submerged in 

water or exposed to moisture for longer. In addition, LDR/LED surface could also be 

polluted with contamination in water because light emission/acceptance capabilities of 

these components could be affected. Lastly, the turbidity sensor unit needs a stable power 

supply, otherwise any fluctuation in supply voltage may affect efficiency of this unit. 
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Figure 5. (a) Turbidity unit proposed for scenario 1 (180°); (b) Turbidity unit proposed for scenario 2 (90°) in [89]. 

Carminati et al. [90] published an IoT-based solution to monitor chemical and 

biological stability in water supply systems (Figure 6). In addition to measuring pH, 

temperature, pressure (PR), electrical conductivity, and flow rate (FR) (Table 5) the 

authors emphasized monitoring slime deposits on the inner surface of pipes. Slime 

(correlated with turbidity) can deteriorate water quality and result in the sensors 

biofouling. In this study, they developed a sensing unit made up of some conventional 

sensors and a custom designed sensor (based on impedance) to monitor the inner-surface 

fouling of pipes. In addition, it is also capable to estimate the slime thickness and find its 

corresponding origin. 

 

Figure 6. Main circuitry of the system proposed in [90]. 
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All sensors are technically detailed, along with calibration methods. Notably, authors 

explained all circuits, electronic components, communication devices, power generation 

via a turbine unit, and computing devices in explicit details. Editing and simulation of this 

system were done in Arduino IDE. In short, the whole system architecture is as follows: 

To energize entire circuitry, energy is generated from water flowing in pipe using turbine 

technology; the main components of this part are sealed lead-acid battery (6 V, 1200 mAh), 

ATmega328 (8-bit MCU), a current sensing chip (MAX4373), LCD, and a buck-boost 

Direct-current/Direct-current (DC/DC) convertor. 

Sensors are read by main board centered around ATmega2560 (8-bit MCU). For 

communication between different modules and/or units, they utilized LoRaWAN device 

(mDot by the Multitech) and GSM modem (M10 by the Quectel). Data through GSM 

modem is transferred to ThingSpeak IoT-Platform for analysis, detecting anomalies and 

generating alert messages to end-users if any fault is detected. Note, a GSM modem 

generally accepts a SIM card and functions like an ordinary cellphone for providing a data 

link to a remote network. For end-users, they use ThingSpeak app installed on a smart 

phone. The system was tested and validated in the laboratory and field. Though this 

system does not fulfil the minimum requirements of WHO standards of drinking water, 

it have other significant achievements. For example, it proposed an effective sensing unit 

to monitor slime deposits on inner surface of water supply pipes. In addition, it also 

highlighted a workable notion of utilizing a turbine to yield electrical energy. 

Manoharan et al. [35] presented a water quality-analyzer system based on IoT 

technology. In this study, they tried to monitor pH, turbidity, temperature, and electrical 

conductivity. Sensors were not technically specified, except the temperature sensor 

(DS18B20). As shown in Figure 7, except DS18B20, which is interfaced with Arduino Uno, 

all other sensors are accompanied by their own signal conditioning kits. Programming 

was done in C-language, probably in Arduino IDE. The overall system functions as 

follows: First, Arduino Uno reads data from sensors, processes it, and updates results on 

a local LCD for users. Next, it transfers data to ESP8266 Wi-Fi transceiver through its serial 

communication interface. After that, ESP8266 transfers data to ThingSpeak IoT-Platform 

through a local Wi-Fi hotspot. In a cloud server, data is stored and graphs are updated. 

In case any anomaly is detected, it sends an alert to the relevant authority. This system 

has been validated on water samples collected from rivers, lakes, and ponds. This article is 

also presented at an abstract level and no in-depth details are provided about the experimental 

setup. In addition, no machine learning algorithms are deployed to enhance system efficiency. 

A major limitation of this system lies in its electrical conductivity sensor whose metal layers 

(Figure 4) are not protected against corrosion due to contaminated water. 

 

Figure 7. Image of system proposed in [35]. 
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Chowdury et al. [57] presented an IoT-based solution to monitor water quality. This 

study was intended to continuously monitor the quality of river water using a hybrid of 

WSN and IoT technology, with low-power consumption and minimum expenditures. 

They considered pH, turbidity, temperature, and oxidation reduction potential in 

experimentation. Except the temperature sensor (DS18B20), other sensors are not specified 

technically. In addition, authors did not specify IDE being used for coding, testing, and 

simulation. Big data analytics techniques were utilized to improve predictably of water 

quality and reveal future trends. Though this article is composed poorly, its main flow 

can be inferred from its diagrams, text and/or images. 

The system is comprised of multiple nodes being installed at different locations 

alongside a river. For each node, Arduino Mega2560 reads sensors data, processes it, and 

updates a local LCD. Next, data is serially shifted to ESP8266 Wi-Fi module. This module 

transfers it to a remote PC through a local Wi-Fi router. In the remote PC, collected data is 

displayed in a visual format using the spark streaming-analysis through Spark MLlib, belief 

rule-based (BRB) system and deep learning neural-network models. In addition, data is also 

compared with recommended WHO standards. If any anomaly is detected, then an SMS 

alert is forwarded to the concerned authority. To summarize, this article has attempted to 

utilize artificial intelligence (AI) to enhance system decision about water quality. However, 

this article may not be of good use to readers due to its poor presentation. 

Rao et al. [91] presented an IoT-based solution to monitor water level and quality in 

overhead tanks. Its main aim was to automatically refill tanks in remote areas and 

continuously check water quality. If water is dirty, then corresponding authority should 

be informed via a smart phone to clean tanks; location information is accessed via Google 

Maps. For measuring water quality, authors considered only pH and turbidity. Water 

level in tank is monitored through HC-SR04. The turbidity and pH sensors models are not 

specified, but their technical specifications are tabulated properly. 

In brief, this system works as follows: First, a Raspberry Pi kit reads data from 

sensors. As stated before, Raspberry Pi kits are powerful minicomputers enriched in 

peripherals (e.g., ADC/DAC, memory, I/O ports, Wi-Fi, and timers/counters). Next, it 

processes sensors data and transfers it to a local Wi-Fi router for uploading to ThingSpeak 

IoT-Platform. In the cloud, data is recorded, graphs are updated, and water level and 

quality are checked according to preset threshold values. If water level is found above or 

below a specific threshold, then an alert is sent to clients who can control motor switching 

status through their smart phone. In addition, if turbidity is found above a preset 

threshold, then it means the water in tank got dirty because of mud, dry leaves, etc. To 

clean the tank, the concerned authority is also sent tank’s location via Google Maps. This 

article is not well documented, e.g., missing of technical data, language, and IDE not 

specified. On average, this system can be used safely for tank cleaning purpose only, but 

for water quality two parameters are not considered enough according to WHO standards 

for drinking water. 

Imran et al. [92] presented an IoT-based solution to monitor water level and quality 

in overhead tanks, in particular for offices and homes. In this study, authors monitored 

pH of water only, which is not enough to predict overall water quality. In addition, they 

also tried to monitor water level in tank and leakage of Liquified Petroleum Gas (LPG), if 

any. Authors did not provide any technical specifications about the sensors, except the 

LPG sensor (Model: MQ-6). In addition, authors did not detail their experimental setup. 

This system functions as follows: First, an electronic kit centered on an 8-bit MCU 

(PIC16F877 developed by the Microchip Inc.) reads data from sensors. After processing 

data and updating a local LCD, it utilizes its accompanying SIM900 GPRS modem to 

transfer data to a cloud server. End-users can use smart phones to monitor their water 

tanks. The overall paper presentation is poor. For example, in the abstract, the authors 

also claim for monitoring turbidity and dissolved oxygen, but in the results and diagram, 

only pH and MQ-6 are shown. Due to smaller number of WQM parameters, this system 

does not fulfil the minimum WHO standards (Table 5). 
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Gowthamy et al. [64] presented a low cost IoT-based solution to monitor quality, 

level, and quantity of water in overhead tanks. Only pH and turbidity were considered to 

monitor water quality. In addition, they also used a combination of ultrasonic sensor and 

a flow sensor to control water level and quantity in tanks, respectively. Technical 

specifications of sensors are not provided. The entire system is based on an Arduino Uno 

and ESP8266 Wi-Fi transceiver. Programming, testing, and simulation of this system were 

performed in Arduino IDE. No machine learning methods were utilized for better 

decision making. In short, this system works as follows: The Arduino Uno reads sensors, 

does some local processing, and shifts data to a cloud sever (not specified) via ESP8266 

and a local Wi-Fi router. The cloud server is used to store data, visualize sensors data, and 

send an alert to end users via a smart phone in case any anomaly is detected. To 

summarize, this system is not well mature and should be consulted if auto-filling of tank 

and/or cleaning is desired only. For measuring drinking water quality, it is not suitable. 

Priya et al. [68] published a real-time system to monitor water quality and detect 

contaminations in water distribution system, which is used to supply water from a main 

tank to consumers. In this concern, authors considered pH, turbidity, temperature, 

oxidation reduction potential, and electrical conductivity. Sensors’ specifications are 

detailed thoroughly, but not models. The main architecture of this system (Figure 8) has 

three major parts: (i) water quality monitoring unit, (ii) central processing unit, and (iii) 

notification unit for administration office. 

 

(a) 

 
 

(b) (c) 

Figure 8. Architecture of the system proposed in [68]. (a) Water quality monitoring unit. (b) Central processing unit. (c) 

Notification unit for administration office. 

In brief, this system functions as follows: Water from the main tank is controlled via 

an automatic solenoid valve, which is supervised by a cloud server. Once the valve is 



Water 2021, 13, 1729 23 of 38 
 

open, water flows concurrently in all pipes towards customers houses. The sensors 

modules are embedded in each street pipe. For every street, data from relevant sensors is 

read by an Atmega328 MCU-based board. All nodes of the same street could share data 

with each other. Data to central processing unit (server) is transferred via a ZigBee device. 

Note, ZigBee device is based on the IEEE 802.15.4. This device is generally utilized for 

two-way communication between a control system and a sensor. Like Wi-Fi/Bluetooth, 

ZigBee has short-range of communication with connectivity up to 100 m (meters). The 

server then processes sensors data using Fuzzy logic to classify it as acceptable, rejected, 

or desirable. In case an anomaly is detected, the concerned street’s water-supply is then 

blocked through a solenoid valve, and end-users and authority are informed about this 

act. The sever is interfaced with internet through an ethernet module. This unit also sends 

alerts to notification unit for administrative usage. End-users and/or the concerned 

authority can also check water quality via smart phones. Water quality report is 

sent/shown to end-users with their home number as well. Though this paper is highly 

focused on WSN concept and utilizes internet for smart phone applications only, it is a 

best kick-off for IoT-WQMS. 

Thiyagarajan et al. [93] presented an IoT-based solution to monitor water quality in 

residential tanks. This system involved pH and TDS. Sensors’ specifications are not 

provided. In brief, this system functions as follows: First, Arduino Uno reads data from 

sensors. It transfers data serially to Raspberry Pi3 card. This card deploys K-means 

clustering algorithm to classify target water as lemonish, salty, muddy, tap, or drinking 

water. These different classes were used to train a stated algorithm. Raspberry Pi3 

transfers data to a desktop PC, which transfers it to a cloud server through an ethernet 

port. End-users can access the cloud via a smart phone to check water quality. 

Notably, this paper is not well documented, e.g., authors did not specify IDE and 

languages being used in experimentation. In addition, it does not fulfill the minimum 

requirements of WHO drinking water; the authors deployed ML techniques to 

compensate this deficiency to some extent. However, a major limitation of this system is 

involvement of two processing devices. Arduino Uno is based on 8-bit ATmega328 MCU, 

whereas Raspberry Pi3 card is centered around a powerful 64-bit CPU. ATmega328 has 

built-in ADC module, whereas Raspberry Pi3 card is deprived of this feature. However, 

for cost minimization, a cheap ADC module can be interfaced easily with Raspberry Pi3. 

Daigavane and Gaikwad [94] presented an IoT-based solution to monitor water 

quality and flow. In this study, authors considered temperature, turbidity, and pH. 

Authors briefed all sensors, but they did not provide their model numbers, except 

DS18B20. The turbidity and pH sensor are accompanied with their signal conditioning 

circuitries. The ATmega328 MCU, LCD, power supply circuitry, etc., are mounted on a 

single printed circuit board (PCB). All coding, testing, and simulations were done in 

Arduino IDE. The system was not validated in field. In brief, this system functions as 

follows: First, Arduino Uno based card reads data from sensors, processes it, updates a 

local LCD, and shifts data to ESP8266 Wi-Fi transceiver. The ESP8266, via a local Wi-Fi 

router, updates dashboard developed in Blynk IoT-Platform. Authorized end-users can 

check water quality via smart phones. The paper offers no in-depth details about technical 

specifications. In addition, the authors also did not involve any machine learning 

algorithm to enhance decision-making phase about water quality. Due to smaller number 

of WQM parameters, this system does not fulfill the minimum requirements set by WHO 

for drinking water (Table 5). 

Prasad et al. [65] published a smart water quality monitoring system. Though, this 

system was intended primarily for oceans, but it has also been tested on tap water. This 

project is based on Libelium IoT-products [95]. Libelium products are reliable and 

effective solution for smart water monitoring around globe, e.g., in the Gulf of Kachchh. 

In this project, authors considered pH, temperature, electrical conductivity, and oxidation 

reduction potential. The system from Libelium contains all necessary items such as 

sensors, GSM module, MCU, etc. These products are highly optimized for low power 
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operations. Both the cloud and a local PC are utilized for analytic analysis of data. To 

better predict water quality, ML schemes are also deployed. This system was tested on 

surface water, seawater, polluted creek-water, and tap water. In experimentations, the 

proposed system acquired readings from water samples at rate of one-hour (h) intervals, 

for a period of 12 h. 

In brief, the entire system functions as follows: Sensors are first read by Waspmote 

MCU board through its built-in ADC module. Next, data is sent to both local PC and a cloud 

server via GSM module. This system has also ability to locally store data on a Secure digital 

card. Analysis was performed on a local machine and cloud services. To summarize, this 

work shows an exposure to Waspmote products, but it does not offer any detailed 

explanations of how data is analyzed using the machine-learning algorithms. Besides, 

technical specifications (e.g., CPU/MCU type) of Libelium products used herein are missing. 

Pasika and Gandla [96] presented a low-cost IoT-WQMS. In this system, authors 

involved only pH and turbidity. In addition, they also monitored water level in an 

overhead tank and temperature and humidity of the atmosphere via a DHT-11 sensor. 

The system was tested and simulated in Arduino IDE. All components of system are well 

detailed, but models for some sensors (e.g., turbidity) were not mentioned. In brief, it 

works as follows: The sensors are first read by Arduino Mega2560. After processing 

sensors data, it sends processed data serially to NodeMCU, which forwards this data to 

ThingSpeak IoT-Platform via a local Wi-Fi router. Data is then processed, analyzed, and 

visualized in ThingSpeak, which is accessible by authorized end-users via smart phones. 

No machine learning schemes were used herein. 

To summarize, this article is prepared well. Experimental results with snapshots 

were discussed explicitly. Due to two WQM parameters, this system may not be well 

suited according to WHO minimum criterion of drinking water. As shown in Figure 9, a 

major drawback of this system is over exploitation of hardware resources. For example, 

both Arduino Mega2560 and NodeMCU (8266) have MCU, ADC, memory, digital I/O 

pins, ADC modules, etc. 

 

Figure 9. Block diagram of the system proposed in [96]. 

Srivastava et al. [97] published a smart-phone-based system to monitor water quality 

with accesses to location information via the Google Maps app. In this study, authors 

involved pH, TDS, and temperature. Other important WQM parameters such as ORP, EC, 

and salinity were inferred from measured values of these parameters using statistical 

modeling techniques. The learning models (e.g., Artificial Neural Network) were trained 

on pH and TDS datasets and others measured parameters just mentioned. Instead of 

relying on the readymade commercial electronic kits, authors developed a front-end 

interface unit from standard parts such as a pH sensor (LMP01200), HC-05 Bluetooth 

module, EEPROM memory chips, and a dedicated 8-bit MCU. This module is responsible 

for reading sensors, local processing, and logging data. Interface between the Google-
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Firebase IoT-platform and front-end unit is a smart phone. In this concern, authors 

developed a dedicated application to carry out analysis in cloud. 

Based on machine learning techniques, the measured and inferred WQM parameters 

were converted to a single WQI number, which is easy to interpret for understanding. In 

addition, the developed smart phone application is also capable to auto-calibrate sensitive 

parts for on-site application. End-users can get SMS, WhatsApp messages, and emails. 

The overall results of this system are satisfactory in comparison with contemporary work. 

However, one big bottleneck of this system may be the product cost if it must be installed 

at many points, e.g., in smart city. However, the overall system cost could be minimized 

if a SIM900 GSM/GPRS modem is utilized, instead of smart phones, for data transmission 

between cloud server and sensors module (Figure 10). 

 

Figure 10. Block diagram of the system proposed in [97]. 

Bahgat et al. [98] presented an IoT-based solution to monitor water quality. In this 

study, authors monitored pH, turbidity, temperature, and Carbon-dioxide (CO2) gas. All 

sensors were detailed briefly. The model of CO2 sensor is MQ135, but models for other 

sensors are not specified. MQ135 is capable to detect gasses such as NH3, benzene, 

alcohol, smoke, and CO2 on water surface. The system is centered around Arduino Pro 

Mini card, which is centered around ATmega328 (8-bit MCU) with numerous On-chip 

peripherals such as ADC, PWM, memory, I2C, SPI, etc. Though it is compatible with 

Arduino Uno, it has been customized for small size products. 

For communication with cloud, they used ESP8266 Wi-Fi transceiver. For cloud 

services, they utilized Thinger.io, which is an open source IoT-platform offering a lifetime 

freemium account to customers for no cost. With this account, customers with few 

limitations can start learning and prototyping their projects. For commercial activities, 

premium server with full capacities could be utilized but it is not cost free. Authors 

simulated and tested entire system in Arduino IDE. For system validation, mud was 

gradually added into samples. For end-users, this system provides an LCD, PC, and smart 

phone interface. To brief, it functions as follows: First, Arduino Pro Mini reads data from 

sensors. After some local processing, it updates results on a local LCD. After that, it 

transfers data to ESP8266 Wi-Fi transceiver, which uploads data to Thinger.io via a local 

Wi-Fi router. Sensors’ data is then processed, recorded, and visual aids are updated. The 

article is well-written but monitoring three WQM parameters without machine learning 

is not enough to predict water quality precisely. 

Lambrou et al. [48] developed a low-cost real time solution to monitor contamination 

in distribution system of drinking water. No doubt, maintaining water quality in such 

systems is currently a big issue for most water control authorities (e.g., municipal) in 
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developing countries. It is mainly because of availability of less funds, lack of manpower, 

aged infrastructure, etc. Authors tried to use commercial sensors, which are relatively cheap, 

reliable, long lasting, and resistant to biofouling issues to some extent. Main parameters 

included are pH, temperature, turbidity, electrical conductivity, and oxidation reduction 

potential (ORP). For pH and ORP, conventional glass-electrode type sensors were used. For 

turbidity, electrical conductivity, and temperature, they utilized solid state technology. 

Authors also devised some useful algorithms to fuse sensors data and infer results about 

overall water quality. These algorithms are tested with different concentration of E-Coli 

bacteria and heavy metals such as Arsenic (which is fatal for humans). 

Experimental results are satisfactory while detecting these high impact impurities. 

For risk assessment and generating early warning alerts, authors developed two 

algorithms: (i) vector distance algorithm (VDA) and (ii) polygon area algorithm (PAA). 

Moreover, this system is capable of publishing results on a cloud server and informing 

end-users via an SMS, email, etc. The overall system comprises of a (i) central 

measurement node (PIC32 MCU based kit), (ii) control node (Raspberry Pi board), and 

(iii) notification node (PIC MCU based kit). The central measurement node collects data 

from sensors submerged in a water pipe. 

Sensors are equipped with their own electronic kits for signal amplification, 

conditioning, etc. This unit assesses water quality using some specialized algorithms and 

transfers data to other nodes via USB and ZigBee modules. The control node stores data 

being received from central measurement node into a local database. It transfers data to a 

local Wi-Fi router through its ethernet module. The Wi-Fi routers transfers data to a web 

cloud service (Pachube open source) for analytic analysis and visualization. In addition, 

it sends emails and SMS alerts in case any anomaly is detected. Finally, notification node, 

which receives information from central measurement node, provides alerts to consumer 

via LEDs, LCD, and a buzzer about nearby tap water. Major contributions of this article 

are development of an effective turbidity sensor and analog signal conditioning circuitries 

for other sensors. To summarize, this article is well articulated in terms of technical details, 

experimental results, and discussion (Table 5). 

Cho-Zin et al. [99] presented an IoT-based solution for water quality monitoring. The 

authors involved temperature, pH, turbidity, and CO2. In addition, they also monitored 

water level via an LV-MAXSONAR-EZ1 sensor; it is a Sonar. For temperature, CO2, and 

turbidity, authors used DS18B20, SKU: SEN0219, and SKE: SEN0189 sensors, respectively. 

However, the model for pH is not specified. The entire system is deployed on DE1-SoC 

FPGA Development Kit (Figure 11). This board offers a flexible hardware design-platform 

built around an Altera System-on-Chip (SoC) FPGA. Briefly, this SoC integrates a hard 

processor system (i.e., dual-core ARM cortex-A9 microprocessor, with 800 MHz clocking 

frequency), memory, and peripherals interfaces knotted with FPGA module through a 

high-bandwidth interconnect backbone. For coding and simulations, authors used Altera 

Quartus-II IDE. The control unit to read sensors and communicate with ZigBee transceiver 

was implemented in FPGA fabric using the Nios-II soft-core processor available in the 

Quartus-II Qsys Tools. The C-code running over the Nios-II CPU and VHDL codes were 

utilized to run control unit. Code to process WQM parameters and commands of the 

wireless transceiver modules were programmed in Nios-II Eclipse through C and VHDL 

languages. For data visualization, authors installed Grafana package on a desktop PC, 

with Linux operating system. Moreover, pin connections for all sensors and devices are 

detailed explicitly. For analog signal conditioning, an onboard ADC module is utilized. 

For wireless communication between a remote PC and this board, authors utilized ZigBee 

PRO S1 module. This is a radiofrequency module, which can provide robust 

communication in the peer-to-peer, point-to-point, and multipoint/star configurations. 
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Figure 11. DE1-SoC Development Kit (Top view) [99]. 

After powering this system, it was installed on the bank of a lake to monitor water 

quality, where data was collected over a period of 15 days. Data was transferred by FPGA 

board to a remote PC equipped with a ZigBee receiver module and located 86 m away from 

lake. Data was processed, stored, and analyzed to visualize probable trends in water quality. 

Authors did not discuss using ML schemes to enhance decision-making phase. 

Experimental results being illustrated on LiCliplse console-windows are satisfactory. To 

summarize, this system does not qualify the minimum WHO standards of drinking water. 

A major limitation of this design is overall cost of using an expensive DE1-SoC FPGA board. 

This card is utilized to read sensors and transfer data to a remote PC via an external ZigBee 

kit only. No doubt, this is not a big task to which such a powerful SoC should be assigned. 

This wastage of technical resources and the overall system cost could be optimized as 

follows: Firstly, developers should buy a simple FPGA chip and burn target bitstream file 

into its fabric via a chip-programmer. After that, it can be mounted onto a customized PCB 

along with supporting electronic circuitry. Secondly, a NodeMCU (EPS8266) module or 

Arduino Nano 33 IoT card should be utilized to better perform this task. 

5. Discussion and Recommendations 

Section 4 provided detailed survey of contemporary IoT-based solutions for water 

quality monitoring. In all articles, authors were focused on coming up with systems, 

which should be cheap, portable, low-power, IoT-enabled, real-time, and qualifying 

WHO/USEPA minimum standards of drinking water. Ironically, very few articles meet 

the criteria. Figure 12 shows the overall rating of each article based on the proposed 

empirical rubric given in Equation (1). Only three articles [48,68,97] fully satisfy this 

criterion, where authors considered minimum criterion of drinking water and used 

machine learning to enhance overall water quality index. The remaining articles could be 

either improved or used for other applications such as cleaning of water storage tanks. 
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Figure 12. Rating of contemporary IoT-WQMS using proposed empirical rubric. 

Table 5. Comparison of contemporary IoT-WQMS. 

 
Ref. 

WQM 

Parameters 

IoT-WQMS   
(%) 

 

# SLM GWM CSM UIM Comments 

1 [19] 
pH, Turb, T and 

TSS 

Arduino Uno kit and 

ZigBee kit 

Wi-Fi 

Router 

Cloud via REST-

web services 

Desktop PC, 

smart phone, 

and web 

65 
Hardware not 

specified properly 

2 [32] 
pH, T, Turb and 

EC.  

TI CC3200 wi-fi 

Launchpad board. 

Built-in Wi-Fi module 

of TI CC3200 

Wi-Fi 

Router 
Ubidots 

Local LCD, 

smart phones 
60 

Few WQM 

parameters used. 

Sensor YL-69 is not a 

good choice 

3 [24] pH and Turb 

Arduino Uno kit and 

NodeMCU (ESP8266) 

kit 

Wi-Fi 

Router 
ThingSpeak Smart Phone 40 

Presented poorly and 

hardware is not 

optimized 

4 [86] 
pH, Turb, T and 

DO 

ATmega328 MCU, 

SX1278 Ra-02 LoRa 

module and ESP32 

Wi-Fi module 

Wi-Fi 

Router 
ThingSpeak 

LCD, smart 

phone, and PC 
50 

Can be further 

improved. Some 

technical information 

is missing 

5 [89] Turb 

Arduino Intel Galileo 

board and ESP8266 

Wi-Fi transceiver 

module  

Wi-Fi 

Router 
ThingSpeak 

Web-based 

motor control 
20 

Turbidity is 

monitored only 

6 [90] 
pH., T, EC, and 

Slime  

ATmega2560 MCU 

and LoRaWAN device 

GSM 

Modem 
ThingSpeak Smart phone 60 

Well explained, but it 

is good for the slime 

detection and energy 

crisis applications 

7 [35] 
pH, Turb, T and 

EC 

Arduino Uno R3 kit 

and ESP8266 Wi-Fi 

transceiver module 

Wi-Fi 

Router 
ThingSpeak 

LCD, smart 

phone, and PC 
60  Presented poorly 

8 [57] 
pH, Turb, T and 

ORP 

Arduino Mega2560 

kit, Arduino Uno R3 

Wi-Fi 

Router 

Data aggregator 

server (Apache 

Hadoop cluster) 

LCD, smart 

phone, and PC 
90 Technically poor 
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and ESP8266 Wi-Fi 

module 

9 [91] pH and Turb 

Raspberry Pi kit and 

Raspberry Pi (built-in 

Wi-Fi) 

Wi-Fi 

Router 
ThingSpeak Smart phone 40 

Good for the tanks’ 

cleaning and auto-

filling 

10 [92] pH only 

PIC16F877 based 

board and SIM900 

GPRS modem with 

PIC16F877 based 

board 

SIM900 

GPRS 

modem 

Php, Java Script, 

MySql and Web 

sever 

Smart phone 20 Technically poor 

11 [64] pH and Turb 

Arduino Uno kit and 

ESP8266 Wi-Fi 

transceiver module 

Wi-Fi 

Router 

Cloud based 

server, not 

specified 

PC and Smart 

phone 
40  Technically poor 

12 [68] 
pH, Turb, T, EC 

and ORP 

Atmega328 MCU 

based board and 

ZigBee kits 

Ethernet 

module 

Cloud is used 

for Mobile App 

only 

Smart phone, 

LCD, and 

speaker 

100 
Technically well-

written 

13 [93] pH and TDS 

Arduino Uno type 

card, Raspberry Pi 3, 

and Raspberry Pi 3 to 

PC 

Ethernet 

module 

Cloud based 

server, not 

specified 

Smart phone 55 

Only two WQM 

parameters used. 

Hardware is not 

optimized 

14 [94] pH, T and Turb  

Arduino Uno kit and 

ESP8266 Wi-Fi 

transceiver module 

Wi-Fi 

Router 
Blynk App 

LCD and 

smart phone 
50. 

Three WQM 

parameters used 

15 [65] 
pH, ORP, T and 

EC 

Waspmote MCU card 

and GSM module 

GSM 

module 

Cloud server, 

not specified 
Desktop PC 80  

Good, but some useful 

details are missing 

16 [96] pH and Turb 

Arduino Mega2560 kit 

and NodeMCU 

(ESP8266) kit 

Wi-Fi 

Router 
ThingSpeak 

ThingSpeak 

App for smart 

phone  

40 
Hardware needs 

optimization 

17 [97] 

pH, T, TDS; EC, 

Salinity and 

ORP via 

machine 

learning 

MCU, but not 

specified and 

Bluetooth 

Smart 

phone 

Google Firebase 

Cloud 

WhatsApp, 

SMS, email, 

etc. 

100 

Well-explained, but 

not feasible for large 

scale deployment due 

to cost 

18 [98] 
pH, Turb, T and 

CO2 

Arduino Pro Mini 

card and ESP8266 Wi-

Fi transceiver module 

Wi-Fi 

Router 
Thinger.io 

LCD, PC, and 

smart phone 
50 

Good, but only three 

WQM without 

machine learning 

schemes 

19 [48] 
pH, T, Turb, EC 

and ORP 

Raspberry Pi kit and 

Ethernet modules; 

ZigBee 3G/GPRS 

module 

Wi-Fi 

Router 

Pachube IoT 

platform 

Local 

notification 

kit, phone, and 

PC 

100. 

All circuits, sensors, 

kits, and technical 

parameters well-

explained 

20 [99] 
pH, T, Turb and 

CO2 

DE1-SoC 

development kit and 

ZigBee PRO S1 

802.15.4  

Not used Not used PC 50 
Hardware needs 

optimization 

5.1. Right Things in Right Place 

After probing into the architecture of contemporary IoT-WQMS, it is observed most 

of these systems have not been consistent in technical parameters. The following text 

elaborates this issue in explicit details: 
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WQM parameters: As detailed in Section 2, WHO/USEPA developed numerous 

standards and guidelines to compute WQI of water sample. Though these bodies 

recommended big lists of such parameters, the concerned water authorities (e.g., 

municipal) generally deploy a limited set of some useful parameters while computing 

water quality [19,31,35,49,50]. As mentioned before, WQI is a single number expressing 

the overall quality of water acquired from a target locality, at a specific time. Its main 

objective is to transform complicated water-quality data into useful and understandable 

information. In a broader sense, WQI offers a general idea about overall water quality. As 

shown in Table 2, most WQM parameters have strong correlation with each other. It 

implies monitoring all parameters may not be necessary while computing WQI for target 

water. It is logical because some WQM parameters could also be inferred from the 

measured values of other WQM parameters due to their inter-correlation. The following 

text exemplifies this fact: 

 Ref. [85] shows oxidation reduction potential has strong correlation with sanitizing 

power of free chlorine or any other reducing/oxidizing chemicals. Measuring ORP is 

empirical, precise, and does not need any user-interpretation. Table 6 shows 

correlation between ORP-levels and Coliform count in a 100 mL water sample. 

Similar, Table 7 shows ORP range versus water application. 

 Ref. [48] highlights free chlorine monitoring through amperometric sensors, which is 

not only expensive but highly sensitive to other parameters such as temperature, pH, 

water flow, and pressure. Due to this reason, it is advisable to infer concentration of 

free chlorine based on measured values of pH, temperature, and ORP. 

 Ref. [86] shows amount of dissolved oxygen in water could be inferred from its 

correlation property with temperature. 

 Ref. [35] talks about strong correlation of total suspended solids and total dissolved 

solids in water with turbidity. 

Table 6. ORP-levels versus Coliform bacteria [85]. 

ORP level (mV) Coliform Count in 100 mL Sample Water 

200 300 

300 36 

400 3 

600 0 

Table 7. ORP-ranges versus water applications [85]. 

ORP Level (mV) Water Application 

0~150 Not usable. 

150~250 Suitable for aquaculture activities. 

250~350 Suitable to cool towers. 

400~475 Effective for swimming pools. 

450~600 Good for hot-tubs. 

650~800 Suitable for human drinking.  

Due strong inter-correlation among WQI parameters (Table 2), most recommended 

WQM parameters for IoT-WQMS are turbidity, oxidation reduction potential, 

temperature, pH, and electrical conductivity [32,35,48]. 

WQM sensors: Sensors play a key role in the overall efficiency of IoT-WQMS. They 

measure different physical, chemical, and biological properties of water. At present, 

market offers two types of sensors: (i) sensors capable to measure single WQM parameter 

(e.g., pH) and (ii) sensors able to measure multiple WQM parameters (e.g., pH, turbidity, 

temperature, and ORP) [19–21]. The following are some useful suggestions: 
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 To avoid the hassles of electronic circuit designing, developers should fetch WQM 

sensors being supplemented with required signal conditioning-circuitry. For 

example, the pH kit for Arduino Uno [100]. 

 For fast prototyping, multi-parameters WQM sensors units should be acquired from 

a reputable vendor such as the Libelium (Waspmote) products [55]. 

 In case of continuous water quality monitoring, sensors are generally submerged into 

water for longer. If sensor’s parts are directly exposed to water, then it may be 

damaged due to direct contact with organic and inorganic material [48]. In addition, 

some metallic materials also get rusty if exposed to water for too long. This process 

is called biofouling, which deteriorates the overall efficiency of IoT-WQMS. Hence, 

care must be taken while selecting sensors for a particular application [21,48]. 

Digital computing media: Multiple choices are available to product developers when 

selecting a digital computing media. It is usually required to read sensors data, process, 

update local displays if any, and transfer it to a cloud server via a local Wi-Fi hotspot or a 

GSM/GPRS based modem. As highlighted in Section 4, many authors have custom-

designed PCB containing a dedicated MCU/CPU and other relevant electronic circuitry. 

Some authors also opted for the readymade MCU/CPU based kits for this job. Moreover, 

it is also observed that authors involved expensive FPGA based kits. In general, all these 

options are workable, but some have not been selected optimally due to which the 

hardware redundancy increased. The following text struggles to provide solution to this 

issue: 

 If its purpose is just reading sensors data, performing few computations, updating 

local displays (e.g., LCD) if any, and shifting data to the cloud server for complex 

analysis then, best option is to involve readymade electronic cards. For example, 

Arduino Nano 33 IoT card is based on a 32-bit MCU. In addition, it offers all other 

peripherals such as memory, digital I/O pins, ADC, timers/counter, and built-in Wi-

Fi module. In case, a local Wi-Fi gateway is not available, then developers could use 

GSM/GPRS modem. For example, SIM900 GSM/GPRS modem functions in the same 

way as a smart phone does. It uses a registered SIM card, where communication may 

incur call/SMS charges as per the local fare. 

If developers plan to perform complex analysis locally on digital computing media, 

then best option is to select a 32/64-bit fixed/float MCU/CPU based cards such as 

Raspberry Pi4 Model B, Intel Galileo Gen 2, TI CC3200 Wi-Fi Launchpad, etc. These are 

best options for digital signal/image processing. In addition, authors could also use 

System-on-Chip (SoC), but it may be time consuming and expensive option as well. 

Wireless-communication media: If inter-communication among different sensors 

units is desired, then best option is LoRaWAM technology. This technology covers more 

areas with low power consumption as compared with ZigBee, Wi-Fi, Bluetooth, etc. If 

distance between target devices is long, then Internet could also be involved for which 

SIM900 GSM/GPRS modem is a workable silicon crab. 

Cloud IoT-Platform: Literature shows a big list of contemporary cloud IoT-Platforms 

[82], most of which are open source and offer limited resources for cost free. For 

commercial activities, developers must pay a fee. These platforms can be used from simple 

to complex analysis on sensors data. For example, data can be stored for history, graphs, 

plots, spread sheets, visual aids, ML techniques, controlling things (e.g., a sensor), and 

sending alerts to end-users are some prominent features of these services. Considering 

review compiled in Section 4, common IoT-platforms include Blynk, Pachube, Thinger.io, 

Google firebase, Ubidot, ThingSpeak, Arduino, and Adafruit [82]. 

Though these cloud platforms greatly facilitate developers, they have some limitations: 

 Data security may be at risk because of 3rd party’s involvement. 

 No guarantee for continuous service provision. Any time, anyone can quit from 

market, which will have a deadly impact on commercial activities. 

 Worries for raise in the services’ cost for commercial activities. 
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Due to these facts, IoT-developers should custom-design their own cloud servers if 

feasible. 

5.1.1. Redundancy 

Software developers generally use code profiling techniques to speedup 

computational processes and optimize memory requirements. Similarly, hardware 

optimization is also necessary to avoid redundancy if any. This act would not only result 

in overall system’s cost reduction but may also reduce overall energy consumption and 

space requirements. The following text elaborates this issue: 

 Ref. [24]: In this article, authors utilized Arduino Uno and NodeMCU for simply 

reading sensors data and shifting it to a local Wi-Fi router. Arduino Uno is centered 

around an 8-bit ATmega328 fixed-point MCU, with many on-chip peripherals such 

as ADC, PWM, UART, I2C, SPI, memory, etc. Similarly, NodeMCU is based on 

ESP8266 SoC, which has all peripherals (e.g., one ADC unit, digital I/O, 

timers/counters, memory, 32-bit fixed-point CPU, and Wi-Fi module). Authors used 

Arduino Uno for reading sensors data and shifting it serially to NodeMCU, which 

just transfers it to a local Wi-Fi router. Note, NodeMCU alone is enough for analog 

signal conditioning, processing, logging, and transferring data to a local Wi-Fi router. 

Though it has only one input pin to access its ADC module, designers could use a 

simple digital multiplexing chip to expand its capability to read multiple continuous 

signals. Similarly, authors in Ref. [96] used Arduino Mega2560 and NodeMCU again 

for simply reading sensors data and shifting to a local Wi-Fi router. Arduino 

ATmega2560 is an advanced version of Arduino Uno, but again same could be 

replaced by NodeMCU. 

 Ref. [93]: In this article, authors used Arduino Uno and Raspberry Pi3. As mentioned 

above, Arduino Uno is based on 8-bit ATmega328 MCU, whereas Raspberry Pi3 card 

is centered around a powerful 64-bit CPU. ATmega328 has built-in ADC module, but 

Raspberry Pi3 card has been deprived of it. However, for cost minimization, a cheap 

ADC module could be interfaced with Raspberry Pi3. 

 Ref. [97]: In this article, authors utilized a smart phone to acquire data from an 

indigenous card through Bluetooth technology and then transfer it to cloud server 

using the same phone. The overall system cost could be optimized if a SIM900 

GSM/GPRS modem is utilized, instead of a smart phone. 

 Ref. [99]: In this article, authors utilized a DE1-SoC FPGA board, which is a very 

expensive card and should only be used for hi-tech designs and prototyping. 

Unfortunately, this board is utilized for simply reading sensors data and transferring 

it to a remote PC via a ZigBee kit. This is not a complex task for which such a powerful 

silicon crab is deployed. To be honest, this is wastage of technical resources. To address 

this issue, developers could fetch a simple FPGA chip from a local market and burn 

target bitstream file into its fabric via a chip-programmer. After that, it can be mounted 

on a customized PCB along with supporting electronic circuitry. Alternatively, authors 

could also use Arduino Uno R3 or Arduino Mino Pro, etc. Notably, tentative costs of 

DE1-SoC FPGA board and Arduino Uno R3 are USD 249 and USD 23, respectively; 

prices were fetched from Google Chrome on 16th August 2020. 

5.1.2. Machine Learning Techniques 

As mentioned earlier, considering all WQM parameters while computing WQI may 

not be feasible. Moreover, the commercial market may also not offer sensor against each 

parameter. Fortunately, most of these parameters possess strong correlations among 

themselves (Table 2). It implies that it is feasible to use a small set of sensors to measure 

some parameters (e.g., pH, turbidity, and ORP) and then, based on the measured values 

of these measurements, infer other important parameters (e.g., free chlorine) using 

mathematical models. To resolve this issue, researchers approached towards machine 
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learning [35,48,65,85,86]. ML is seen as a subset of artificial intelligence (AI). Based on 

sample data (called training data), ML algorithms build a mathematical model capable to 

make decisions or predictions without being clearly programmed to perform so [52]. For 

IoT-WQMS, supervised ML algorithms are well-suited. Though ML techniques greatly 

enhances the overall efficiency of IoT-WQMS, they have some limitations: 

 Additional demand for technical resources, e.g., memory, higher CPU throughput. 

 Greater the size of training data, the better the performance of ML algorithms. 

There exist two options to address issue of additional resources. Firstly, developers 

should use a simple 8-bit MCU based card (e.g., NodeMCU (ESP8266)) and then shift 

acquired data to a cloud server for analytical analysis using ML algorithms. Secondly, they 

could also use a readymade kit based-on a powerful CPU/MCU, e.g., Raspberry Pi4 Model 

B, TI CC3200 Wi-Fi Launchpad, Arduino Intel Galileo board, or DE1 SoC FPGA board. 

However, to address second issue, developers could request local/international water-

quality control authority to provide them with data for training purposes, if available. 

5.2. Recommendations 

Following are some useful suggestions and recommendations to design a secure and 

reliable IoT-WQMS: 

WQM parameters: Based on technical review of IoT-WQMS given in Section 4, most 

recommended WQM parameters [32,35,48] are the following: 

 Turbidity; 

 Oxidation reduction potential; 

 Temperature; 

 pH; 

 Electrical conductivity. 

Research consensus on these parameters is logical because they have high correlation 

with other parameters (Table 2) [19–21]. In addition, these parameters could better predict 

the overall water quality. For example, turbidity shows how much shady or cloudy target 

water is. Moreover, it is highly correlated with total suspended solid (TSS) [35]. When 

water is dirty, its turbidity is high. Hence, it could be used for example to clean 

underground/overhead tanks. 

As stated earlier, ORP is highly correlated with sanitizing power of free chlorine or 

any other reducing/oxidizing chemicals in water [85]. It has a high correlation with 

presence of E-Coli bacteria. Temperature has great impact on overall water quality. It is 

because it affects pH, EC, DO, etc. Due to this fact, temperature measurement are 

necessary to compensate other parameters. In addition, it could also be used to infer other 

parameters such as DO [86]. EC is utilized to measure alkalinity, hardness, and some 

solids dissolved in water. Finally, pH measures acidity or alkalinity of water. 

WQM sensors: As different manufacturers produced sensors for similar applications, 

therefore selection of appropriate sensors strongly impacts overall system efficiency. 

Range, response time, resolution, sensitivity, and reliability are some important 

considerations while choosing a sensor. For example, some sensors  are designed in such 

a way when they are submerged in water, then their sensitive parts are auto cleaned when 

water flows with high pressure. On other hand, if same sensors are submerged in static 

water (e.g., overhead tank), then their sensitive parts may get contaminated due to 

reactions with water and contaminations [48]. 

Sensors-Node: It can read sensors data, recondition, process, update local displays if 

any, and transfer data to a master unit or a cloud server via a local Wi-Fi router or 

GSM/GPRS modem. If task assigned to it is simple and complex are intended to be 

performed in cloud, then developers should use commercial IoT cards, e.g., Arduino 

Nano 33 IoT card and NodeMCU. Such cards are cheap, power optimized, light weight, 

and easily accessible. If complex analysis are desired to be performed locally, then 

developers should involve commercial cards such as Raspberry Pi4 Model B (64-bit CPU), 



Water 2021, 13, 1729 34 of 38 
 

Intel Galileo Gen 2 (32-bit MCU), TI CC3200 Wi-Fi Launchpad (32-bit MCU), etc. If a local 

Wi-Fi router is not available, then SIM900 GSM/GPRS modem should be utilized. If 

SIM900 module falls expensive or the range of communication is within few kilometers, 

then LoRaWAN technology is best option as highlighted in Table 8 [31]. Communication 

in the line-of-site (LoS) is possible up to 10 kilometers (km). 

Table 8. WSN standards comparison. 

Wireless Standard Frequency Band (MHz) Network Topology Data-Rate (kbps) Range Capability (LoS) Relative Power Consumption 

SigFox 902, 868 Star 1 40 km Very low 

LoRaWAN 915, 868 Star 50 10 km+ Very low 

Bluetooth 2400 P2P/star 720 10~100 m High 

ZigBee 2400, 915, 868 Star/tree/mesh 250, 40, 20 100 m+ Low 

IEEE 802.15.4 2400, 915, 868 Star 250, 40, 20 100 m+ Low 

Gateway: For IoT objects to function reliably, all parts of the concerned IoT-based 

system should be secure. For instance, cyber criminals can hack any connected object such 

as smart TV, security camera, refrigerator, etc. Some security risks inherited in IoT devices 

from manufacturers’ side are (i) insecure storage and data transfer, (ii) guessable, weak, 

or hard coded passwords, (iii) hardware issues, (iv) lack of a secure update mechanism 

and (v) unpatched and old embedded software and/or operating systems. Under such 

conditions, developers are advised to use IoT gateways [83]. 

Cloud IoT-Servers: There exists many public cloud IoT-servers [82], which can access 

and control things, store sensors data, perform analytic analysis, generate early warning 

alerts, and so forth. However, most of these are not cost free for commercial activities. In 

addition, data security may also be at higher risk due to third party involvement. Most 

importantly, services could also be ceased without any prior acknowledgment. Hence, 

authors are encouraged to custom develop cloud server if feasible to minimize risks. 

Machine learning: Finally, authors advise developers to involve ML techniques for 

optimal results. 

6. Conclusions 

This study presented a review on IoT-based solution for quality monitoring of 

domestic water. Firstly, it introduces readers with the freshwater crisis, including its 

origin, pollution, depletion of underground water, and seawater desalination. It also 

details the water quality index recommended by WHO, commonly used water quality 

index parameters, and WHO recommended safe limits for drinking water. Secondly, it 

details evolution of water monitoring from traditional to smart water monitoring. For the 

sake of readers comfort, it briefly elaborates a typical IoT based water quality monitoring 

system. Thirdly, it presents a comprehensive survey of contemporary IoT-WQMS for 

domestic water. In this concern, many critical parameters (e.g., sensors, cloud service, 

user-interface, and gateway) are discussed and compared. In addition, each article is also 

rated using our proposed empirical rubric, which is based on WHO standards of drinking 

water. Fourthly, in-depth technical discussion and analysis are offered related to IoT-

WQMS. Finally, authors also suggested a set of useful recommendations to design an 

efficient IoT-WQMS for domestic water. 

To conclude, this study would surely benefit the research community interested in 

smart water monitoring, as well as engineers developing applications for smart 

environments (e.g., smart homes, offices, and cities). 

As a future work, it will be interesting to explore optimal designing of smart wart quality 

monitoring system, exploring optimal portable sensors’ technology, usage of secure and 

reliable IoT servers, and devising resilient schemes mitigating potential security breaches. 
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