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Abstract: The shear velocity and friction coefficient for representing the resistance of flow are key
factors to determine the flow characteristics of the open-channel flow. Various studies have been
conducted in the open-channel flow, but many controversies remain over the form of equation
and estimation methods. This is because the equations developed based on theory have not fully
interpreted the friction characteristics in an open-channel flow. In this paper, a friction coefficient
equation is proposed by using the entropy concept. The proposed equation is determined under
the rectangular, the trapezoid, the parabolic round-bottomed triangle, and the parabolic-bottomed
triangle open-channel flow conditions. To evaluate the proposed equation, the estimated results are
compared with measured data in both the smooth and rough flow conditions. The evaluation results
showed that R (correlation coefficient) is found to be above 0.96 in most cases, and the discrepancy
ratio analysis results are very close to zero. The advantage of the developed equation is that the
energy slope terms are not included, because the determination of the exact value is the most difficult
in the open-channel flow. The developed equation uses only the mean velocity and entropy M to
estimate the friction loss coefficient, which can be used for maximizing the design efficiency.

Keywords: friction coefficient; open-channel flow; entropy; Reynolds number

1. Introduction

Head loss, hf, is a very important physical parameter for both the experimental and
the theoretical analyses of fluid phenomena. The mechanism of the head loss in the open-
channel flow is very complex and is not clearly explained yet. Usually, friction losses can
be calculated whenever the friction coefficient, f, is clearly defined by the Darcy-Weisbach
equation [1].

The friction coefficient is a key factor to determine the flow velocity in channel flows,
which is also important to ensure the optimum hydraulic design. Furthermore, most studies
on the friction coefficient f are not performed in an open channel but in a circular pipe
flow. However, theoretical research for the open-channel flow was performed in the case of
a relatively slow flow with no secondary current and small distribution. The theoretical
analysis of the pipe flow was relatively easy compared to that of the open-channel flow [2].

The experimental data from Bazin [3,4] in the late 1800s and Varwick [5] in the early
1900s showed relationships between the friction coefficient and Moody curves in a pipe
flow. For the open-channel flow, similar results by Bazin and Varwick [5] were presented.
These results showed that the flow characteristics in the laminar, the transition, and the
turbulence flows were similar to those in the pipe flow.

The Bazin, Manning [6], and Ganguillet-Kutter [7] equations were developed by using
experimental data performed by Bazin and Varwick [5]. Many researchers, including
Chezy [8] and Manning [6], developed empirical equations by using observed data in the
open channel. However, these equations do not adequately represent the flow charac-
teristics in the open channel. In order to improve the accuracy for representing the flow
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characteristics in an open channel, a sufficient study on the adequate and reliable analyses
is required.

The Manning’s equation [6] was less accurate, even in well-flowing controlled man-
made waterways. Chow [9] also recommended the adjustment of Manning’s roughness
coefficient as a function of depth. Studies on the calculation of the friction coefficient
and the head losses in the past are still in use or are not actively underway because of
difficulties in the physical solution. This is based on studies done about 100 years ago.
Additionally, Choo [10] used the entropy concept to derive the mean velocity using Chiu’s
velocity formula [11,12], which was also used in this paper to derive the friction coefficient.

For the safe design, operation, and management of an increasingly developed and
complex water resource facility, research on the calculations of a more accurate friction
coefficient should be based on this study.

Therefore, this paper proposes a new theoretical equation to reflect the probabilistic
entropy concepts and hydraulic properties. This article proposes a theory using the two-
dimensional velocity formula and the probabilistic entropy to get the equation of the
friction coefficient calculations. Equations based on these theories can be expected to be
much more reliable than the empirical equations. The relationship between smooth and
rough waterways is shown by means of comparison of the measured and estimated values
to verify the accuracy of the determined values.

The results from the developed equation are based on a theoretical background. The
friction coefficient was calculated directly based on the guidance equation combined with
the physical factors. We found that it can be used to calculate the friction coefficients with
very high accuracy without using energy slopes.

2. Theoretical Background
2.1. Existing Friction Loss Coefficient

The Hagen-Poiseule equation is shown as Equation (1), which calculates the friction
head loss and can be written as:

hL =
8µu

ω0R4
H

l (1)

where hL is the friction head loss, µ is the fluid viscosity coefficient, ω0 is the water unit
weight, RH is the hydraulic radius of a pipe, and l is the pipe length.

In this case, the friction head loss coefficient takes form by rearranging Equation (1)
with RH = d/4, generating Equation (2) (Darcy-Weisbach [1]):

hL = f
l
d

u2

2g
(2)

The representative equation for the friction loss coefficient in uniform flow can be
written as Equation (3):

f =
8gRhS

V2 (3)

where f is the friction coefficient, V is the mean velocity, g is the acceleration of gravity, Rh
is the hydraulic radius, S = h f /L is an energy slope, h f is the friction head losses, and L is
the length of a given section.

This equation can be applied in streams close to the uniform flow, because it is
difficult to calculate the value accurately in a nonuniform or unsteady flow, because S is an
energy slope.

In a smooth pipe flow, the relationship can be expressed by using the Blasius [13]
equation, written as Equation (4):

f =
0.223
Re0.25 (4)

where Re is the Reynold’s number.
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The equation is limited to valid values of Re between 750 and 25,000. For higher
values, von Karman [14] developed a general expression modified by Prandtl [15], which
matches the data measured by Nikuradse more accurately [16]. The resulting Prandtl-von
Karman formula [5,14,15] can be written as Equation (5):

1√
f
= 2 log

(
Re
√

f
)
+ 0.4 (5)

Therefore, it is possible to establish a relationship between f and Re by an experiment
in an open-channel flow using the above equations. However, the relation factors to f
are different between the open-channel flow and the pipe flow, because it is affected by
multiple factors, such as free water surfaces in the waterways, hydraulic radius, and water
surface slope. Figure 1 shows the relationship between smooth and rough channel flows
by analyzing various overseas experimental data [17].
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Figure 1. Relationship between f and Re for smooth channels (Flow conditions: Laminar, Transitional,
and Turbulent [14]).

The shortcomings of the above studies are that it is difficult to calculate the energy
slopes correctly in an open-channel flow. In addition, equations should be applied differ-
ently according to the scope of the Re. For the example, the Prandtl-von Karman’s equation
has to consider an uncertainty when using Equation (3). This is because it is hard to obtain
an accurate flow velocity at the bottom of the channel.

2.2. New Friction Coefficient Using Entropy

Shannon [18] first defined entropy by function H(x) and can be written as Equation (6):

H(x) = −
∫ +∞

−∞
p(x) ln p(x)dx (6)

where p(x) is the probability density function, and ln p(x) is dimensionless but dx
has dimension.
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Equation (6) means maximizing the entropy that represents the uncertainty for x,
given p(x) for the continuous state variable x. Applying this concept to the water velocity
can be written as Equation (7):

H(u) = −
∫ umax

0
p(u) ln p(u)du (7)

The following constraints are used, such as the average value and probability, which
are available information about u, which is instantaneous (point) velocity and can be
written as Equations (8) and (9): ∫ umax

0
p(u)du = 1 (8)

∫ umax

0
up(u)du = u (9)

Arranging the independent constraint conditions can be given as Equation (10):

∫ b

a
Φi(u, p)du i = 1, 2 (10)

where a is the minimum value of u, b is the maximum value of u, i is the constraint number
(i = 1 is Equation (8) and i = 2 is Equation (9)).

Therefore, p(u), which maximizes the entropy, can be obtained using the method of
Lagrange as Equations (11)–(13):

∂I(u, p)
∂p

+
2

∑
i=1

λi
∂φi(u, p)

∂p
= 0 (11)

I(u, p) = −p(u)lnp(u) (12)

where φ1(u, p) = p(u), φ2(u, p) = u× p(u).

∂φ1(u, p)
∂p

= 1,
∂φ2(u, p)

∂p
= u (13)

where λ1 and λ2 are Lagrange multipliers.
Substituting Equations (12) and (13) into Equation (11) can be constructed as the

following Equation (14):
− 1− lnp(u) + λ1 + λ2u = 0 (14)

where λ1 − 1 = a1 and λ2 = a2 are the Lagrange multipliers.
Differentiating Equation (14) with respect to p(u) results in the velocity as Equation (15):

p(u) = ea1+a2u (0 ≤ u ≤ umax) (15)

Equation (15) and M = a2umax (entropy coefficient) are substituted into Equation (8)
to obtain Equation (16):

umaxea1 =
M

(eM − 1)
(16)

Then Equation (15) and M = a2umax are substituted into Equation (9) to obtain
Equation (17) (This is the two-dimensional average velocity equation, which is Chiu’s
velocity equation [11,12]):

u
umax

= φ(M) =

(
eM

(eM − 1)
− 1

M

)
(17)
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Equation (17) can be used to restructure Equation (16) to obtain Equation (18):

ea1 =
φ(M)M
(eM − 1)u

(18)

The shear stress is the product of the dynamic viscosity (kinematic viscosity is the
dynamic viscosity divided by density) and the velocity gradient, which can be expressed
as Equation (19):

τ = ρν

(
du

hξdξ

)
(19)

where τ is the shear stress, ρ is the density of the fluid, ν is the kinematic viscosity of the
fluid, hξ is the mean value of hξ , and hξ is the scale factor, which has the length dimensions.

The shear stress at the channel boundary (bottom) is the shear stress when ξ is ξ0, as
in Equation (20):

τ0 = ρν

(
du

hξdξ

)
ξ=ξ0

= ρgRhS f (20)

where τ0 is the waterway boundary shear stress, g is the gravitational acceleration, and S f
is the energy gradient.

The velocity cumulative probability of u is suggested by Chiu [11,12] as Equation (21):

P(u) =
∫ u

0
p(u)du =

ξ − ξ0

ξmax − ξ0
(21)

where ξ is the spatial coordinates (0 ≤ ξ ≤ 1), u is the velocity at ξ, ξ0 is the minimum
value of ξ (occurring at the channel boundary where u = 0), and ξmax is the maximum
value of ξ (where u is at its maximum (i.e., umax)) (see Figure 2).
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to explain two-dimensional velocity distribution in the cross-section of an open channel.
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In Equation (21), if ξ is ξ0 at the bottom of the channel, u is 0 and ξmax − ξ0 is 1, and
by differentiating the velocity gradient in the channel bed, where p(u) = ea1 , Equation (22)
can be obtained: (

du
hξdξ

)
ξ=ξ0

=
1

hξ ea1
(22)

For a wide channel, ξ/ξmax can be simplified to y/D and, hence, hξ = D. For
the hydraulic radius, Rh

∼= D. Therefore, substituting Equation (22) into Equation (20),
Equation (23) is obtained:

ea1 =
ν

gR2
hS f

(23)

Equating Equations (18) and Equation (22) expresses the average water velocity in the
open-channel flow as Equation (24):

u =
gR2

hS f

νF(M)
(24)

where F(M) =
(
eM − 1

)
/(φ(M)M).

For the friction velocity (u∗), the relationship between the average water velocity and
the friction velocity is shown as Equation (25):

u∗ =
√

τ0

ρ
(25)

To calculate the friction term in Equation (25), Choo’s mean velocity distribution [10]
is used for Equation (26):

u =
u

K(M)
ln
[

1 +
(

eM − 1
)( ξ − ξ0

ξmax − ξ0

)]
(26)

where K(M) = φ(M)M.
Choo’s mean velocity was used earlier for calculating the discharge. However, in this

paper, it will be used for converting friction velocity, since it has already been modified for
the average water velocity in the open-channel flow [10].

The water velocity slope du/hξ dξ is differentiated from Equation (26), and ξ0 ' 0 and
ξmax − ξ0 = 1 are applied as Equation (27):(

du
hξ dξ

)
=

u
(
eM − 1

)
RhK(M)(1 + ξ(eM − 1))

(27)

where, because the bottom boundary layer ξ0 = 0, Equation (27) is equal to Equation (28):(
du

hξ dξ

)
ξ=ξ0

=
u(eM−1)
RhK(M)

(28)

Equation (28) is inserted into Equation (20), which is the shear stress at the channel
boundary, to obtain Equation (29):

τ0 = ρν

(
du

hξ dξ

)
ξ=ξ0

= ρν
u(eM−1)
RhK(M)

(29)

The relationship between the average water velocity and the friction velocity of the
friction loss coefficient of the pipe flow is shown in Equation (30):

u
u∗

=

√
8
f

(30)
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Equations (25) and (30) are substituted into Equation (29) to obtain Equation (31):

τ0 =
8ρν2

f

((
eM − 1

)
RhK(M)

)2

(31)

Therefore, if Equation (31) is substituted for Equations (24) (F(M) =
(
eM − 1

)
/(φ(M)M))

and (26) (K(M) = φ(M)M) and use Re = (ud)/υ, Equation (32) can be obtained:

f =
8dF(M)

ReRh
(32)

Equation (32) can be used to estimate the frictional loss coefficient (f) of the open-
channel flow, which reflects its entropy. Equation (32) does not require the hydraulic
factors used in the existing equations, such as shear velocity (u∗) or energy gradient (S f ).
In addition, the friction loss coefficient ( f ) can be expressed with only the average water
velocity and the entropy M, which are easy to obtain. In addition, there is also an advantage
in that the energy gradient (S f ) can be estimated by using Equation (32).

Therefore, in this study, we proposed the friction loss coefficient of Equation (32) in
the open-channel flow by using the concept of entropy, which has been used in many
fields recently. The data used to demonstrate the utility of the equation were obtained
by Yuen [19] and Babaeyan-Koopaei [20] for each stream of water. It is shown in the
Figure 1 that the estimated friction loss coefficient was compared with the measured
friction loss coefficient.

3. Experimental Data

To evaluate the accuracy of the proposed equation, we calculated the friction co-
efficient based on the data measured at the rectangular channel. The estimated results
were compared with the measured data, as shown in Figure 1. First, the data measured
by Yuen [19] at the trapezoidal section were used. Then, the data were measured by
Babaeyan-Koopaei [20] at the trapezoid, the parabolic round-bottomed triangle, and the
parabolic-bottomed triangle trapezoidal channel.

Yuen obtained data in a fully developed turbulent flow of the smooth trapezoidal
open-channel flow. The ranges of the data were 0.5 < Fr < 3.5, 1.9·104 < Re < 6.2·105 and
0.3 < 2b/H < 15 (where 2b/H was the aspect ratio). The subcritical flow was also studied
for the compound trapezoidal channel, which ranged in depths of 0.05 < Dr < 0.5. Here,
Dr is the relative depth ratio ( (H−h)

H , where H is the flow depth of the channel, and h is
the depth of the lower main channel). Several series of experiments were undertaken by
using the Preston tube technique. These experiments were performed in a 21.26-m-long
tilting channel with a working cross-section of 0.615 m wide × 0.365 m deep. A total
of three sets were measured under the equivalent conditions, varying the bed slope at
0.001, 0.004, 0.009, 0.015, and 0.023. In addition, the point velocities were measured across
the whole cross-section for the selected flow depths. Particular attention was focused on
understanding the Reynolds and Froude number effects on these distributions.

Babaeyan-Koopaei [20] measured the data in the trapezoidal, parabolic, round-bottomed
triangle, and parabolic-bottomed triangle channel. For each section, the measured data
were used with the changes in the flow velocity and water levels under three flow condi-
tions: 1 m3/s, 10 m3/s, and 100 m3/s (see Babaeyan-Koopaei for more information).

The values of the measured Re data are shown in Table 1. It can be seen that the
measured data in the rectangular section reflected the transition zone and the turbulence
zone. In the trapezoidal, parabolic, round-bottomed triangle, and parabolic-bottomed
triangle sections, the measured data reflected the full turbulence zone.
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Table 1. The range of Reynolds numbers with the cross-section shape and the channel slope.

Data Cross-Section Shape Channel Slope Reynolds Number Range

Yuen [19] Rectangular

0.001 16,920~156,400

0.004 45,770~160,900

0.009 71,450~358,000

0.015 108,600~335,000

0.023 124,400~618,300

Babaeyan-Koopaei [20]

Trapezoidal 0.001 167,000~4,474,000

Parabolic 0.001 135,000~4,630,000

Round-bottomed triangle 0.001 167,000~4,684,000

Parabolic-bottomed triangle 0.001 167,000~4,630,000

4. Estimation of the Entropy Parameter, M

An estimate of the entropy parameter M is needed to use Equation (29). For the
estimation of entropy parameter M, most researches used Equation (15) to calculate the
entropy parameters in which the equation required, essentially, the maximum flow velocity
in an open channel.

However, the maximum velocity occurred at the center of the pipe flow, but the
location of the maximum velocity was unclear at the open-channel flow. Additionally, a lot
of manpower, time, and effort were required to measure the maximum velocity in the open-
channel flow. Moramarco [21] calculated the M values by using Equation (15). For that,
he used data obtained from the average and maximum velocities at the upper river basin.
Moramarco [22] proposed an equation for calculating φ(M) by substituting Chiu’s theory
and the Manning and Prandtl-von Karman equations. However, the disadvantage of these
equations were that it was difficult to clearly identify the point where the maximum velocity
occurred, ymax, and imaginary distance, y0, where the velocity was zero in the riverbed.

This study determined the entropy parameter M by using the expression developed
by Choo [23]. The advantage of this method was that the entropy parameters in the stream
could be obtained at any time without using the uncertain maximum velocity.

The entropy parameters M and the Re were calculated by using the same characteris-
tics as those shown in Figures 3 and 4. As the entropy parameter, M was increased, and
the Re was also increased. On the other hand, as the friction coefficient f increased, Re
decreased. Based on the value of Re, the two flows were identified as turbulent flows.
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5. Results Analysis

The entropy parameter M, defined in Section 4, was used in Equation (32) to calculate
the coefficient of friction f in an open-channel flow. The relationship between f and Re is
shown in Figures 5 and 6.
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Figure 5. The relationship between f and Re calculated using Yuen’s data.

The coefficient of friction f in Figures 5 and 6 shows the same trend as in Figure 1,
where f tends to decrease as Re increases. In addition, in Figures 7 and 8, the friction
coefficient, f , shows a tendency to decrease as the discharge increases. The discrepancy
ratio is the error ratio between the measurement and calculated values, separated by a
range. The proportions on the y-axis are the ratio of the total comparison quantity to the
range of the x-axis. Figures 9–12 show that the discrepancy ratio results of the proposed
equation were all distributed near 0.
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Figure 11. The discrepancy ratio for f and Q calculated using Yuen’s data.

The above results are summarized as follows: The entropy parameter M is a linear
function of Log(Re), which is an increasing function of Re. The friction coefficient f is a
linear decreasing function of Log(Re), which is a decreasing function of Re. Figure 13 shows
the above results calculated using the proposed Equation (32), along with the relationship
between the friction coefficients f and Re. Comparing the scale with a previous empirical
study resulted in rough flows; the coefficient of determination was observed to be 0.8
within the range of the flow of the rectangular channel and 0.75 within the range of the
flow of the compound trapezoidal channel.
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Babaeyan-Koopaei (rough channel).

Figure 10 shows the results determined with Yuen’s data measured in the rectan-
gular and trapezoidal channels. Particularly, the calculated f value was expressed as
1.7× 105 < Re < 6.18× 106, which exceeded the existing Re value. This range means that
the proposed equation can represent the actual phenomenon in the natural stream.

The picture on the right shows the results determined with Babaeyan-Koopaei’s data mea-
sured in the trapezoidal, parabolic, round-bottomed triangle, and parabolic-bottomed triangle
channels. In this case, the calculated f value was expressed as 13.5× 104 < Re < 46.84× 105,
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which was close to the maximum range of the previous Re value. The important thing
is that even the compound trapezoidal sections that were similar to the natural section,
which were not available in the existing graph, as shown in Figure 1, can easily be cal-
culated for f and Re. In Tables 2 and 3, the regression equations from the Yuen [19] and
Babaeyan-Koopaei [20] data show the relationship between M, f , Re, and Q.

Table 2. The results for the relationship between M, f , Re, and Q using Yuen’s data.

Division Regression Equation R2

M and Re Yuen [19] y = 0.9561 ln (x)−4.925 R2 = 0.8644
f and Re Yuen [19] y = 0.3798x−0.262 R2 = 0.8456
f and Q Yuen [19] y = 0.007x−0.213 R2 = 0.7536

Table 3. The results for the relationship between M, f , Re, and Q using Babaeyan-Koopaei’s data.

Division Regression Equation R2

M and Re Babaeyan-Koopaei [20] y = 0.8846 ln (x)−0.379 R2 = 0.9994
f and Re Babaeyan-Koopaei [20] y = 1.5096x−0.194 R2 = 0.9895
f and Q Babaeyan-Koopaei [20] y = −0.012 ln (x)0.1236 R2 = 0.9533

Comparing the scale with a previous empirical study results in rough flows; the coeffi-
cient of determination was observed to be 0.8 within the range of the flow of the rectangular
channel and 0.75 within the range of the flow of the compound trapezoidal channel.

As can be seen in Figure 13, the values of the coefficient of friction determined from
past experiences are properly correlated with the measured data. There is no bouncing
value on the graph. For the rectangular channel, this seems expressed fairly well as Bazin
no. 17. Other types of channels matched well with the extended lines of the Prandtl-von
Karman equation. In other words, it is meaningful that the values of the friction coefficient
determined from proposed equation can be accurately estimate based on a theoretical
formula rather than on an empirical parameter under a number of conditions.

6. Conclusions

The results of a study conducted approximately 100 years ago are still used to es-
timate the friction coefficient in an open-channel flow. However, as with the pipe flow
(perfusion), the friction coefficient must be correctly determined in order to interpret the
correct flow. This paper proposes a new form of friction coefficient calculation by using the
two-dimensional velocity formula of Chiu [11,12] and probabilistic entropy.

The advantage of this equation is that it eliminates the terms of energy slopes, which
are difficult to measure or calculate in an open-channel flow, making their application
simple and very accurate on a theoretical basis.

In uniform flow conditions, a channel bed gradient may be the same or almost the
same as an energy slope or water surface gradient. The normal depth is maintained
as long as the slope, cross-section, and the surface roughness of the channel remains
unchanged; thus, the average flow velocity remains constant. However, in natural flow and
human-made open channels, such as irrigation systems and sewer lines, there are mostly
nonuniform or unsteady flows. Unlike uniform flow conditions, these varied flows do not
share the same energy slope, bed gradient, and water surface gradient.

Based on the data measured in the rectangular section, the proposed equation was used
to determine the entropy parameter M and the friction coefficient f . The induced entropy
parameters were shown to be a linear function of Log(Re), and the friction coefficient was
the decreasing function of Log(Re).

If this study is to be carried out continuously by hydraulic data measured in various
channel shapes, laboratory channels, and natural streams, the friction coefficient value
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estimated from the proposed equation will be actively used in the flow analysis and the
design of hydraulic structures.
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