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Abstract: Less-frequent and inadequate sampling of sediment data has negatively impacted the
long and continuous records required for the design and operation of hydraulic facilities. This
data-scarcity problem is often found in most river basins of Taiwan. This study aims to propose a
parsimonious probabilistic model based on copulas to infill daily suspended sediment loads using
streamflow discharge. A copula-based bivariate distribution model of sediment and discharge of
the paired recorded data is constructed first. The conditional distribution of sediment load given
observed discharge is used to provide probabilistic estimation of sediment loads. In addition, four
different methods based on the derived conditional distribution of sediment load are used to give
single-value estimations. The obtained outcomes of these methods associated with the results of
the traditional sediment rating curve are compared with recorded data and evaluated in terms of
root mean square error (RMSE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency
(NSE), and modified Nash-Sutcliffe efficiency (MNSE). The proposed approach is applied to the
Janshou station located in eastern Taiwan with recorded daily data for the period of 1960–2019. The
results indicate that the infilled sediments by the sediment rating curve exhibit better performance in
RMSE and NSE, while the copula-based methods outperform in MAPE and MNSE. Additionally,
the infilled sediments by the copula-based methods preserve scattered characteristics of observed
sediment-discharge relationships and exhibit similar frequency distributions to that of recorded
sediment data.

Keywords: infilling missing data; copula; suspended sediment load; conditional distribution;
sediment rating curve

1. Introduction

Hydrologic and climate data play a significant role in water-resources engineering
planning, design, and management. Sufficiently long and complete data are essential for
providing accurate statistical analysis in design and establishing efficient operation rules
of hydraulic facilities. Hydrologic and climate data are uniquely recorded in time and
space. If the data are not recorded at a specific time and location, the lost values can only
be estimated [1]. Incomplete and missing data are frequently met in many applications
worldwide since a considerable amount factors lead to missing data. These factors include
equipment failures, extreme natural disasters (e.g., typhoon, earthquake, and landslide),
mishandling of recorded data, malfunction of data storage systems, and others [2,3].
Infilling the missing data has thus become a common practice when pre-processing data to
provide long and complete data for optimal hydrologic modeling and design purposes.

Infilling or imputing missing data is a process of substituting the missing values with
the most plausible values [4,5]. A vast amount of approaches such as linear regression,
multiple linear regression, machine learning techniques, copula-based estimation, and
others have been proposed in the literature to infill missing data. Bárdossy and Pegram [1],
Ben Aissia et al. [3], and Hamzah et al. [6] provide detailed reviews on methods used in
infilling missing hydrologic data.
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Suspended sediment load is an important variable in water-resources engineering
since it affects reservoir sedimentation, hydraulic structures design, water quality, eco-
logical and recreation, watershed management, and channel stability [7,8]. In addition to
missing data, infrequent or periodical sampling is another primary reason for incomplete
sedimentation data in most river basins. Suspended sediment load transported in rivers is
a complex process which relates to physical characteristics of watershed and rivers. Pre-
dicting sediment loads through physical models might be prohibitive due to the complex
process and lack of long-term observations [9]. Instead, statistical empirical models serve
as alternative approaches to infill missing or unrecorded (missing thereafter) sediment
data since these models relax the requirement of detailed physical information. For ex-
ample, the sediment rating curve based on the empirical relationship between suspended
sediment load and streamflow discharge is traditionally used to infill missing sediment
data since continuous discharge records are available in most river basins [10]. Several
recent studies [11–27] have proposed various techniques or adopted various variables
to estimate or predict suspended sediment loads. Ben Aissia et al. [3] indicated that the
copula-based method is one of the recent methods and provides probabilistic characteristics
of the missing data. Di Lascio et al. [5] revealed that Käärik and Käärik [4] firstly propose
the Gaussian copula to impute correlated incomplete data.

Inherently scattered characteristics between observed suspended sediment load and
streamflow discharge indicate that joint modeling of the probabilistic properties between
suspended sediment loads and streamflow discharge is a proper approach to achieve
this purpose. Difficulties in deriving such bivariate distribution of sediment load and
discharge stem from different marginal distributions used to fit sediment load and dis-
charge. Copulas have recently gained popularity worldwide [28–47] in hydrology as they
construct a multivariate distribution by separately linking different marginal univariate
distributions and the joint dependence structure among random variables. However,
Zhang et al. [48] indicated that few studies use copulas to explore the joint distribution
of sediment and discharge. The related studies include Bezak et al. [49], who conducted
frequency analysis of annual peak discharge and the corresponding hydrograph volume
and suspended sediment concentration from stations located in Slovenia and USA using
trivariate symmetric and asymmetric copula functions. The authors of [48] constructed a
bivariate probability distribution of annual runoff and sediment in the Wei River (China)
using copulas for estimating synchronous-asynchronous encounter probabilities of annual
rich-poor runoff and sediment. Guo et al. [50] used the double-mass-curve method to
detect the inflection point in the runoff-sediment relationship of the Weihe River (China)
and analyzed the synchronous-asynchronous joint properties of high-low runoff and sedi-
ment based on copulas. Bezak et al. [18] estimated event-based suspended sediment loads
based on measured precipitation sums and discharge using copulas in two catchments
of Slovenia. Huang et al. [51] used the copula-based method to detect the nonstationarity
of the relationship between annual runoff and sediment load in the Wei River, China.
Shojaeezadeh et al. [9] proposed a probabilistic method based on copulas with Bayesian
networks to predict the suspended sediment load given discharge for high flow events
in seven major rivers of the contiguous US. Peng et al. [52] simulated daily suspended
sediment concentration through the copula-based multivariate conditional distribution
using previous daily suspended sediment concentration and concurrent daily streamflow
of the Jinsha River basin, China. Peng et al. [53] proposed a copula-based model of the
annual maximum suspended sediment concentration, peak discharge, and flood volume
and analyzed multivariate joint and conditional return periods for suspended sediment
concentration under flood conditions in the Jinsha River basin, China.

The copula-based method infills the missing data by using the conditional distribu-
tion of missing variables given the value of observed variable, which describes possible
outcomes of missing data associated with corresponding probabilities. However, single-
value estimation of missing variable is often required in practical applications. Several
approaches are proposed in the literature to estimate the single missing value by copula-
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based conditional distribution. Käärik and Käärik [4] suggested the most likely value
(i.e., the mode) as the imputed value. Di Lascio et al. [5] obtained the single missing value
by the Hit or Miss Monte Carlo method. Bezak et al. [18] suggested the median of 10,000
possible sediment values from the copula-based conditional distribution of 10,000 ran-
domly generated peak discharge and precipitation. Peng et al. [52] proposed a stochastic
simulation procedure to obtain the daily suspended sediment concentration using previous
daily suspended sediment concentration and concurrent daily streamflow.

The main aim of this study is to infill daily suspended sediment loads based on copulas
to provide probabilistic as well as single-value estimations using streamflow discharge.
A copula-based bivariate probability model of concurrent daily suspended sediment load
and discharge is firstly constructed. The conditional probability distribution of sediment
data is then derived given the recorded discharge. Four single-value imputation methods
for sediment data associated with the traditional sediment rating curve are analyzed and
compared with the observed sediment data to demonstrate the statistical performance in
terms of goodness-of-fit measures between imputation and recorded data. The proposed
approach is applied to Jenshou station located in eastern Taiwan with 1960–2019 recorded
data for demonstration.

2. Methodology
2.1. Copula-Based Joint Probability Distribution of Sediment and Discharge

The basic principle of infilling missing data is based on the relationship between miss-
ing and observed variables and the specific value of the observed variable. Probabilistic
estimation of missing data is made possible through constructing the multivariate proba-
bility model of missing and observed variables. Copulas offer flexibility to decompose the
multivariate probability model by marginal distributions and the link between them.

Let L and Q denote the continuous random variables of suspended sediment load
and streamflow discharge, respectively. FL(l) and FQ(q) are the corresponding cumulative
distribution function (CDF) of L and Q, respectively. The Sklar theorem [54] states that if
FL(l) and FQ(q) are continuous, then there is a unique copula such that the joint cumulative
distribution function (JCDF) of L and Q can be written as

FLQ(l, q)= C
(

FL(l), FQ(q)
)

(1)

where C(·) is the copula function. The corresponding joint probability density function
(JPDF) of L and Q thus becomes

fLQ(l, q)= f L(l) fQ(q)c
(

FL(l), FQ(q)
)

(2)

where fL(l) and fQ(q) are the probability density functions (PDF) of L and Q, respectively;
and c(·) is the copula density, which is obtained by

c(u, v) =
∂2C(u, v)

∂u∂v
(3)

where u and v denote two dependent CDFs.
The two-stage maximum likelihood method, called the method of inference for mar-

gins (IFM) proposed by Joe [55], is adopted in this study to estimate parameters of marginal
distributions and copulas since less computational intensive. This method consists of
separate estimations of the parameters of univariate marginal distributions, followed by an
estimation of copula parameters.

Three copulas commonly used in constructing bivariate model of sediment and dis-
charge, including Clayton, Frank, and Gumbel-Hougaard, are employed in this study [18,
48–53]. These three copulas and the corresponding copula densities are summarized in
Table 1 [56]. The Kolmogorov-Smirnov (K-S) test and the Cramér-von Mises (C-M) test
are conducted for accessing goodness-of-fit of the marginal distributions and copulas,
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respectively [57]. The best-fitted marginal distributions and copula are determined by the
minimum AIC (Akaike Information Criterion).

Table 1. Summaries of copulas and the corresponding copula densities and range of parameter used in this study.

Name Copula Copula Density Range of
Parameter

Clayton C(u, v) = (u−θ+v−θ − 1)−
1
θ c(u, v) = (θ + 1)

(
u−θ+v−θ − 1

)− 1
θ −2

(uv)−θ−1 θ ≥ 0

Frank C(u, v) = 1
θ ln
⌈

1+(e−θu−1)(e−θv−1)
e−θ−1

⌉
c(u, v) = − θe−θ(u+v)(e−θ−1)

[e−θ(u+v)−e−θu−e−θv+e−θ ]
2

θ 6= 0

Gumbel-
Hougaard C(u, v)= exp

{
−[(− ln u)θ + (− ln v)θ ]

1
θ

} c(u, v)= C(u, v) [(− ln u)(− ln v)]θ−1

uv

[(− ln u)θ + (ln v)θ ]
2
θ −2
{
(θ − 1)[(− ln u)θ + (− ln v)θ ]

− 1
θ +1

} θ ≥ 1

2.2. Copula-Based Conditional Distribution of Sediment

Probabilistic estimation of the suspended sediment load is implemented by the condi-
tional probability density function (CPDF) of L given an observed discharge qo. This CPDF
fL|qo

(l) in terms of copula is written as

fL|qo
(l) =

fLQ(l, qo)

fQ(qo)
= f L(l)c

(
FL(l), FQ(qo)

)
(4)

The corresponding conditional cumulative distribution function (CCDF) FL|qo
(l) in

term of copula is expressed as

FL|qo
(l) =

∂C
(

FL(l), FQ(q)
)

∂FQ(q)

∣∣∣∣∣
q=qo

= CL|qo

(
FL(l)

∣∣FQ(qo)
)

(5)

These conditional functions describe all possible outcomes of the sediment data given
the observed discharge, which reflects inherent scatter between sediment and discharge.

2.3. Copula-Based Single-Value Sediment Imputation Methods

Although copula-based conditional distribution offers probabilistic estimations and
uncertainty assessments about imputed value, single-value estimation of sediment data is
often required in practical applications. Several approaches are proposed in the literature
to obtain the single-value imputed data from the derived conditional distributions. A total
of four methods using the copula-based conditional distributions to infill the suspended
sediment loads are adopted in this study. The first two methods use the CPDF defined in
Equation (4) and the remaining methods employ the CCDF defined in Equation (5).

• Method 1. The most natural thought to obtain the imputed data is the mode of
the CPDF, which represents the most likely value (i.e., the quantile with the highest
CPDF value).

le = f−1
L|qo

(ψ) (6)

where le denotes the estimated imputed sediment data with the highest CPDF value (i.e.,
the mode of the CPDF); and ψ denotes the maximum value of the CPDF.

• Method 2. Di Lascio et al. [5] proposed the Hit or Miss Monte Carlo method to estimate
missing data, which uses the CPDF and random numbers. The following steps are
used to estimate the imputed sediment data.

Step 1. Obtain FQ(qo)= v by an observed discharge qo.
Step 2. From the CPDF fL|qo

(l) in Equation (4), define the lmin and lmax as the minimum
and maximum sediment loads of the CPDF, and ψ as the maximum value of the CPDF.

Step 3. Generate two random numbers r1 and r2 from the uniform distribution U(0, 1).
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Step 4. Calculate e = lmin + r1(lmax − lmin).
Step 5. If r2ψ ≤ f L(e)c(FL(e), v) then le = e, else return to Step 3.

• Method 3. Peng et al. [52] used the CCDF and a random number to infill the missing
sediment data.

Step 1. Obtain FQ(qo)= v by an observed discharge qo.
Step 2. Generate a random number r from the uniform distribution U(0, 1).
Step 3. According to the CCDF defined in Equation (5), solve r = CL|qo

(FL(l)|v) and
obtain FL(l)= u.

Step 4. The estimated imputed sediment load is le= F−1
L (u).

• Method 4. Bezak et al. [18] used a similar procedure in Method 3, but with 10,000
generations, to have 10,000 imputed values, and selected the median of these 10,000
data as the imputed sediment data.

3. Data Used
3.1. Suspended Sediment Load and Streamflow Discharge Data

The recorded daily suspended sediment load and streamflow discharge data at Jen-
shou station (121.50◦ E, 23.96◦ N) located in the Hualian River of eastern Taiwan for the
period of 1960–2019 are employed to demonstrate the proposed approach. Annual mean
rainfall in the Hualian River basin is 2550 mm and approximate 70% of annual rainfall is
clustered within the wet-season (June−November). Annual average temperature in this
basin is 22.8 ◦C with highest temperatures exceeding 30 ◦C occurring in summer. Sus-
pended sediment load and streamflow discharge data have been measured and collected
by the Water Resource Agency in Taiwan. Basic information, including river, catchment
area, data length, number of sediment and discharge data, are summarized in Table 2.
Infrequent sampling of daily sediment data leading to the number of recorded suspended
sediment load is approximately 2% of recorded discharge data at Jenshou station. Mean
and standard deviation of entire daily discharge series and paired sediment-discharge data
in the period of 1960–2019 are also reported in Table 2, respectively.

Table 2. Basic information of suspended sediment load and discharge data at Jenshou station in Taiwan.

Station River
Catchment

Area
(km2)

Data
Length

Number of
Sediment

Data

Number of
Discharge

Data

Percentage
(%)

Sediment
(104 ton/day)

Discharge
(m3/s)

Mean Std. Mean Std.

Jenshou Hualian 425.9 1960–2019 21,898 21.28 65.2
1960–2019 427 427 1.9 8.55 30.9 99.96 187.9

Recorded paired sediment-discharge data at Jenshou station are shown in Figure 1.
Positive correlated sediment-discharge relationship is observed in Figure 1. However, clear
scatter between recorded sediment and discharge data cannot be ignored, especially at the
moderate- to high-flow conditions. Recorded suspended sediment load data are highly
clustered below mean discharge of recorded paired data. For example, approximately
76% of sediment data are measured below 99.96 m3/s, the mean discharge of recorded
paired data.

Recorded paired sediment-discharge data of the period of 1960–2019 at Jenshou station
are split into two periods. Approximately 70% of recorded data of the period of 1960–2000
are employed to construct models and calibrate model parameters and the remaining data
of the period of 2001–2019 are used to validate the performance of the constructed models.
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the corresponding sediment rating curve at Jenshou station.

3.2. Empirical Sediment Rating Curve

The sediment rating curve is a traditional approach to infilling sediment data based
on the empirical relationship between recorded sediment and discharge data. A commonly
used relationship between sediment and discharge data is the power law function, which
is expressed as

L = aQb (7)

where L and Q denote suspended sediment load and streamflow discharge, respectively;
and a and b are coefficients which are estimated from recorded data.

The empirical sediment rating curve at Jenshou station, shown in Figure 1, is deter-
mined by nonlinear least squares regression [58] based on recorded data of the period of
1960–2000. The empirical sediment rating curve at Jenshou station is written as

L̂= 448.82Q1.1449 (8)

where L̂ denotes the estimated suspended sediment load in unit of ton/day; and Q is
recorded streamflow discharge in unit of m3/s.

4. Results and Discussion
4.1. The Best-Fitted Marginal Distributions and Copulas

A total of five widely used two-parameter distributions, including normal (NO),
lognormal (LNO), gamma (GA), Gumbel (GU), and Weibull (WEI), are used to model
the suspended sediment load and streamflow discharge. Distribution parameters are
estimated by the maximum likelihood method. The goodness-of-fit of each distribution for
sediment load and discharge are accessed by the K-S test and the best-fitted distribution
is determined by the minimum AIC. The recorded daily suspended sediment load and
discharge at Jenshou station for the period of 1960–2000 are best-fitted by the lognormal
distribution with the corresponding parameters are summarized in Table 3. The PDFs of
suspended sediment load and discharge are respectively written as

fL(l) =
1√

2πl × 2.456
exp

[
(ln l − 8.753)2

2×2.4562

]
(9)
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fQ(q) =
1√

2πq×1.134
exp

[
(ln q−3.898)2

2×1.1342

]
(10)

Figure 2a,b illustrates the fitted lognormal distributions associated with recorded
suspended sediment and discharge, respectively. Good agreements between the fitted
distribution and recorded data for sediment and discharge are observed in Figure 2.

Table 3. The best-fitted marginal distributions and copula for suspended sediment load and discharge.

Station
Sediment Load Discharge Copula

Dist. Parameters Dist. Parameters Dist. Parameter

Jenshou LNO µ = 8.753 σ = 2.456 LNO µ = 3.898 σ = 1.134 Gumbel-Hougaard θ = 2.97
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Hougaard copula and recorded paired data at Janshou station for the period of 1960–2000.

The IFM is used to estimate copula parameter, the C-M test is then used to access
goodness-of-fit of each copula, and the minimum AIC is employed to determine the best-
fitted copula. The best-fitted copula for the paired sediment-discharge data (period of
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1960–2000) at Jenshou station is the Gumbel-Hougaard copula. The copula parameter is
also reported in Table 3. Copula-based JCDF of sediment and discharge is written as

FLQ(l, q)= C
(

FL(l), FQ(q)
)
= exp

{
−
[
−(ln FL(l))

2.97 +
(
− ln FQ(q)

)2.97
] 1

2.97
}

(11)

where FL(l) and FQ(q) denote the values of CDFs of suspended sediment load and discharge,
respectively, which are determined by

FL(l) =
∫ l

0

1√
2πl×2.456

exp

[
(ln l − 8.753)2

2×2.4562

]
dl (12)

FQ(q) =
∫ q

0

1√
2πq×1.134

exp

[
(ln q− 3.898)2

2×1.1342

]
dq (13)

Figure 2c illustrates the contours of probabilities determined by the fitted copula
associated with recorded paired sediment-discharge data.

4.2. Probabilistic Sediment Estimations Using Copula-Based Conditional Probability
Density Function

Probabilistic estimation of missing suspended sediment load is made possible using
the copula-based CPDF and CCDF of sediment given an observed discharge qo (Equations
(4) and (5)) and the best-fitted distributions of sediment and discharge (Equations (9)–(13)).
The copula-based CPDF and CCDF of sediment given observed discharge at Jenshou
station are given below, respectively.

fL|qo
(l) = 1

6.156×l e
(ln l−8.753)2

12.064 e−[(−ln FL(l))
2.97+(− ln FQ(qo))

2.97]
1

2.97 [(− ln FL(l))(− ln FQ(qo))]
1.97

FL(l)FQ(qo)[
(− ln FL(l))

2.97 +
(
− ln FQ(qo)

)2.97
]−1.327

{
1.97×

[
(− ln FL(l))

2.97 +
(
− ln FQ(qo)

)2.97
]− 1

2.97
+1
} (14)

FL|qo
(l)= e−[(− ln FL(l))

2.97+(− ln FQ(qo))
2.97]

1
2.97

[
1+
(
− ln FL(l)
− ln FQ(qo)

)2.97
] 1

2.97−1
1

FQ(qo)
(15)

where qo denotes an observed discharge.
Figure 3 illustrates the CPDFs of suspended sediment load given observed discharge

equals 20, 30, and 50 m3/s for demonstration. The derived CPDFs quantify the estimation
uncertainty of suspended sediment load. For example, given the observed discharge
of 20 m3/s, the probabilities that suspended sediment loads exceeding 100, 1000, and
5000 ton/day are 0.955, 0.547, and 0.133, respectively. Given the observed discharge of
30 m3/s, the interquartile range of suspended sediment load is bounded between 989 and
5348 ton/day. The probability that the suspended sediment load ranged between 1000 and
5000 ton/day is 0.349 given the observed discharge of 50 m3/s.

The CPDFs generally shift rightward and become flat with increasing discharge. For
instance, the modes of the CPDFs given a discharge of 20, 30, and 50 m3/s are 168, 384, and
1226 ton/day, respectively. The flat CPDF of a greater discharge implies that suspended
sediment load is distributed in a very large range. That is, greater uncertainties exist in an
estimation of suspended sediment load for the condition of large discharge. For instance,
the interquartile range increases from 2327 ton/day for the observed discharge of 20 m3/s
to 4359 and 10,087 ton/day for observed discharges of 30 and 50 m3/s, respectively.

The inherently scattered relationship between recorded sediment and discharge leads
to different recorded sediments observed for nearly identical discharge. For instance,
recorded suspended sediment loads of 1250.4, 3944.3, 2084.0, 960.3, and 1379.0 ton/day
are noted for discharges of 19.8, 20.1, 20.1, 20.0, and 19.8 m3/s, respectively. The scattered
characteristics are captured by the derived CPDF shown in Figure 3, which provides
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probabilistic estimation of missing sediment data. However, single-value estimation of
sediment data is often required in practical applications.
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Figure 3. The CPDFs of suspended sediment load given observed discharge equals 20, 30, and
50 m3/s, respectively.

4.3. Single-Value Sediment Estimations

Four different methods based on the derived copula-based CPDF and CCDF associated
with sediment rating curve are used to estimate the suspended sediment loads given the
observed discharge for the period of 2001–2019 in this study. The estimations of these
methods are compared with recorded data, shown in Figure 4, and evaluated in terms of
root mean square error (RMSE), mean absolute percentage error (MAPE), Nash-Sutcliffe
efficiency (NSE) [59], and modified Nash-Sutcliffe efficiency (MNSE) [60], which are defined
below, respectively.

RMSE =

√
1
n

n

∑
i=1

(
l̂i − li

)2
(16)

MAPE =
100
n

n

∑
i=1

∣∣∣∣∣ l̂i − li
li

∣∣∣∣∣ (17)

NSE =1−
∑n

i=1

(
l̂i − li

)2

∑n
i=1

(
l̂i − l

)2 (18)

MNSE =1−
∑n

i=1

∣∣∣l̂i − li
∣∣∣

∑n
i=1

∣∣∣l̂i − l
∣∣∣ (19)

where n denotes the number of data; li and l̂i denote the ith observed and estimated
sediment data, respectively; and l denotes the mean observed sediment.

The model with smaller RMSE and MAPE and close-to-1 NSE and MNSE denotes that
it has better capability to infill missing data and has fewer deviations from the observed
data. The results of RMSE, MAPE, NSE, and MNSE of these five infilling methods for the
calibration (1960–2000) and validation (2001–2019) periods are reported in Table 4. The
results indicate that sediment rating curve has best performance in RMSE and NSE. On
the other hand, copula-based models (Methods 1–4) generally outperform in MAPE and
MNSE and Method 1 (infilling missing value by mode) is the best model. Sediment rating
curve is obtained by the least squares regression with minimized least squared deviations
from the recorded data. It thus leads to better performance in criteria with the square term
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such as RMSE and NSE. Conditional distribution-based infilling methods, on the other
hand, outperform in the other criteria.
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Table 4. The results of RMSE, MAPE, NSE, and MNSE for various infilling methods for calibration (1960–2000) and
validation (2001–2019).

Index
Calibration (1960–2000) Validation (2001–2019)

Rating
Curve Method 1 Method 2 Method 3 Method 4 Rating

Curve Method 1 Method 2 Method 3 Method 4

RMSE 146,424.5 a 182,177.6 179,157.3 254,951.8 184,142.6 226,631.6 a 298,106.7 268,855.1 311,492.7 316,581.9
MAPE 3033.9 119.3 a 12,154.6 1338.9 352.8 1365.4 94.8 a 341.2 270.0 120.5
NSE 0.7068 a 0.5465 0.5611 0.1111 0.5363 0.6445 a 0.3848 0.4996 0.3284 0.3062

MNSE 0.5044 0.5856 a 0.5016 0.4292 0.5640 0.4826 0.5872a 0.4724 0.5120 0.5593

Note: a denotes the best result.

4.4. Discussion

Different evaluations on these sediment estimations are explored in this section. The
estimated sediment of the periods of 1960–2000 (calibration), 2001–2019 (validation), and
1960–2019 are categorized as low, moderate, and high flows with 30, 40 and 30% of data in
each flow state. Evaluations in terms of RMSE, MAPE, NSE, and MNSE of these sediment
estimations for various periods are summarized in Table 5. Similar performances of these
estimation methods are observed for various periods. Sediment rating curve loses its
dominance in all indices for the low- and moderate-flow states. In contrast, Method 4
(median of 10,000 sediment estimations based on CCDF) outperforms other methods in
several indices for these two flow states. However, sediment rating curve is the best model
in RMSE and NSE and Method 1 outperforms in MAPE and MNSE of high-flow state for
various periods.
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Table 5. The results of RMSE, MAPE, NSE, and MNSE of the periods of 1960–2000 (calibration), 2001–2019 (validation), and
1960–2019 for various streamflow states.

Period Flow State Index Rating Curve Method 1 Method 2 Method 3 Method 4

1960–2000
(calibration)

Low

RMSE 101,77.7 5266.4 4976.7 a 5397.8 4982.3
MAPE 3145.4 77.2 a 508.1 760.1 160.8
NSE −3.3041 −0.1524 −0.0291 a −0.2106 −0.0314

MNSE −3.0301 0.1549 0.1138 −0.0031 0.2743 a

Moderate

RMSE 29,913.6 17,904.8 18,300.2 18,751.7 15,627.2 a

MAPE 4953.7 174.3 a 1718.6 858.3 624.2
NSE −2.7236 −0.3340 −0.3936 −0.4632 −0.0162 a

MNSE −1.6813 0.0558 −0.0014 −0.0939 0.2323 a

High

RMSE 265,144.2 a 332,168.8 480,711 364,901 335,106.5
MAPE 361.9 86.6 a 235.0 194.9 149.3
NSE 0.64490 a 0.44268 −0.16722 0.32744 0.43278

MNSE 0.43362 0.44188a 0.16033 0.33467 0.40119

2001–2019
(validation)

Low

RMSE 6464.6 1091.5 1716.0 1081.8 887.8 a

MAPE 2276.0 82.8 a 214.1 221.0 93.6
NSE −50.0076 −0.4542 −2.5942 −0.4284 0.0379 a

MNSE −8.6240 −0.0542 −0.5792 −0.2131 0.2138 a

Moderate

RMSE 21,132.1 5410.8 9133.0 5898.9 4016.8 a

MAPE 1398.4 74.0 a 271.4 181.7 101.0
NSE −22.4377 −0.5366 −3.3778 −0.8263 0.1532 a

MNSE −5.0707 −0.0363 −0.6552 −0.1649 0.2493 a

High

RMSE 412,452 a 543,548 564,287 606,548.2 577,797.3
MAPE 450.6 134.4 a 178.5 175.2 176.0
NSE 0.5973 a 0.3007 0.2463 0.1292 0.2098

MNSE 0.4262 0.4879 a 0.4007 0.3527 0.4488

1960–2019

Low

RMSE 10,012.78 4984.5 6582.7 4881.4 4641.2 a

MAPE 2614.2 79.2 a 393.2 298.1 129.9
NSE −3.6745 −0.1584 −1.0204 −0.1110 −0.0044 a

MNSE −2.9390 0.1617 −0.1682 0.0424 0.2954 a

Moderate

RMSE 32,243.5 22,044.2 53,492.3 23,257.7 19,783.2 a

MAPE 3930.0 146.5 a 21,830.5 2208.8 503.0
NSE −1.6099 −0.2199 −6.1834 −0.3579 0.0175 a

MNSE −1.6147 0.0882 −0.8592 −0.0841 0.2658 a

High

RMSE 338,540.2 a 436,071.9 405,494.7 531,516.1 453,425.8
MAPE 349.9 105.5 a 199.2 233.7 164.1
NSE 0.6112 a 0.3549 0.4422 0.0416 0.3025

MNSE 0.4172 0.4394 a 0.3475 0.2599 0.3945

Note: a denotes the best result.

Different performance evaluations between Tables 4 and 5 are attributed to different
infilling schemes used in various methods. The worse performances of sediment rating
curve in low- and moderate-flow states are caused by its overestimations of sediment.
The overestimations in low- and moderate-flow states do not produce greater squared
deviations from the recorded data due to smaller sediment loads in low- and moderate-flow
states. Fewer deviations in high-flow states lead to the sediment rating curve with better
performance in RMSE and NSE of high-flow states for various periods (Table 5).

Methods 1 to 4 depend on the derived conditional distributions to estimate the sedi-
ments in all flow states. No clear overestimations for these conditional distribution-based
methods are observed in low- and moderate-flow states (Figure 3) and induce better
performance for all indices. However, less squared deviations for the sediment rating
curve observed in high-flow state lead to only Method 1 (infilling missing value by mode)
outperforming in MAPE and MNSE.
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Figure 5 illustrates the frequency histograms of observed sediment data and the
estimations of various infilling methods for the period of 1960–2019. The results indicate
that the sediment rating curve produces a histogram contradicting the histogram of the
observed sediment data. This contradiction is induced by overestimations for smaller
sediments, which are evidently observed for the low-flow state in Figure 4 and Table 5. In
contrast, copula-based Methods 1–4 generate high frequencies in smaller sediments and
low frequencies in greater sediments. However, similar histograms among Methods 2–4
are close to the histogram of recorded sediments when sediments exceed 1000 ton/day.
Only Method 1 (infilling missing value by mode) reflects the similarity in all scopes of
suspended sediment load. This similarity between histograms of recorded sediments
and the estimated sediments by Method 1, especially when sediment <1000 ton/day, is
attributed to the right-skewed CPDFs shown in Figure 3. Method 1 estimates sediments
using the mode of the CPDFs, which is clustered in smaller sediments due to right-skewed
CPDFs and leads to high frequencies in smaller sediments.

Figure 5. The frequency histograms of suspended sediment load of observed data associated with
results of various infilling methods for the period of 1960–2019.

Shojaeezadeh et al. [9] and Guo et al. [50] indicated that greater discharges are associ-
ated with larger intervals of conditional marginal distribution of sediments. Further, the
relationship between discharge and sediment is nonlinear and highly stochastic. That is, a
similar discharge can yield hugely different sediments. These properties of probabilistic
sediment estimations are in line with the results of copula-based CPDFs shown in Figure 3.
Bezak et al. [18] revealed that a copula-based estimation model yields the worst fit (greatest
RMSE) when compared with the results of multiple regression and exponential models in
some cases. However, a copula-based model produces the smallest residuals and better
results in low-medium-flow events. These findings are consistent with the results of this
study reported in Table 5.

5. Conclusions

Based on the daily paired sediment-discharge data at Jenshou station located in eastern
Taiwan for the period of 1960–2019, probabilistic and four single-value estimation models
of sediment data are constructed using copulas. The Gumbel-Hougaard copula (Figure 2c)
is used to model the joint probability distribution of discharge and sediment data with
best-fitted lognormal distributions (Figure 2a,b) as the marginal distributions.
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The copula-based CPDF (Figure 3) and CCDF of sediments given various observed
discharges provide probabilistic properties of estimated sediments such as the highly likely
range of estimations, probabilities of sediments greater than or less than certain values,
and various quantiles of specific probabilities. The derived CPDFs at Jenshou station shift
toward the right and become flatter with increasing discharge. This phenomenon implies
that the estimated suspended sediment load is distributed in a very large range for a greater
discharge. That is, greater uncertainties exist in an estimation of suspended sediment load
for the condition of large discharge.

The results of single-value sediment estimations for various infilling methods indicate
that no single method outperforms in all evaluation criteria. The sediment rating curve
has the best performance in RMSE and NSE, while copula-based methods generally out-
perform in MAPE and MNSE and Method 1 (infilling missing value by mode) is the best
model among these copula-based methods. However, the frequency histogram of infilled
sediments by the sediment rating curve contradicts the frequency histogram of recorded
sediment. In contrast, the infilled sediments of the copula-based methods preserve a
similar frequency histogram as noted in the recorded sediments. That is, high frequency is
observed in small sediment and low frequency occurs in great sediment. Among these four
methods, the frequency histogram of Method 1 is close to that of recorded sediment data.

Infilling missing sediments to have long and continuous data provides the necessary
information for design and operation of water-resources engineering. Statistical methods
alleviate the need for physical factors of watersheds and rivers to infill sediments. However,
uncertainties existing in estimated sediments are attributed to the proposed statistical
models using discharge only. Incorporating additional available parameters such as rainfall
and maintaining models to increase the accuracy of infilled sediments remain as topics for
further extending this study. Additionally, selecting the best estimation method among the
conflicting indices using the multi-criteria evaluation approach is also important in model
construction processes.
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