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Abstract: Currently, the export regime of a catchment is often characterized by the relationship
between compound concentration and discharge in the catchment outlet or, more specifically, by the
regression slope in log-concentrations versus log-discharge plots. However, the scattered points in
these plots usually do not follow a plain linear regression representation because of different processes
(e.g., hysteresis effects). This work proposes a simple stochastic time-series model for simulating
compound concentrations in a river based on river discharge. Our model has an explicit transition
parameter that can morph the model between chemostatic behavior and chemodynamic behavior.
As opposed to the typically used linear regression approach, our model has an additional parameter
to account for hysteresis by including correlation over time. We demonstrate the advantages of our
model using a high-frequency data series of nitrate concentrations collected with in situ analyzers in a
catchment in Germany. Furthermore, we identify event-based optimal scheduling rules for sampling
strategies. Overall, our results show that (i) our model is much more robust for estimating the export
regime than the usually used regression approach, and (ii) sampling strategies based on extreme
events (including both high and low discharge rates) are key to reducing the prediction uncertainty
of the catchment behavior. Thus, the results of this study can help characterize the export regime of a
catchment and manage water pollution in rivers at lower monitoring costs. We propose a simple
stochastic time-series model to represent the export regime of a catchment beyond simple regression.
We propose how to get the required data with the least effort when the use of high-frequency in situ
analyzers is not feasible or restricted. Sampling strategies based on extreme events are essential for
reducing the prediction uncertainty of the catchment behavior.

Keywords: concentration–discharge; catchment; hydrology; optimal design of experiments; event-
based sampling strategies; high-frequency in situ analyzers

1. Introduction

The way a catchment releases and metabolizes a compound defines the export regime
(or behavior) of the catchment regarding this compound. Export regimes can be classified
as chemodynamic when concentration varies with discharge (positively or negatively), and
as chemostatic when the concentration is not affected by discharge [1–7]. Chemodynamic
export regimes can be classified as dilution behavior and mobilization behavior. During
rainfall, a catchment demonstrates dilution behavior if the compound concentration is
diluted with high discharge. Contrarily, the catchment shows mobilization behavior if
the compound concentration increases with discharge. This can occur for compounds

Water 2021, 13, 1723. https://doi.org/10.3390/w13131723 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-2869-8255
https://orcid.org/0000-0003-3520-5690
https://orcid.org/0000-0003-2583-8865
https://doi.org/10.3390/w13131723
https://doi.org/10.3390/w13131723
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13131723
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13131723?type=check_update&version=2


Water 2021, 13, 1723 2 of 26

mobilized by fast runoff components (e.g., nitrate by interflow, particle-bound pollutants
by surface runoff) [7]. On the other hand, a chemostatic export regime presents a washout
of pollutants at a relatively constant concentration (the compound concentration varies
only slightly with discharge).

One can characterize the export regime of an entire catchment by collecting water sam-
ples in the catchment river outlet together with river discharge measurements. However,
budgetary restrictions usually limit field campaigns. For this reason, it is crucial to design
sampling strategies effectively. Sampling strategies can follow either high- or low-frequency
approaches. Low-frequency series (samples by week or month) have commonly been used
to characterize the concentration–discharge (C–Q) relationship of a catchment [4,7–9]. For
example, Godsey et al. [4] used hydrochemical data of 59 sites, with more than 30 years of
data, but with only five to seven water samples a year. Musolff et al. [7] used 16-year time
series of monthly and bi-monthly samples at gauging stations to predict export behavior.
In comparison to low-frequency sampling, high-frequency sampling (e.g., hourly samples)
decreases the uncertainty of export estimates [10] and water quality parameters [11]. Some
examples of studies that use high-frequency sampling are Bowes et al. [12], Evans and
Davies [13], Floury et al. [14], Grimaldi et al. [15], Jones et al. [16], Liu et al. [17], Ock-
enden et al. [18], Rusjan et al. [19], and Schwientek et al. [20]. Nevertheless, both low- and
high-frequency sampling approaches can provide insightful information on the catchment,
e.g., [3,21].

Export regimes of a catchment are commonly described by a simple linear regression
slope of log-concentrations (log10C) versus log-discharges (log10Q) measured in the river
at the catchment outlet. The slope value of this power-law relationship defines the export
regime of the catchment. A slope of negative value corresponds to dilution-type catchments,
and a slope of zero corresponds to the chemostatic type [4], whereas the mobilization type
shows a positive relationship between log10Q and log10C [3–7]. Therefore, linear regression
can provide a beneficial water quality metric via the slope of log10C-log10Q.

However, the catchment has memory of its past due to the involved time scales
of runoff formation, contaminant release, and reactive catchment-scale transport [13].
Many studies look at the effects of hysteresis on compound exports [22–26]. Hysteresis
means that concentrations depend not only on discharge but also on showing an apparent
dependency on past concentration values. Several studies capture hysteresis metrics to
explain hysteresis loops produced during storms [27–30]. Thus, many catchments show
temporal hysteresis that defies linear regression assumptions [31]. These hysteresis effects
profoundly contradict the “residuals are independent errors” assumption that forms the
basis of classical least squares regression. In simpler words, the remaining scatter of data
points around the regression line should at least be uncorrelated with zero mean and a
constant variance. Yet, temporal hysteresis means that the residuals are autocorrelated in
time. With these assumptions violated, regression results can be suboptimal and biased, as
well as foster incorrect conclusions.

To overcome the limitations of linear regression, different alternatives have been
developed. For example, some methods are able to model C–Q relationships that vary
with time, discharge, and season. One of these approaches is the WRTDS model [32],
which is extensively used by the United States Geological Survey (USGS). The WRTDS
model can analyze long-term surface-water-quality datasets by using weighted regression
of concentrations on time, discharge, and season. Thus, WRTDS aims at interpolating
low-frequency concentration time series (often monthly) at the scale of discharge time series
(often daily), but not the characterization of export regimes. Also, the sample collection
period must be at least 20 years, and a minimum of 200 samples is needed. These conditions
are seldom met in most water-quality time series.

A modified and improved version of WRTDS, which gets better predictions of river-
ine concentration and flux, was developed by Zhang et al. [33] and Zhang & Ball [34].
Another more recent alternative methodology is the two-sided affine power scaling rela-
tionship by Tunqui et al. [35], which produced better results than the linear regression.
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Underwood et al. [36] applied Bayesian inference to estimate segmented regression model
parameters and identify the export regime. Qian et al. [37] showed that a Bayesian approach
could improve the predictions of nutrient loads.

Other recent studies have taken advantage of high-frequency time series to study
the C–Q relationship. For example, Bieroza & Heathwaite [22] studied the variability of
the phosphorous C–Q relationship by applying fuzzy logic models, and looked into the
hysteresis of the phosphorous export.

To provide information about the processes regulating the export, many recent studies
have shown that sampling strategies based on events or seasonality are deeply advanta-
geous [5,6,22,30,34,36,38–43]. These event studies were focused on discharge time series
(e.g., recession time series) such as in Jachens et al. [39], as well as combined with solute
time series (e.g., C–Q studies) such as in Knapp et al. [5]. For example, Minaudo et al. [40]
introduced a new model to account for different temporal scales that correspond to fast and
slow events (storms and seasonal, respectively). Their results showed that apparent C–Q
relationships could not only be different, but even opposite depending on the scale con-
sidered. Other recent studies used autoregressive time-series models to fit high-frequency
data to decipher the dynamics of compound exports [16,18].

Nevertheless, hysteresis effects can only be detected when high-frequency observa-
tions are taken, since they are overlooked with low-frequency strategies [6,13,44]. Addi-
tionally, high-frequency measurements can be resource intensive (labor and economically)
and challenging to apply at many field sites, especially during high-flood events [5].

Therefore, in this manuscript, we propose a new method to model C–Q relation-
ships beyond simple regression. Additionally, we determine which observation strategies
produce better predictions with the least effort (i.e., with fewer samples) when the use
of high-frequency in situ analyzers is not available or restricted. For this purpose, we
introduce a simple stochastic time-series model (regime-and-memory model, RMM) for
concentrations in the river that accounts for fluctuating release and transport with mem-
ory, using an autocorrelation over time. One explicit parameter of our model represents
the export regime. This parameter can morph the model among chemostatic-type and
chemodynamic-type catchment behaviors, and it resembles the regression slope in plots of
log10C versus log10Q. To search for the best sampling strategies, we applied retrospective
optimal design of experiments (ODE), as in [45]. In our specific case, retrospective means
thinning out an exhaustive time series from high-frequency in situ analyzers to only a
few samples.

Overall, the contributions of our work are fourfold: (i) We introduce a simple stochastic
time-series model to characterize the export regime of a catchment subject to hysteresis;
(ii) We demonstrate the robustness of our model even with only small data sets; (iii) We
explore how many C–Q samples can be enough to characterize the export regime of a
catchment sufficiently well; and (iv) We recommend sampling strategies that optimize
the characterization of the export regime with the least sampling effort. For illustration
purposes, we use a high-frequency data series of collected nitrate concentrations. They
were collected with an in situ analyzer in the Ammer catchment in southwestern Germany.
The available data [20] span a total period of nine months, with hourly observations. They
include nitrate concentrations and discharge rates with over 6500 measurements in total.

Accordingly, this paper is organized as follows: In Section 2, we first explain our
stochastic time-series model. Then, we explain how to infer the parameters of our model
from the whole time series and how we thin out data to reduce them towards different
sampling strategies. In Section 3, we introduce the observed data and catchment used for
this study. In Sections 4 and 5, we present and discuss, respectively, our results. Finally, we
disclose our conclusions in Section 6.

2. Methodology

Throughout this study, we will consider −log10C versus log10Q in the following,
instead of log10C for mathematical convenience in model building. The slope in corre-
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sponding plots is α in Equation (1), the parameter that describes the export regime in
our model. For this study, we disregard a negative relation α (mobilization behavior)
between log10Q and −log10C, since the Ammer catchment misses this component as seen
in Schwientek et al. [20] and Section 3. However, both the model and methodology can
cover the full range of α (chemostatic, dilution, and mobilization behavior).

2.1. Regime and Memory Model (RMM)

To represent the evolution of concentration versus time, we use a simple stochastic
time-series model for nitrate in the river. Our model has an explicit morphing param-
eter α. This parameter allows a transition of the model between chemostatic-type and
chemodynamic-type behavior of the headwater catchment:

Ct =
kt

Qtα
(1)

In Equation (1) and throughout this manuscript, we refer to γ (=−α) as the export
regime ∈ [−1, 0] [-] (α ∈ [0, 1] [-]), C is concentration (∈ <+,

[
M/L3

]
), Q is the discharge

rate (∈ <+,
[
L3/T

]
), and k is the apparent release rate

(
∈ <+,

⌈
M
L3

(
L3

T

)α⌉)
. The subscript

t indicates that parameters/variables depend on the current time t.
When α ≈ 0 (γ ≈ 0), the catchment shows a chemostatic export regime, e.g., con-

centration only depends on the apparent release rate, which then has units of a (fixed)
concentration

[
M/L3

]
. When α is positive (γ < 0), the catchment shows a dilution behavior,

presenting an anti-proportional dependence on the discharge rate. In the limit case of α = 1
(γ ≈ −1), k assumes units of a mass flow rate [M/T].

To ensure that k is never negative, we assume that k follows a lognormal distribution
with mean mk and variance vk. Furthermore, we assume that kt follows (over time) an
auto-regressive model of order one (AR(1), [46]) in order to account for the dominant
characteristic time scale of release and chemical turnover in the catchment. Thus, the AR(1)
model is commensurate with the source strength and includes effects such as hysteresis or
event-to-event variations of source availability.

Setting log(k) = Y, we can define an AR(1) for Y as:

Yt = c + λ Yt−1 + εt (2)

where λ ∈ [0, 1) is a correlation parameter to account for the correlation between concen-
trations at the current time and previous times; c is a constant that is responsible for the
mean; and ε is a white-noise time series, following a normal distribution with mean equal
to 0 and a standard deviation of σε, N(0, σε). The AR(1) is a stochastic model with mean
and variance given by:

mY =
c

1− λ
(3)

vY =
σε

2

1− λ2 . (4)

As seen in Mehne and Nowak [47], the characterization of an AR(1) in calibra-
tion/inferences is made more convenient and intuitive by defining a characteristic time
tch, and the mean and variance of k, respectively, mk and vk. The characteristic time is
defined as

tch = −1/ ln λ , (5)

and the relationships between mY, vY and mk, vk are the well-known moment relations for
the lognormal distribution [48]:

mY = ln

(
mk

2√
vk + mk

2

)
(6)
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vY = ln
(

vk
mk

2 + 1
)

(7)

Equations (6) and (7) allow the adjustment of log(AR(1)) into more understandable
units of k, i.e., [M/L3] or [M/T] rather than for Y = log(k). Therefore, with only four
parameters (α, mk, vk, and tch), we can represent concentrations versus time.

2.2. Bayesian Parameter Inference of Full Time-Series Data

Equations (1)–(7) define a stochastic time-series model for concentration, i.e., a model
that can generate many random time series. Its relevant properties can be controlled by
the choice of values for α, tch, mk, vk, and by using a given time series for Qt. Thus, the
next step is to fit the model to the observed data of concentration Ct. Due to the stochastic
randomness implied for Ct by kt (explicit by the white noise εt in Equation (2)), this is
achieved by choosing parameter values such that the resulting model is most likely to
generate good-fitting random Ct time series. This parameter choice is subject to a list of
plausibility arguments for admissible parameter values.

The framework most suitable for this task is Bayesian parameter inference, as in [49].
In the heart of Bayesian inference lies Bayes’ theorem

p(θ|y) = p(y|θ) p(θ)
p(y)

. (8)

where θ denotes the parameters to be inferred (α, tch, mk, vk) and y denotes the measurement
data (Q, C). The prior p(θ) represents our belief (or knowledge) about the parameters before
seeing any data and has to be chosen by us (Table 1). The first term on the right-hand side,
p(y|θ), is the likelihood of observing the data for the given parameters. The term in the
denominator, p(y), is independent of the parameters θ, and therefore does not need to be
computed. The result is the posterior distribution p(θ|y), which expresses our updated
(calibrated) belief about the parameters after seeing the data y.

Table 1. Prior PDFs for uncertain parameters of the simple stochastic model.

Parameter
(Unit) Distribution Mean Standard

Deviation
Min.

Value
Max.

Value

α (/) uniform - - 0.0 1.0

tch (h) lognormal
LN(µ, σ) = LN (4.35, 0.65) 95.7 71.7 - -

mk

(
mg

l

(
m3

h

)α)
uniform - - 1 40

√
vk(

mg
l

(
m3

h

)α) uniform - - 1 6.32

Following this, we choose a prior distribution for our parameters and derive an
expression for the likelihood. After that, we explain how to obtain a sample from the
posterior distribution via Markov Chain Monte Carlo (MCMC) sampling.

2.2.1. Prior Distributions

Bayesian parameter inference treats unknown parameter values as random variables
and formulates plausibility arguments as prior probability distribution functions (PDF)
(Table 1). Then, it updates these distributions to posterior distributions based on the
available observation data.

We assumed that we were clueless about the export regime α and we only discarded
mobilization behavior as justified in Section 3. Thus, we adopted a uniform distribution
between the two extreme values of chemostatic and pure dilution behavior (α ∈ [0,1]).

For the characteristic time tch, we assumed that concentrations in the river present
roughly weekly cycles (e.g., due to weekly cycles in the release of wastewater treatment
plants, which are in turn triggered by cycles in known activities) with a mean equal to four
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days (mtch = 95.7 h) and a standard deviation of three days (stch = 71.7 h). Thus, the 95%
confidence interval was about [1 d, 14 d]. Because tch must be positive, we chose once again
a lognormal distribution. The corresponding parameters of the lognormal distribution
LN(µ, σ) followed from respective copies of Equations (6) and (7), resulting in µtch = 4.35
and stch = 0.65.

We also assumed little prior information for the mean mk, and variance vk of the
apparent release rate k, so we chose uniform distributions. We will discuss the mean mk first.
For α = 0, it corresponds to the long-term mean of nitrate concentrations. For an average
discharge rate of 0.87 m3/s (Section 3), if we rounded this to ≈1 m3/s, then concentration
C = k (Equation (1)) for both extreme values of α. Therefore, we can interchange C and k in
the following discussion.

We assumed that the expected values of k (e.g., mk) within the river were between
pristine water (≈1 mg/L) and the effective average of the undiluted, agriculturally shaped
groundwater in the Ammer catchment (≈40 mg/L, as observed as integral catchment
output during baseflow by Schwientek et al. [20]). Finally, we will discuss the standard
deviation

√
vk of k. For α = 0, it controls the amplitude of fluctuations in nitrate concentra-

tions. We assumed a uniform distribution between 1 and 6.32, because we could expect
both an almost constant k and a dynamic k.

2.2.2. Likelihood

To compute the likelihood, we used the following semi-analytical method. It calculates
so-called depreciated increments between Yt and Yt−l, where l is the lag distance along
time between two observations. For example, the data we used comprehended 6604 hourly
samples. Between the third and the first samples, the lag time was 2. Therefore, if the
whole time series is taken into account, then the lag time between two observations is l = 1.
Thinning out to half the sampling rate corresponds to l = 2. Irregular sampling triggers
individual lag values between consecutive data values.

We assumed that θ = (α, tch, mk, and vk) were currently proposed trial values. We
then wanted to compute the likelihood for data from the time series y = (Q, C) for the trial
values θ. Note that y can include the whole high-frequency series of data or only a short
list of observations at various lag times.

Using Equation (1), we could transform these two time series of Q and C into a time
series of kt. Then, by applying the log, we obtained a time series of Yt. Next, we calculated
λ = 1/tch (Equation (5)), and then c and σε from mY and vY. We did so by first solving
Equations (6) and (7), and then Equations (3) and (4). Before computing the depreciated
increment between two observations, we wanted to get a Y0 zero-mean AR(1); therefore,
we removed the mean mY (Equation (3)) from Y:

Y0 = Y−mY (9)

Then, the depreciated increments Xl can be computed:

Xl = Yt − λlYt−l =
l

∑
1

λ(l−1)εt−l (10)

Equation (10) shows that the Xl are mutually independent, as they are sums of non-
overlapping segments from the white-noise series εt. The variance and corresponding
standard deviation of the depreciated increment are, respectively:

vXl =
l

∑
1

λ(l−1)σ2
ε (11)

σXl =
√

vXl (12)
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After the rearrangements, the likelihood p(y|θ) is now the probability density value
of Xl, which in turn is given by the multivariate normal distribution:

p(y|θ) =
t=nt−1

∏
t=0

p(Xl|θ)·p(Xl)·dXl, (13)

where nt is the total number of samples of the considered series (here nt = 6604 when using
l = 1). In Equation (13), we can use the simple product rule due to independence within the
time series of Xl. Finally, the likelihood term p(Xl|θ) in Equation (13) is given by

p(Xl|θ) =
1√

2πσ2
Xl

· exp

(
(Xl − 0)2

2σ2
Xl

)
, (14)

which is the normal distribution for Xl implied by the chosen priors and the above equations.

2.2.3. Sampling from the Posterior

With the prior and likelihood in place, we could then sample from the posterior
distribution via MCMC sampling. Here, we explicitly coded MCMC in Matlab [50]. The
scaling factor for the MCMC proposal was constructed as an adjustable fraction of the
posterior standard deviation to get an acceptance rate of approximately 27% (the optimal
acceptance ratio for four dimensions according to Gelman et al. [51]). Since the posterior
standard deviation is only known after the MCMC is run at least once, we used a burn-in
run of the MCMC to obtain good scaling factors for the productive final part of the MCMC.

The posterior marginal PDF of α, p(α|yd), is again given by Bayes’ Theorem [49]:

p(α|yd) ∝
∫

p(yd|α, θ−α, Xl)p(α, θ−α, Xl)dθ−αdXl = p∗(α|yd). (15)

where p(yd|α, θ−α, Xl) is the likelihood of the observed data given α, the remaining pa-
rameters θ−α and Xl, and p(α, θ−α, Xl) is the prior of the parameters and Xl. For simpler
discussion, we reduced the sample to a point-estimate by computing the posterior mean
from the posterior samples:

θ = E[θ|y] ≈ 1
N

N

∑
i=1

(θ|y) i (16)

where N is the length of the MCMC. We used N = 10,000 and N = 100,000 for the burn-in
and the productive part of the MCMC, respectively. Finally, we could compute an inferred
truth value αfull from the full data set, and values αpost,d for various sampling designs d.

2.3. Retrospective Optimal Design of Experiments (ODE)

The objective of our optimal design was to minimize the error ∅ in estimating the
parameter α:

dopt = arg min
d∈D

∅α(d) (17)

where D is a set of considered design strategies, d is any considered design, dopt is the best
design among D, and ∅α(d) is the squared error in estimating α for design d (as αpost,d)
when compared to αfull:

∅α(d) =
(

α f ull − αpost,d

)2
(18)

In summary, when we thinned out the time-series data, only including data as specified
by design d, we inferred α and hoped that this αpost,d would remain close to αfull (α inferred
with full time-series data). We also assessed whether αpost,d had little remaining uncertainty
as expressed by intervals in its distribution p(α|yd) according to Equation (15).
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We propose 20 designs based on four sampling strategies (Table 2). Firstly, we thinned
out the observed data based on time-frequency strategies (d = 1 to 4). Secondly, we thinned
out based on discharged volume within the river (d = 5 to 8). In both strategies, sampling
was uniform (in time or discharged water), and we varied the number of samples between
5 and 40. Thirdly, we applied event-based sampling strategies, in which we considered
samples at low discharge rates (d = 9 to 12) and high ones (d = 13–16). The last strategy
considered low and high discharge rates together (d = 17 to 20). Here, we also considered
between 5 and 40 samples. Designs should not be understood as random selections but
manual selections as described in Appendix B. In this same appendix, the reader can find
the observation values and the exact time coordinates for each sampling strategy.

Table 2. Sampling strategies.

d Strategy Description # Samples

1

Time frequency

Samples are taken uniform in time: every 55 d 5
2 every 27.5 d 10
3 every 13.75 d 20
4 every 6.875 d 40

5
River discharge

frequency

Samples are taken uniform in flow discharge: every
4,434,944 m3 5

6 every 2,217,472 m3 10
7 every 1,108,736m3 20
8 every 554,368 m3 40

9

Low Q
Samples are taken at low discharge rates (Q < 0.67 m3/s)
that belong to different peak events (uncorrelated samples).
We choose them equidistantly.

5
10 10
11 20
12 40

13

High Q

Samples are taken at high discharge rates (Q > 2.5 m3/s)
for one peak event (correlated samples). When no more
observations are available of one peak, we proceed to grab
samples of a second peak event and so on.

5
14 10
15 20
16 40

17
Low and High

Q

Samples are taken at low and high discharge rates
following previous Low Q and High Q strategies. Half of
the samples are at low Q except for d = 17 in which only
two samples are at low Q.

5
18 10
19 20
20 40

For this study, we considered a low discharge rate to be lower than 0.67 m3/s (which
corresponds to a value 25% below the mean discharge of the whole time series) and a high
discharge rate to be Q > 2.5 m3/s.

3. Catchment and Data

The data used in this study were already published in 2013 [20]. The data were
observed in the gauged catchment of the Ammer River located in the state of Baden-
Württemberg in southwest Germany. The area of the catchment upstream of the gauging
station Pfäffingen is 134 km2. The geology is dominated by limestone of the Middle
Triassic (“Oberer Muschelkalk”) and gypsum-bearing mudstone of the Upper Triassic
(“Gipskeuper”). Both formations, particularly the limestone, are strongly karstified, and the
Ammer River is primarily fed by karst springs, most of them being situated close to the main
stem river [52]. In line with the large storage capacity of the karst system, the permeable
rocks of the catchment lead to a dampened hydrologic variability with a very strong and
steady baseflow. Mean annual low flow (0.44 m3/s) is as high as 50% of the long-term
average flow (0.87 m3/s) (retrievable from https://www.hvz.baden-wuerttemberg.de/,
accessed on 14 May 2020). Nevertheless, pronounced and sharp flood peaks typically occur
during the summer season. They are caused by surface runoff generation on impervious
urban areas in the upper catchment [20,53]. Usually, due to steep recessions, baseflow is

https://www.hvz.baden-wuerttemberg.de/
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attained within a few hours after the flood peaks. In total, 17% of the catchment area is
urbanized and 71% is occupied by agriculture, 66% of which is used for arable land [20].

In terms of hydrochemistry, the strong and steady contribution from the limestone
karst system leads to stable concentrations of geogenic and agriculture-derived solutes
such as nitrate and chloride. A short-term dilution of these compounds may occur during
storm events. Then, large amounts of event water with low solute content are introduced
into the river [20]. Discharge data and chemical data were collected hourly with in situ
analyzers from 07/1/2011 to 03/31/2012. This data set of observations includes over 6500
measurements of nitrate concentrations, electric conductivity, and discharge rates.

Here, we focus on discharge rate, Q, and nitrate concentration, C, (Figure 1a) although
our proposed procedure could likewise be applied to other compounds. Over the time
series, the average Q (0.93 m3/s) was similar to the long-term average (0.87 m3/s). The max-
imum Q (27.5 m3/s) represents an exceptional flood with a return period of about 20 years.
The average C was 31.5 mg/L, but a range between 9.5 and 44.7 mg/L was captured.
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Figure 1a demonstrates the strong baseflow component of the Ammer system with a
steady Q and 60% of all measured values falling within the narrow range of 0.5–1.0 m3/s
(log10Q = −0.30–0.00) during the recorded time series. During these baseflow periods,
flow is predominantly fed from the large karst storage and, at rather constant rates, from
wastewater treatment plant effluents, and thus exhibits stable nitrate concentrations around
an average of 31.5 mg/L (log10C = 1.50). Most floods occur in the summer period and are
the result of convective precipitation events. They typically have very short durations with
steep recessions and cause a dilution of the nitrate concentrations. This may be explained
by a fast runoff component dominated by a heavy precipitation event on sealed urban
surfaces that carry low nitrate concentrations.

At the same time, flow supplied from the karst system with high C varies relatively
little during flood events. There is no intermediate flow component that would connect
agricultural soils with the stream network and mobilize additional nitrate fluxes. Such
an interflow component would likely result in prolonged recessions of the hydrograph
and, more importantly, positive relations between Q and C. In summary, the system is
dominated by baseflow, which explains the clear tendency towards a chemostatic behavior.

Figure 1b shows the classic approach to determine the export regime of a catchment
by computing a regression slope of log10C versus log10Q. The effect of the short-term
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dilutions by event water inputs results in a slightly negative relation between Q and C,
expressed by a small negative regression slope (−0.1804 in Figure 1b). This means that
the Ammer River shows a rather chemostatic export regime for nitrate. The red circle in
Figure 1b includes observations taken sequentially over time that belong to a hysteretic
event. It depicts hysteresis in a highly visible fashion. Other hysteresis loops exist as well,
e.g., the rightmost group of data points. Many more such loops are hidden in the bulk
of the point cloud. With such unconventional residual statistics (i.e., loop patterns in the
scatter around the regression line), the applied least-squares linear regression is not robust.
Especially for smaller time series, almost any regression slope between 0 and −1 (and even
outside these bounds) would be possible.

To show that these data do not comply with the regression assumptions (e.g., the
mean is not constantly zero and the variance is not constant), we computed the residuals in
the C–Q regression of the Ammer catchment. In Appendix A, we present the plots of the
residuals, moving window average, and moving window variance (Figure A1), as well as
the correlation of Residual(t) with Residual(t-1) (Figure A2).

4. Results
4.1. RMM Simulations

Figure 2 displays some examples generated with our RMM for a fixed hyper-parameter
(α or tch), while the other three parameters are inferred by Bayesian inference using the
full-time series data. Table 3 includes the inferred hyper-parameters used to generate the
concentration time series shown in Figure 2.
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Figure 2. Concentration time-series data generated with our simple stochastic model for α = 0, α = 1, tch = 20, and tch = 500.
Q values are based on Q of Figure 1a. Concentration, C, units are in mg/L and discharge rates, Q, in m3/s.

Figure 2a shows −log10C versus time for the two fixed values of α (0 and 1) and the
two fixed values of tch (20 h and 500 h), whereas Figure 2b shows −log10C versus log10Q
for the same fixed values of α and tch. Observing the different patterns of α from 0 (blue) to
1 (red), and of tch from 20 h (orange) to 500 h (purple), it can be seen that greater values of
α and tch produce larger changes in the concentration values. Figure 2b shows how our
model is able to reproduce the hysteresis phenomena with the presence of loops.

We would like to mention that the CPU time of applying our RMM model together
with MCMC (for an ensemble size of 100,000) is less than three minutes on a standard
desktop PC (Intel® Core™ i7-7700 CP @3.60 GHz, 32 GB of RAM), which makes it a very
affordable and efficient model.
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Table 3. Inferred hyper-parameters values when α or tch are fixed using the full time-series data.

Fixed Hyper-Parameter

α = 0 α = 1 tch = 20 tch = 500

Inferred Hyper-Parameter

α (/) - - 0.218 0.016

tch (h) 105.9 42.1 - -

mk

(
mg

l

(
m3

h

)α)
31.0 23.6 27.1 17.5

√
vk(

mg
l

(
m3

h

)α) 7.0 28.3 1.9 39.8

4.2. Characterization with Extensive Time-Series Data

In Table 4, we show the inferred mean posterior values of α, tch, mk, and vk based on
the full given discharge data Qt and measured concentration data Ct.

Table 4. Inferred values of the Ammer catchment using the whole time-series data (a total of
6604 measurements).

Parameter (Unit) Inferred Value

α f ull (/) 0.011

tch, f ull (h) 106.4

mk, f ull

(
mg

l

(
m3

h

)α)
30.8

√vk, f ull

(
mg

l

(
m3

h

)α)
2.6

The referral value for α f ull is equal to 0.011 and corresponds to a chemostatic be-
havior (γ ≈ 0). Therefore, concentration mainly depends on the apparent release rate k
(Equation (1)). This agrees with the hydrochemical arguments by Schwientek et al. [20]
discussed in Section 3. tch, f ull is equal to 106.4 h, which corresponds to 4.4 days. This value
is similar to the assumed mean of four days in Table 1. Therefore, the Ammer river indeed
presents roughly weekly cycles of nitrate concentration release into the river.

The average expected nitrate concentration is mk, f ull = 30.8, which lies between pristine
water (1 mg/L) and the integral catchment output during baseflow (Section 2.2.1). Also,
mk, f ull is very similar to the average C (31.5 mg/L) obtained in Schwientek et al. [20]. The
variance of k is vk, f ull = 7.83, which indicates that the system has a relatively low dynamic
in (log-)release.

Figure 3 shows that the interpolation (black line) produced by the RMM, when ap-
plying inferred values in Table 4, fully goes through the data we used for calibration (red
points). This figure also displays the credible intervals (CI) (2.5% and 97.5%, respectively)
for daily observations (time = 0–90 days), every 4 days (time = 90–180 days), every 8 days
(time = 180–240 days), and no sampling (time > 240 days). The 95% range is more narrow
when more observations are considered, decreasing the uncertainty of the RMM interpola-
tion. Thus, the RMM cannot only calibrate the hyper-parameters of the actual time series,
but can also interpolate with quantified standard errors (grey lines). Figure 3 also shows
some concentration predictions (colored lines) generated by the RMM after the calibration.
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Figure 3. Concentrations interpolated by the RMM (black line) using the inferred values in Table 4 and
assimilated data (red points). Daily observed data are shown with white points. Data is assimilated
daily for the first 90 days, every 4 days from 90 days to 180 days, and every 8 days from 180 days
to 240 days. Predictions (colored lines) of the RMM are shown for a time larger than 240 days. The
upper and lower CI are also shown in panel (a) (grey lines).
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4.3. Characterization with Sparse Data (Sampling Strategies)

Figure 4 shows the prior and posterior distributions of α for the sampling strategies
described in Table 2. The minimum and maximum of the box plots mark the 95% CI (2.5%
and 97.5% values, respectively). The red star marks the posterior mean of α f ull , whereas
the black stars mark the posterior mean values inferred by the designs. Only design d = 16
can reproduce a posterior α with very high confidence. Yet, the other event-based designs
involving samples at high Q (High Q events d = 13 to 16, and Low and High Q events d = 17 to
20) are surprisingly confident, although using only very few samples. All these strategies
present a range of the 95% CI lower than 0.200 (Table 5).

Table 5 summarizes the results of the 20 sampling strategies for the RMM, including
posterior alpha αpost,d (Equation (16)), the value of the 95% range, and values of the 2.5%
CI and 97.5% CI.

Generally, increasing the number of samples from 5 to 40 decreases the bias of the
posterior mean αpost,d. It also increases the reliability of the designs: the range of the CI
decreases. For instance, the time frequency strategy produces a quick reduction of the α
bias when the number of samples increases: αpost,d decreases from 0.351 (d = 1 with five
samples) to 0.113 (d = 4 with 40 samples). In addition, the width of the 95% range for d = 4
is reduced from the prior value of 0.95 (0.975–0.025) to 0.28 (0.29–0.01). However, strategies
based on river discharge frequency and Low Q events do not follow this tendency; instead,
their biases of αpost,d seem to increase when increasing the number of samples from 5 to 20
(e.g., d = 5 versus d = 7). However, these two types of strategies seem to benefit when the
number of samples is increased to 40 (see Section 5.3). Therefore, an improvement will be
expected when more samples are taken for these two types of strategies.

Figure 4. Prior and posterior distributions of α for designs based on time and river discharge frequency and event-based strategies.
The red star shows the posterior value α f ull and black stars show the posterior mean values αpost,d inferred by the designs.
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Table 5. Summary of α and range of CI 95% for each design for the RMM and linear regression model after applying ODE.
Highlighted in green and grey are the best and worst sampling strategies of the RMM, respectively.

RMM Linear Regression

d #
Samples α f ull CI 2.5% CI 97.5% Range

95% αreg CI 2.5% CI 97.5% Range
95%

Full 6604 0.011 0.002 0.02 0.018 0.180 0.167 0.194 0.027
Prior 0 0.5 0.025 0.950 0.950

d # samples αpost,d CI 2.5% CI 97.5% Range
95% αreg,d CI 2.5% CI 97.5% Range

95%

Time
frequency

1 5 0.351 0.013 0.911 0.898 −0.093 −0.696 0.509 1.206
2 10 0.256 0.012 0.673 0.661 0.119 −0.095 0.333 0.429
3 20 0.153 0.008 0.401 0.393 0.109 −0.073 0.291 0.364
4 40 0.113 0.006 0.287 0.281 0.055 −0.144 0.253 0.397

River
discharge
frequency

5 5 0.202 0.01 0.537 0.527 0.094 −0.087 0.275 0.363
6 10 0.206 0.011 0.513 0.502 0.131 −0.035 0.298 0.333
7 20 0.278 0.052 0.526 0.474 0.259 0.041 0.477 0.436
8 40 0.269 0.139 0.397 0.258 0.262 0.141 0.383 0.243

Low Q
9 5 0.344 0.012 0.934 0.922 −0.242 −0.832 0.348 1.180
10 10 0.479 0.028 0.969 0.941 0.981 −1.080 3.041 4.121
11 20 0.564 0.072 0.967 0.896 0.550 −0.380 1.480 1.860
12 40 0.265 0.017 0.656 0.64 0.311 −0.175 0.796 0.971

High Q
13 5 0.083 0.005 0.200 0.195 0.208 −0.264 0.679 0.943
14 10 0.078 0.003 0.182 0.178 0.117 −0.251 0.484 0.735
15 20 0.067 0.002 0.200 0.198 0.103 −0.094 0.300 0.394
16 40 0.025 0.001 0.087 0.086 0.020 −0.447 0.488 0.935

Low &
High Q

17 5 0.076 0.005 0.155 0.15 0.040 −0.045 0.126 0.171
18 10 0.074 0.004 0.171 0.167 0.102 0.020 0.184 0.163
19 20 0.072 0.006 0.163 0.156 0.164 0.097 0.232 0.135
20 40 0.134 0.049 0.224 0.175 0.227 0.176 0.278 0.102

As already mentioned, when we apply sampling strategies based on events (Figure 4),
we can observe two different performances. There are sampling strategies that decrease
the bias and uncertainty of αpost,d significantly, such as strategies based on High Q events
(d = 13 to 16) and Low and High Q events (d = 17 to 20). All these strategies have a αpost,d
between 0.025 and 0.134. On the other hand, the sampling strategy only based on Low Q
events show a low bias reduction when taking 40 samples (d = 12), showing αpost,d = 0.265.
Thus, we have strong and weak event-based sampling strategies.

Strategies that show the lowest reduction of uncertainty (when range CI 95% > 0.50)
include both strategies based on frequency for a low number of samples (5 and 10, d = 1,2,
5, and 6) and strategies based on measuring Low Q events (d = 9 to 12). Obviously, strategies
with only 5 or 10 samples involve less information; therefore, a slight improvement of
the posterior is expected. However, as observed in Figure 4 and Table 5, strategies that
collect data during High Q events even with a low number of samples produce a significant
reduction of the bias and uncertainty of αpost.

In summary, from the five types of strategies (Figure 4), the High Q events strategy
stands out as the best strategy because it not only decreases the posterior bias, but also
reduces the uncertainty width. Another good option that improves the prediction of αpost
is applying the Low and High Q events strategy, although it presents a higher bias and
uncertainty. Therefore, to maximize the variance reduction of the export strength and
minimize the data collection cost, we recommend High Q events strategies.

5. Discussion
5.1. Comparison of the RMM to the Linear Regression Approach

Both methods, namely RMM and linear regression, agreed that the Ammer catchment
shows a chemostatic regime with α f ull = 0.011 and αreg = 0.180, respectively, when all
6604 samples were used for the analysis. However, we strongly believe that, with much
fewer data used, αpost,d inferred with our method is more robust than αreg,d obtained by
simple regression. Table 5 also includes a summary of αreg,d produced by simple regression
when applying the different sampling strategies in Table 2. While the 95% CI for the RMM
is based on the likelihood-weighted MCMC results, the 95% CI for the regression slope is
taken from the standard textbook equation, as in [31].
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Our method shows robustness: αpost,d decreases, approaching the inferred value, when
increasing the number of samples. In addition, when increasing the number of samples, the
width of the confidence range decreases. On the other hand, αreg,d can show negative values
for some sampling strategies or even values greater than one. These negative αreg,d do not
make any sense since α should always be within the interval [0,1] for the Ammer catchment;
thus αreg,d shows a much larger impact of randomness. For example, when we increase the
number of samples, for d = 1 to d = 2 and d = 3, αreg,d increases and decreases inconsistently.

Interestingly, designs d = 4 and d = 16 produce αreg,d close to α f ull , which is probably a
consequence of the high number of samples (d = 4 time frequency with 40 samples) and a
consequence of choosing a suitable sampling strategy based on high discharge rates (d = 16
High Q events with 40 samples).

To summarize, we have shown that the simple regression approach can be misleading
for small, economically efficient sampling campaigns. We have also shown the strongly
increased robustness of our model compared to conventional regression. Therefore, the
results of this study can help characterize the export regime of a catchment and manage
water pollution in rivers at lower monitoring costs.

5.2. Performance of Sampling Strategies

Figure 5 shows plots of −log10C versus log10Q for event-based designs with 40 sam-
ples (d = 12, 16, and 20). For each design, we show the slope produced by linear regression
αreg= 0.180 (black line) and the observed values (red circles).

Strategies based on Low Q events show a low performance (Section 4.3) because they
cover small ranges of C and Q (Figure 5a). As already seen in Section 4.3, the best strategies
involve sampling during one or more peak events or several events of low discharge.
However, the designs based on Low and High Q events present a larger uncertainty than
designs based only on High Q events. Measuring during large peak events (High Q events
strategy) ensures that data include changes of C when Q increases and decreases (loops
seen in Figure 5b,c on the right side). Measuring at low and high events also allows for a
wide range of Q values (Figure 5c).

On the other hand, the worst strategies with a higher bias of αpost are based on river
discharge frequency and on measuring events at low Q. Therefore, combinations of samples
belonging to different flood events (e.g., d = 5, 6, and 7, i.e., when the number of samples
is between 5 and 20 for river discharge frequency) do not produce a good αpost,d, since
the valuable information of the memory-type relationship between Q and C is missing.
Figure 6a displays d = 5 (river discharge frequency with five samples) and Figure 6b shows
d = 9 (low Q events with five samples). Figure 6 clearly shows that five samples are not
enough to catch loop changes of C–Q or cover a wide range of Q.

When only Low Q events are measured (d = 9 to 12), the strategy fails to span a range
of different Q values even when the number of samples is increased to 40; therefore, they
do not produce good posteriors. Thus, some sampling strategies improve by increasing the
number of observations, but others will not benefit.

In summary, we have shown that sampling strategies based on extreme events (in-
cluding High Q or both High and Low Q) are key to inferring the catchment behavior with
low bias and low uncertainty. This is important, regardless of whether using our RMM or
linear regression.



Water 2021, 13, 1723 16 of 26

Figure 5. Comparison of observed samples to linear regression approach for sampling strategies considering event-based
designs with 40 observations.

Figure 6. Comparison of observed samples to linear regression approach for d = 5 and d = 9 with only five samples.
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5.3. Comparison to Other Studies

The idea that the perceived C–Q relationship changes when samples are taken by time
frequency or by events is not new. Recent studies have distinguished between low and
high discharge rates to determine C–Q relationships [5,6,22,36,40], and others have looked
at the frequency of sampling [14,22] or sampling strategy [34].

Minaudo et al. [40] created a model in which C is subject to slow Q (seasonal) and
fast Q (storm event) variations. Knapp et al. [5] showed that the C–Q relationship differed
significantly for some solutes (NO3, K, Cl) depending on when samples were observed.
The C–Q relationship of these solutes was differently impacted when discharge changes
were caused by individual peak events or by longer time scales. These studies observed
opposite export regimes based on when measurements were observed. Contrarily, the
RMM shows robustness (Table 5) since it does not result in “opposite” export regimes
depending on when samples are taken.

Floury et al. [14] evaluated the effects of lowering the sampling frequency on the
hydrochemical signal by applying artificial subsampling to the high-frequency sampling.
They found that concentration signals were degraded by being smoothed. Bieroza et al. [11]
showed that a lower number of samples produced more uncertainty in water quality
parameters as a function of the C–Q slope. In our study, we observed the same trend.
However, our RMM can predict a good export regime with only five samples if the sampling
strategy is based on High Q events (d = 13). Nevertheless, the prediction notably improves
when the number of samples increases.

Zhang and Ball [34] tested different sampling approaches and used various models
(including the WRTDS model). Their best strategy included a mixture of 12 regular samples
and 8 stormflow samples per year. However, they did not consider a sampling strategy
that only accounted for High Q events. The finding that sampling at High Q events is better
informs concentration pattern evolution with discharge was expected. At baseflow, nitrate
concentrations remain quite constant; the information added by sampling again at low
discharges is low. In contrast, at high discharges, where nitrate concentrations evolve
the most, adding another sample is valuable to characterize the concentration variation
with discharge.

6. Summary and Conclusions

In this work, we proposed a better and more robust alternative to model the behavior
of a catchment. Generally, the export regime of a catchment (chemostatic, dilution, or
mobilization type) is characterized by the slope obtained by plotting log10C versus log10Q
measured in the river at the catchment outlet. However, we can usually observe in this
representation that measurements show hysteresis effects of the system, defying the as-
sumptions of linear regression. With these assumptions violated, linear regression results
can be suboptimal, biased, and strongly misleading. In contrast, our regime-and-memory
model (RMM) includes an explicit parameter to model the type of export regime and a
parameter to account for the characteristic time scale of release and chemical turnover in
the catchment. Thus, our model can mimic these memory effects of the catchment.

For demonstration, we used a high-frequency data series of nitrate concentrations
collected with a high-frequency in situ analyzer in a catchment in Germany for nine months.
We showed that our simple model is able to mimic the nitrate dynamics of the catchment,
including the hysteresis effect. Also, our model showed robustness and consistency in
inferring the export regime compared to the linear regression, even for much smaller data
sets. Thus, our RMM has the potential to improve export regime predictions.

Regarding the sampling strategies, we found out that the strongest sampling strategies
are based on High Q events for the Ammer catchment. These strategies cover a large range
of discharge rates and accompanied C values. Representativeness of the collected data (in
the face of short-term fluctuations in compound release and catchment memory effects) is
ensured by stretching the sampling days across events. From our analyses, we observed
that five samples/observations are necessary to produce a significant reduction of α bias
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(or better accuracy) if the right sampling strategy is implemented (High Q events strategy).
However, to decrease the uncertainty (or increase the precision), one must increase the
number of samples.

Thus, for catchments with similar characteristics to the Ammer catchment, we recom-
mend collecting the samples when peak events occur since this provides a wide range of Q
in a short time interval. However, it bears the risk that these large events are dependent
on the season, so their observation would be restricted seasonally. To avoid this seasonal
restriction, alternatively, we recommend measuring samples at uncorrelated events at low
Q. However, the uncertainty of the export regime will be larger than when C is measured
only at High Q events. Hence, sampling strategies based on extreme events, both at low
and high Q, are key to reducing the prediction uncertainty of the catchment behavior, and
event-based thinking can be reasonably generalized to catchments with C–Q behavior that
can be represented by our RMM.

Future work with the RMM includes validating these statements with longer time
series, more solutes, as well as data from different catchments. Also, further research will
be needed to extend the presented statistical approach of the RMM to consider α for the
mobilization transport regime (for positive correlations of log10Q versus log10C), in which
wet periods do not result in dilution but an additional mobilization of substances.
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Appendix A. Residuals in the C–Q Regression of the Ammer Catchment

Residuals are computed following the next equation:

Residual(t) = y(t) – f (log10Q(t)) (A1)

where f (log10Q(t)) is the function obtained by linear regression for log10C(t).
Figure A1 shows that the residuals do not have a constant mean equal to zero and that

its variance is not constant.
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Figure A1. Residuals along time (top), moving average of residuals (middle), moving variance of
residuals (bottom). The window size is 24 samples (equivalent to one day). Note that the moving
average is not always equal to zero, and the moving variance is not constant.

Figure A2 demonstrates how the residuals Residual(t) and Residual(t-1) are correlated:

Figure A2. Residual(t) versus Residual(t-1).
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Appendix B. Sampling Strategies

Appendix B.1. Time Frequency Sampling Strategies

We chose the last day available (t = 275 d) and evenly distributed in time 5, 10, 20, and
40 samples.

d Q (m3/s) C (mg/L) t (d) l

1

1.29 30.44 55.00 1321
0.69 34.09 110.00 2641
0.62 26.78 165.00 3961
1.23 34.09 220.00 5281
0.81 35.20 275.00 6601

2

1.50 24.97 27.50 661
1.29 30.44 55.00 1321
0.62 35.93 82.50 1981
0.69 34.09 110.00 2641
0.42 33.30 137.50 3301
0.62 26.78 165.00 3961
1.41 29.97 192.50 4621
1.23 34.09 220.00 5281
0.89 34.00 247.50 5941
0.81 35.20 275.00 6601

3

1.00 20.91 13.75 331
1.50 24.97 27.50 661
0.76 24.84 41.25 991
1.29 30.44 55.00 1321
0.92 31.03 68.75 1651
0.62 35.93 82.50 1981
0.62 35.74 96.25 2311
0.69 34.09 110.00 2641
0.69 33.18 123.75 2971
0.42 33.30 137.50 3301
0.36 32.66 151.25 3631
0.62 26.78 165.00 3961
0.85 23.03 178.75 4291
1.41 29.97 192.50 4621
1.70 30.78 206.25 4951
1.23 34.09 220.00 5281
1.14 29.66 233.75 5611
0.89 34.00 247.50 5941
0.89 33.50 261.25 6271
0.81 35.20 275.00 6601

4

6.68 24.59 6.87 166
1.00 20.91 13.75 331
0.70 24.74 20.62 496
1.50 24.97 27.50 661
1.51 30.79 34.37 826
0.76 24.84 41.25 991
0.67 27.09 48.12 1156
1.29 30.44 55.00 1321
0.57 31.94 61.87 1486
0.92 31.03 68.75 1651
0.68 35.42 75.62 1816
0.62 35.93 82.50 1981
0.55 35.77 89.37 2146
0.62 35.74 96.25 2311
0.62 30.36 103.12 2476
0.69 34.09 110.00 2641
0.62 31.25 116.87 2806
0.69 33.18 123.75 2971
0.69 36.21 130.62 3136
0.42 33.30 137.50 3301
0.42 33.14 144.37 3466
0.36 32.66 151.25 3631
0.62 22.75 158.12 3796
0.62 26.78 165.00 3961
0.77 5.84 171.87 4126
0.85 23.03 178.75 4291
1.14 27.59 185.62 4456
1.41 29.97 192.50 4621
1.14 33.77 199.37 4786
1.70 30.78 206.25 4951
1.41 35.94 213.12 5116
1.23 34.09 220.00 5281
1.05 34.45 226.87 5446
1.14 29.66 233.75 5611
0.97 32.40 240.63 5776
0.89 34.00 247.50 5941
0.97 34.10 254.38 6106
0.89 33.50 261.25 6271
0.81 34.10 268.13 6436
0.81 35.20 275.00 6601
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Appendix B.2. River Discharge Frequency Sampling Strategies:

We chose the last observation available (t = 275.13 d) and calculated the total river
discharge (in m3) for this period. Then, we evenly distributed 5, 10, 20, and 40 samples
based on the river discharge.

d Q (m3/s) C (mg/L) t (d) l

5

4.08 28.55 44.92 1079
0.55 33.66 115.46 2772
1.21 28.43 183.83 4413
1.14 34.87 221.50 5317
0.81 34.40 275.13 6604

6

1.36 24.16 27.54 662
4.08 28.55 44.92 1079
0.62 36.60 78.71 1890
0.55 33.66 115.46 2772
0.48 29.58 161.50 3877
1.21 28.43 183.83 4413
1.90 23.95 203.50 4885
1.14 34.87 221.50 5317
0.89 34.90 246.54 5918
0.81 34.40 275.13 6604

7

1.58 20.00 13.54 326
1.36 24.16 27.54 662

10.82 12.53 36.08 867
4.08 28.55 44.92 1079
0.54 27.05 58.42 1403
0.62 36.60 78.71 1890
1.21 24.39 98.67 2369
0.55 33.66 115.46 2772
0.55 31.46 138.17 3317
0.48 29.58 161.50 3877
1.30 8.38 170.37 4090
1.21 28.43 183.83 4413
1.41 32.88 193.12 4636
1.90 23.95 203.50 4885
1.41 36.06 211.54 5078
1.14 34.87 221.50 5317
1.14 30.98 233.62 5608
0.89 34.90 246.54 5918
0.89 34.00 260.13 6244
0.81 34.40 275.13 6604

8

1.91 23.66 7.37 178
1.58 20.00 13.54 326
0.71 24.35 21.12 508
1.36 24.16 27.54 662
0.95 31.89 34.67 833

10.82 12.53 36.08 867
1.98 19.82 38.04 914
4.08 28.55 44.92 1079
0.96 30.94 49.58 1191
0.54 27.05 58.42 1403
0.55 29.70 68.25 1639
0.62 36.60 78.71 1890
0.55 35.13 88.92 2135
1.21 24.39 98.67 2369
0.69 30.93 107.00 2569
0.55 33.66 115.46 2772
0.62 33.32 126.62 3040
0.55 31.46 138.17 3317
0.42 32.32 153.33 3681
0.48 29.58 161.50 3877
7.73 14.64 168.58 4047
1.30 8.38 170.37 4090
1.21 17.76 176.62 4240
1.21 28.43 183.83 4413
3.06 24.54 188.83 4533
1.41 32.88 193.12 4636
1.14 33.03 198.08 4755
1.90 23.95 203.50 4885
2.01 28.50 207.33 4977
1.41 36.06 211.54 5078
1.23 35.48 216.17 5189
1.14 34.87 221.50 5317
0.97 35.97 227.79 5468
1.14 30.98 233.62 5608
1.05 32.20 240.08 5763
0.89 34.90 246.54 5918
0.97 32.70 253.13 6076
0.89 34.00 260.13 6244
0.81 34.90 267.50 6421
0.81 34.40 275.13 6604
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Appendix B.3. Low Q Sampling Strategies

We considered a low discharge rate equal to 0.67 m3/s (which corresponds to a value
25% below the mean discharge of the whole time series). Then, we chose different low
events (uncorrelated samples) equidistantly.

d Q (m3/s) C (mg/L) t (d) l

9

0.47 29.29 44.25 1063
0.69 32.35 79.46 1908
0.62 34.46 109.46 2628
0.55 34.09 136.67 3281
0.66 32.90 261.38 6274

10

0.51 25.48 17.96 432
0.52 29.60 44.21 1062
0.65 30.33 64.37 1546
0.62 34.91 79.12 1900
0.62 34.26 92.79 2228
0.55 33.75 109.33 2625
0.69 33.18 123.75 2971
0.48 33.10 136.50 3277
0.36 34.43 149.17 3581
0.69 5.78 171.92 4127

11

0.46 26.78 8.29 200
0.51 25.48 17.96 432
0.47 24.97 31.33 753
0.52 29.60 44.21 1062
0.56 34.22 54.08 1299
0.65 30.33 64.37 1546
0.52 36.25 72.50 1741
0.62 34.91 79.12 1900
0.55 36.45 86.46 2076
0.62 34.26 92.79 2228
0.62 27.33 102.37 2458
0.55 33.75 109.33 2625
0.55 33.19 117.42 2819
0.69 33.18 123.75 2971
0.55 34.16 130.17 3125
0.48 33.10 136.50 3277
0.55 32.95 142.83 3429
0.36 34.43 149.17 3581
0.30 33.35 155.58 3735
0.69 5.78 171.92 4127

12

0.52 32.26 3.25 79
0.46 26.78 8.29 200
0.54 33.24 11.83 285
0.51 25.48 17.96 432
0.60 27.06 24.92 599
0.47 24.97 31.33 753
0.67 28.10 35.50 853
0.52 29.60 44.21 1062
0.64 28.27 50.42 1211
0.56 34.22 54.08 1299
0.56 35.21 60.62 1456
0.65 30.33 64.37 1546
0.56 39.31 69.17 1661
0.52 36.25 72.50 1741
0.68 34.43 75.75 1819
0.62 34.91 79.12 1900
0.55 33.32 83.29 2000
0.55 36.45 86.46 2076
0.55 37.39 89.62 2152
0.62 34.26 92.79 2228
0.62 34.89 95.96 2304
0.62 27.33 102.37 2458
0.62 30.44 106.08 2547
0.55 33.75 109.33 2625
0.62 29.91 114.17 2741
0.55 33.19 117.42 2819
0.62 34.02 120.58 2895
0.69 33.18 123.75 2971
0.62 30.54 126.92 3047
0.55 34.16 130.17 3125
0.48 34.31 133.33 3201
0.48 33.10 136.50 3277
0.55 34.84 139.67 3353
0.55 32.95 142.83 3429
0.42 31.52 146.00 3505
0.36 34.43 149.17 3581
0.30 31.59 152.33 3657
0.30 33.35 155.58 3735
0.62 25.06 163.83 3933
0.69 5.78 171.92 4127
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Appendix B.4. High Q Sampling Strategies

We considered a high discharge rate equal to 2.5 m3/s. Then, for one peak event, we
chose equidistant samples (correlated samples). When no more observations were available
of one peak, we proceeded to obtain samples of a second peak event, and so on.

d Q (m3/s) C (mg/L) t (d) l

13

3.12 27.72 35.79 860
17.23 27.55 35.83 861
23.31 23.36 35.87 862
27.54 17.22 35.92 863
25.90 14.02 35.96 864

14

3.12 27.72 35.79 860
17.23 27.55 35.83 861
23.31 23.36 35.87 862
27.54 17.22 35.92 863
25.90 14.02 35.96 864
21.23 12.01 36.00 865
15.22 12.48 36.04 866
10.82 12.53 36.08 867
8.43 14.31 36.12 868
6.66 15.32 36.17 869

15

3.12 27.72 35.79 860
17.23 27.55 35.83 861
23.31 23.36 35.87 862
27.54 17.22 35.92 863
25.90 14.02 35.96 864
21.23 12.01 36.00 865
15.22 12.48 36.04 866
10.82 12.53 36.08 867
8.43 14.31 36.12 868
6.66 15.32 36.17 869
5.40 16.12 36.21 870
4.27 16.98 36.25 871
3.50 16.80 36.29 872
2.73 22.40 168.42 4043
5.21 20.37 168.46 4044
7.50 18.87 168.50 4045
7.73 16.18 168.54 4046
7.73 14.64 168.58 4047
8.93 11.02 168.62 4048
9.18 9.49 168.67 4049

16

3.12 27.72 35.79 860
17.23 27.55 35.83 861
23.31 23.36 35.87 862
27.54 17.22 35.92 863
25.90 14.02 35.96 864
21.23 12.01 36.00 865
15.22 12.48 36.04 866
10.82 12.53 36.08 867
8.43 14.31 36.12 868
6.66 15.32 36.17 869
5.40 16.12 36.21 870
4.27 16.98 36.25 871
3.50 16.80 36.29 872
2.73 22.40 168.42 4043
5.21 20.37 168.46 4044
7.50 18.87 168.50 4045
7.73 16.18 168.54 4046
7.73 14.64 168.58 4047
8.93 11.02 168.62 4048
9.18 9.49 168.67 4049

10.74 7.84 168.71 4050
12.14 5.65 168.75 4051
10.74 7.26 168.79 4052
11.57 4.24 168.83 4053
11.57 3.30 168.87 4054
8.20 2.12 168.92 4055
6.41 1.74 168.96 4056
4.83 1.62 169.00 4057
3.17 1.51 169.04 4058
2.60 1.47 169.08 4059
3.57 38.64 6.71 162
6.29 42.54 6.75 163
7.03 31.31 6.79 164
7.82 22.64 6.83 165
6.68 24.59 6.87 166
5.29 21.10 6.92 167
4.15 21.33 6.96 168
3.07 22.49 7.00 169
2.99 23.01 7.04 170
2.75 25.78 7.08 171
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Appendix B.5. Low and High Q Sampling Strategies

Samples were taken at low and high discharge rates following previous Low Q and
High Q strategies. Half of the samples are at low discharge rates except for d = 17, in which
only two samples are at low discharge rates.

d Q (m3/s) C (mg/L) t (d) l

17

0.52 32.26 3.25 79
0.46 26.78 8.29 200
3.12 27.72 35.79 860

17.23 27.55 35.83 861
23.31 23.36 35.87 862

18

0.52 32.26 3.25 79
0.46 26.78 8.29 200
0.54 33.24 11.83 285
0.51 25.48 17.96 432
0.60 27.06 24.92 599
3.12 27.72 35.79 860

17.23 27.55 35.83 861
23.31 23.36 35.87 862
27.54 17.22 35.92 863
25.90 14.02 35.96 864

19

0.52 32.26 3.25 79
0.46 26.78 8.29 200
0.54 33.24 11.83 285
0.51 25.48 17.96 432
0.60 27.06 24.92 599
0.47 24.97 31.33 753
0.67 28.10 35.50 853
0.52 29.60 44.21 1062
0.64 28.27 50.42 1211
0.56 34.22 54.08 1299
3.12 27.72 35.79 860

17.23 27.55 35.83 861
23.31 23.36 35.87 862
27.54 17.22 35.92 863
25.90 14.02 35.96 864
21.23 12.01 36.00 865
15.22 12.48 36.04 866
10.82 12.53 36.08 867
8.43 14.31 36.12 868
6.66 15.32 36.17 869

20

0.52 32.26 3.25 79
0.46 26.78 8.29 200
0.54 33.24 11.83 285
0.51 25.48 17.96 432
0.60 27.06 24.92 599
0.47 24.97 31.33 753
0.67 28.10 35.50 853
0.52 29.60 44.21 1062
0.64 28.27 50.42 1211
0.56 34.22 54.08 1299
0.56 35.21 60.62 1456
0.65 30.33 64.37 1546
0.56 39.31 69.17 1661
0.52 36.25 72.50 1741
0.68 34.43 75.75 1819
0.62 34.91 79.12 1900
0.55 33.32 83.29 2000
0.55 36.45 86.46 2076
0.55 37.39 89.62 2152
0.62 34.26 92.79 2228
3.12 27.72 35.79 860

17.23 27.55 35.83 861
23.31 23.36 35.87 862
27.54 17.22 35.92 863
25.90 14.02 35.96 864
21.23 12.01 36.00 865
15.22 12.48 36.04 866
10.82 12.53 36.08 867
8.43 14.31 36.12 868
6.66 15.32 36.17 869
5.40 16.12 36.21 870
4.27 16.98 36.25 871
3.50 16.80 36.29 872
2.73 22.40 168.42 4043
5.21 20.37 168.46 4044
7.50 18.87 168.50 4045
7.73 16.18 168.54 4046
7.73 14.64 168.58 4047
8.93 11.02 168.62 4048
9.18 9.49 168.67 4049
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