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Abstract: We confirm that energy dissipation weighting provides the most accurate approach to
determining the effective hydraulic conductivity (Keff) of a binary K grid. A deep learning algorithm
(UNET) can infer Keff with extremely high accuracy (R2 > 0.99). The UNET architecture could be
trained to infer the energy dissipation weighting pattern from an image of the K distribution, although
it was less accurate for cases with highly localized structures that controlled flow. Furthermore, the
UNET architecture learned to infer the energy dissipation weighting even if it was not trained directly
on this information. However, the weights were represented within the UNET in a way that was not
immediately interpretable by a human user. This reiterates the idea that even if ML/DL algorithms
are trained to make some hydrologic predictions accurately, they must be designed and trained to
provide each user-required output if their results are to be used to improve our understanding of
hydrologic systems.

Keywords: deep learning; machine learning; hydrogeology; effective hydraulic conductivity; energy
dissipation; UNET; hidden layer representation; centered kernel alignment

1. Introduction

Numerical modeling is fundamental to understanding hydrologic systems and to
predicting outcomes to be used for water resources management and groundwater contam-
inant remediation [1–5]. Water movement through the subsurface is controlled largely by
the hydraulic conductivity distribution, which can vary over orders of magnitude across
multiple scales [5].

Recent advances in hydrogeophysics increasingly suggest that the spatial pattern of
hydraulic conductivity can be mapped effectively [6–9]. Coupled with carefully selected
point measurements of hydraulic conductivity, these methods offer the promise of real
improvements in our ability to accurately model water flow and associated solute transport
in the subsurface. One remaining fundamental challenge is how to translate an image
of a spatially heterogeneous K field to an upscaled, effective K for use in a flow model.
The challenge of upscaling is critical to understanding how heterogeneous systems respond
to applied stress, incorporating point measurements in relatively coarsely discretized mod-
els, and understanding whether the inherent spatial averaging of geophysical methods
can provide useful estimates of upscaled hydrologic properties. In this study, we exam-
ine whether machine learning tools can provide insight into the problem of hydraulic
conductivity upscaling.

There is a rich body of literature on the upscaling of hydraulic conductivity. Wen
and Hernandez [10] categorized upscaling techniques as being either local or non-local.
Local techniques, which include simple averaging, power averaging, renormalization,
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and percolation theory, are based on the assumption that effective upscaled conductivity
depends only on the statistical distribution of media of different conductivities contained
within the medium. Non-local techniques, which include inverse modeling and energy
dissipation, also consider how boundary conditions and the local and larger structures of
the K field affect flow.

Local methods based on simple or power averaging [11–16] typically represent the
domain in terms of fractions, each having a single conductivity, and exponentially weigh
the conductivity of each fraction by the percent area or volume that it occupies. The extreme
cases of arithmetic weighting (exponent of 1, conceptually representing flow in parallel)
and harmonic weighting (exponent of −1, conceptually representing flow in series) bound
these approaches [17]. In general, local approaches work well provided that the spatial
distributions of the fractions are not organized into patterns, giving rise to structure [18].
For any specific case, the value of the exponent can be estimated by running a flow
model [19,20], but this requires the extra step of running the flow model to determine the
effective conductivity, which is often counter to the intended purpose of the upscaling effort.

The renormalization method to compute block conductivity (Keff) is based on up-
scaling by a recursive calculation whereby the extent of each grid unit is doubled along
each direction at each step [21,22]. This approach essentially allows for the use of arith-
metic and harmonic averaging at the local scale, thereby simplifying the computation
of effective conductivity. However, while the method is very fast and efficient, severe
errors can occur in the final estimates at the scale of the largest blocks due to unrealistic
boundary representations during the recursive upscaling process [23]. Further, as with
the exponential approach, the renormalization method is only applicable to statistically
isotropic, lognormal conductivity fields having no clear structure [19,24].

A significant advancement in the upscaling of K for binary media was achieved by
the introduction of percolation theory, proposed by Vinay Ambegaokar et al. [25] to model
electron hopping in semiconductors. The percolation concept was applied to hydrogeology
to compute the Keff of a medium characterized by a strong contrast between low and high
conductivities, with the assumption that the upscaled value of conductivity is primarily
a consequence of flows through connected high permeability pathways, when they ex-
ist [6,25,26]. Subsequent studies in which percolation theory was used to assess Keff [27–29]
have generally found that percolation theory is appropriate when the proportion of the
high conductivity medium is close to the percolation transition threshold [20].

Non-local methods can be used to infer effective values for system parameters via
inverse modeling, wherein the parameter field is constrained to be homogenous, and the
corresponding best-fit equivalent upscaled parameter value is determined. Several recent
studies [30–33] have used this technique for vadose zone parameter estimation. How-
ever, this approach requires solving the flow problem for specified boundary conditions.
In many cases, this is counter to the objective of upscaling, which is aimed at producing
effective parameters for use in a coarsely gridded flow model without requiring solution
of the flow problem for a highly resolved grid. As a result, these approaches can be very
computationally demanding [34]. Further, Lai and Ren [35] have shown that this approach
can provide imperfect results; e.g., they showed that three different inverse approaches
applied to a one-dimensional problem resulted in models that were unable to reproduce
the average soil water content profile.

The most direct approach to determining how spatially variable averaging of hydraulic
conductivities occurs during flow is through energy dissipation analysis. This inverse
approach is largely limited to steady-state problems and requires solving the flow problem
to determine the effective upscaled parameter value. In essence, the energy dissipation
approach defines the energy required to force the fluid through each block of the porous
medium; this value is normalized for the shape of the domain and the boundary conditions,
and then can be used to define the spatial distribution of weights to be applied to the
local conductivity values when upscaling to determine Keff. In this regard, Knight [36]
and Indelman and Dagan [37] suggested that Keff can be determined from a grid of
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cells by assuming that dissipated energy must be preserved during the equivalent block
conductivity computation.

Although the energy dissipation approach is computationally demanding and requires
that the flow problem be solved for both the homogeneous and heterogeneous case, it
has been found to be the most accurate and mathematically rigorous way to upscale
conductivity for steady-state problems [20]. Further, it can provide significant insight into
the specific locations that contribute most to the upscaled value of Keff. That is, the local
K values in those areas within which most energy is dissipated contribute most to Keff.
This approach is general, not limited to hydrologic problems. For example, Ferre et al. [38]
used energy dissipation to define the sample area of time domain reflectometry probes,
showing that relatively small areas of the domain contribute disproportionately to TDR-
measured water content.

Recently, emergence of data-driven approaches has shown promising results in hy-
drogeology. Reviews of several studies in the context of estimating effective parameter
values (e.g., [39–42]) indicate that data-driven approaches are efficient and can even out-
perform stochastic modeling or local (i.e., structure-based) techniques. For example, the
architecture underlying convolutional neural networks (CNNs) allows for the preservation
of spatial structure and correlation information, and we might therefore expect that the
CNN approach may be particularly suitable for problems involving gridded inputs, such as
hydraulic conductivity fields [2,40,43,44]. In the context of effective subsurface parameter
estimation, the accuracy of CNN-based approaches can be attributed to the fact that, unlike
classic stochastic approaches that only consider the first and second statistical moments
of a highly spatially variant media, machine learning approaches can account for spatial
patterns that are not explicitly characterized by those statistical moments or by classical
structure-based models. Some recent examples include: Zhou et al. [44], who used a CNN
to map conductivity fields to macro-dispersivity; Wu et al. [45] combined images of porous
media with integral quantities of porosity and specific surface area to estimate pore-scale
permeability, and Mo et al. [40] parameterized a non-Gaussian conductivity field using a
convolutional adversarial autoencoder as well as proposing a deep residual dense CNN
to map spatially distributed conductivity to head and solute concentration for 2D and
3D media.

Despite their impressive predictive power, DL-based models can suffer from a lack
of interpretability [46,47]. Most studies have mapped from measured inputs to outputs
without consideration of the underlying physical processes involved [44,45,48,49]. Con-
sequently, several studies have attempted to incorporate physical constraints into DL
algorithms. For example, Wang et al. [41] used a knowledge-based neural network to
estimate head distribution by taking into consideration the residuals of the governing equa-
tions, boundary conditions, and expert knowledge when formulating the loss function used
to train the model. Tartakovsky et al. [42] incorporated governing flow partial differential
equation constraints (the Darcy and Richards equations) along with training data into a DL
algorithm to infer the hydraulic conductivity map based on sparse observations of head
and conductivity during saturated flow through a heterogeneous medium and to infer the
constitutive pressure-conductivity relationship from observations of capillary pressures
during unsaturated flow. Previous hydrology-relevant investigations of DL represent clear
advances in the inclusion of expert knowledge in loss function design of a DL algorithm.
However, to date, little attention has been paid to the design of the underlying ML/DL
architecture as an alternative to, or complement for, including physical process constraints
in loss function. In particular, we found no publications addressing the problem of how
the ML/DL approach extracts and uses information from the heterogeneous field in the
process of inferring Keff. Here, we make use of recently developed approaches that facilitate
comparing the activation patterns of different DL models [50] to examine how these DL
tools extract and use the knowledge that is relevant to the process of upscaling (i.e., energy
dissipation weighting). To our knowledge, this is a first attempt to include knowledge
about the system to design a DL architecture for hydrogeologic upscaling.
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In summary, this study has two primary objectives. The first is to examine the potential
for a specific type of CNN, an image-to-image translation algorithm known as UNET, to
infer the effective hydraulic conductivities of two-dimensional binary conductivity fields.
Conceptually, these binary fields can be viewed as simplifications of bimodal K fields that
can result from coastal or riverine depositional processes or fracturing in low permeability
media [51]. Often [20,52], the spatial distribution of conductivity is modeled as a random
field with a given statistical distribution and a known covariance function. While these
assumptions and simplifications can be useful for stochastic modeling efforts, we chose to
examine a more general case: a random binary field without any assumptions regarding
structure. This approach includes fields with spatial correlation, but is not limited to
them. We then used DL to infer Keff in two modes: with and without energy dissipation
weighting information provided. The second objective is to understand whether UNET
learns to use energy dissipation weighting as an intermediate step for inferring Keff if those
weights are not provided. That is, we first compared the ability of a UNET to infer Keff
from a binary K grid when trained on both the K grid and the energy dissipation weighting,
and when trained only on the K grid. Then, we examined the trained weights within the
UNET trained only on the K grid to examine how it processes information. Based on this
examination, we drew conclusions on whether the UNET is learning the energy dissipation
weighting independently.

2. Methodology

We examined the effect of the structure of a binary medium on the effective hydraulic
conductivity, Keff, using MODFLOW, a well-known finite difference numerical groundwa-
ter flow model. MODFLOW was used to produce the steady-state head distribution over a
square grid with a 1-D applied gradient. That is, the left and right boundaries each had
applied constant head values (Type I, Dirichlet) and the top and bottom boundaries were
no flow (Type II, Neumann). We computed the steady-state flow and then calculated Keff
as the homogeneous K necessary to achieve that flow for the same boundary conditions
in a 1D flow system. The local head gradient was used to define the energy dissipation
weighting in each cell, which can be combined with the local K values to determine Keff.

2.1. Flow through Heterogeneous Binary Grids (Dataset Generation)

We defined 25 by 25 grid domains with no flow boundaries at the top and bottom and
constant head boundaries of 2 m and 1 m on the left and right boundaries, respectively.
Each cell has a length of 1 m on a side. Two media populated the grid, one had a high K (1
cm/s) and the other had a low K of 0.001 cm/s. Note that the calculations were repeated
for multiple high/low conductivity values with no appreciable difference in the results.
Different percentages of the high K material were considered, ranging from 1% to 99%.
For each high K percent, 3,000 random distributions of the media were modeled. Figure 1
shows one example of a grid with 50% high K material.
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Figure 1. Sample 25 × 25 cell grid with 50% high K (white) and 50% low K (gray) cells, constant head
boundaries (blue), and no flow boundaries (diagonal hash marks). The left boundary has a constant
head of 2 m and the right boundary has a constant head of 1 m, with flow occurring from left to right.

For each grid, the effective hydraulic conductivity was computed based on Darcy’s
Law, Equation (1), the global gradient applied over the domain, and the calculated steady-
state flow through the system. In Equation (1), Q is the flow rate [L3/T], A is cross section
area [L2], and dL

dH is hydraulic gradient [-]:

Keff =
Q
A
× dL

dH
(1)

The convergence criterion on the head used in MODFLOW was 0.01 m. To account for
small errors that persisted when the convergence criterion was met, the value of Keff was
calculated based on the flow into the left boundary and the flow out of the right boundary.
The resulting Keff values calculated with both of these flow rates always agreed within 1%,
and the average value was used for all analyses.

2.2. Energy Dissipation Weighting Method

Conceptually, energy dissipation is defined as the energy per unit time necessary
to force a fluid through a porous medium [37]. The value of Keff can be thought of as a
weighted average of the spatially distributed values of K, in which the weight at each point
is equal to the normalized energy dissipation of the field at that point:

Keff =

s
K|E|dAs
|E0|dA

. (2)

In Equation (2), E is the local energy density [-] and E0 is the total energy of field for the
same boundary conditions with a homogeneous K. Note that the value of the homogeneous
K does not affect the energy dissipation; this step accounts for the influence of the system
geometry and boundary conditions on the energy dissipation distribution. Additionally,
energy dissipations in the above equation is expressed by the following equation, in which
∇∅ is the gradient of potential (hydraulic head):

E = [∇∅(x, y)]2 (3)

Therefore, energy dissipation can be used to define the spatial distribution of weight-
ing factors at (x, y) based on the square of the gradient of the potential at that location,
normalized by the sum of the square of the gradient of the potential for the same boundary
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conditions for a domain filled with a homogeneous medium [36]. The weighting factor at a
point at (x, y) can be expressed as:

w (x, y) =
[∇∅(x, y)]2

s
[∇∅0(x, y)]2dxdy

(4)

where w (x, y) is the weighting factor at point (x, y), ∅(x, y) is the potential at each location,
and ∅0 is the potential distribution for the equivalent homogenous field. Combining
Equations (2) and (4), Knight [36] showed that spatially variable properties (e.g., K) can be
weighted to determine an upscaled property (here, Keff) as the sum of the local K weighted
by the energy dissipation weighting factor over the domain, as:

Keff =
x

w(x, y)K(x, y)dxdy (5)

In this study, the steady-state head values obtained from MODFLOW simulations
were used to compute the energy dissipation distribution. As MODFLOW determines
head values at the nodes and the K values are defined over the cells, the gradient and
K values are not aligned. There are two approaches to compute Keff with the energy
dissipation approach for these conditions. First, the gradient can be computed at each
cell edge and the value of Keff at the edge can be determined based on the K value in the
two neighboring cells. Second, the head values can be interpolated to the edges, allowing
for gradients to be computed at the nodes, matching the locations of the K grid. Both of
these approaches were tested and were found to agree within 1%; accordingly, the average
of these two estimates of Keff was used for each grid for further analyses. Hereafter, the
energy dissipation weights are referred to as ED weights, or simply as weights.

2.3. Estimating Keff with and without ED Weights

For a given percent of high K material, the energy dissipation distribution depends
on the structure and arrangement of high K and low K cells in the domain. As a result,
the K distribution and the ED weight distribution are related (but not identical) sources of
information for inferring Keff. In particular, given that knowledge of energy dissipation
has been shown [36–38] to provide valuable information regarding the weighting required
to define Keff, the problem of estimating Keff from a grid of K values can be seen as a
problem that has two stages. The first step is to estimate the energy dissipation weighting
at each cell, and the second is to use the estimates of the spatially distributed ED weights
to estimate Keff.

The power of ML and DL methods lies in their ability to learn more complex functions
while providing enhanced generalization capabilities. The standard machine learning
structure cannot map grids to Keff or resolve energy dissipation weightings of a grid
because of their input and output formats. In contrast, DL methods, containing multiple
hidden layers, provide us with both flexible input and output formats and the power to
model a complex process. Hidden layers are layers of DL architecture that are located
between inputs and outputs and are responsible for nonlinear transformation of the inputs.
Each layer consists of several processing units (neurons). Each neuron is connected to
adjacent layers with an individual weight assigned to each interlayer link. All inputs into
a neuron are multiplied by their associated weight and summed to form a single output.
Finally, each of these outputs is subject to a nonlinear transformation referred to as the
activation function.

Recent advances in image processing have led to the development of powerful deep
learning (DL) architectures. In particular, the UNET architecture [53] was developed to
address problems that require consideration at multiple scales by including skip connec-
tions, which recombine information from earlier hidden layers, thereby preserving some
structural information that might be lost during processing by intervening layers. UNET
models are a variation of encoder-decoder algorithms, which include a contracting path
(like a vanilla CNN) followed by an expanding path. The contracting path (i.e., the encoder)



Water 2021, 13, 1668 7 of 23

is responsible for capturing the context while the expanding path (i.e., the decoder) enables
localization. Using encoder-decoder paths, the UNET can provide an output that has the
same dimensions as the input. In our application, this property is necessary to obtain ED
weights on a grid having the same size as the K grid.

To build the model, we modified and extended the UNET architecture such that it
works for two tasks: inferring energy dissipation weighting and retrieving Keff from an
image of the binary conductivity field. Figure 2 illustrates our proposed model. The model
is composed of two sub-models, named “Energy Dissipation” and “Keff”. In this study,
we proposed a modified UNET model. The architecture of the model is inspired by our
physical domain knowledge, which suggests that knowledge of the energy dissipation
weightings will result in improved estimation of Keff.

Figure 2. Proposed U-net architecture. The architecture is composed of two sub-models. The energy dissipation model
has a UNET-shaped structure followed by a CNN model to map output of the UNET to Keff. Blue boxes correspond to a
multi-channel feature map. The number of channels is denoted on top of the box. The x-y size is provided at the lower
left edge of the box. White boxes represent skipped connection. The arrows are operations performed on feature maps
described in the legend.

We applied the UNET in two different ways to understand if and how ED weighting
is used in the estimation of Keff. In the first implementation, referred to as ‘informed’, the
model is trained using the freeze-training technique [54,55], in which the lower branch of
the model (labeled “Energy Dissipation” on Figure 2) is first trained to estimate the spatially
distributed ED weights. This is achieved by providing the K grids and the associated ED
weights to the intermediate layers during training. Once partially trained, the weights of
the lower branch were frozen and training was then continued by feeding only the K grid
into the UNET. The trained algorithm was provided with only the K grid and it would first
estimate the ED weights and then concatenate those with the K grid as input to the final
fully connected layer to estimate Keff.

The second implementation of UNET is referred to as ‘uninformed’. The model
structure was identical to the informed UNET, but the initial partial training step is removed.
That is, the UNET was only provided the K grid information during training; it was not
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trained using any information about the actual ED weights. All weights in the model were
fitted simultaneously during training to fit Keff.

The details of our UNET structure are provided in Appendix A (Table A1). Briefly, the
contracting path is comprised of repeated blocks of two consecutive 3 × 3 convolutional
kernels with rectified linear activation functions (ReLU) followed by a 2 × 2 max-pooling
layer with a stride of 2 to reduce the number of parameters and diminish the next layer’s
input size. On the contracting path, multilevel decomposition is applied to each layer,
doubling the number of feature maps (i.e., filters) at each step. The expanding path consists
of repeated blocks of transposed convolution layers with a kernel size of 2 × 2 and a stride
of 2. In each block, the output of the transposed convolution layer is concatenated with
the cropped feature map of the corresponding step from the encoding procedure (a skip
connection). The concatenated values are subjected to two consecutive 3 × 3 convolutional
kernels with ReLU activation functions. The skip connections help to recover information
that may be lost by down-sampling during decoding. The cropping procedure in the
concatenation ensures that the tensor extracted from the encoder will have the same size as
the corresponding layer in the decoder. During decoding, the convolutional layer halves
the number of channels. A final convolution layer with a kernel size of 1 x 1 and linear
activation, maps the current number of channels to a single layer. A skip connection was
introduced to recover information of the original grid, like the percent of high K, that
may be lost when inferring the ED weights. Specifically, the inferred ED weights were
concatenated with the K grid and fed through a convolutional layer and a dense, fully
connected layer to estimate Keff. It should be noted that as part of preprocessing, we
padded the input image to 32 × 32 to make the final output of the UNET the same as the
original image.

2.4. Model Evaluation

Identical data were provided to both UNET implementations; specifically, the K grids
(3000 realizations for each of 99 different percent high K values), MODFLOW-determined
Keff values, and (for the informed UNETs) ED weights. The inputs and targets were divided
into training, validation, and testing subsets. A random selection of 65% of the input cases
were used for training and 15% were used as a validation dataset for hyperparameter
tuning. The same training/validation/testing sets were used for all of the analyses reported
herein. Model performance is reported using the testing data set, comprising the remaining
20% of the data. Before training, the inputs were standardized by subtracting the mean
value and dividing by the standard deviation. All hyper-parameters were tuned using a
grid search approach. The root mean squared error (RMSE) between the observed and
model-calculated values (of Keff or ED weight) is used to assess the prediction quality of
each model. The R2 value was also calculated, but it was only used to further illustrate the
quality of the predictions.

2.5. Deep Learning Implementation

The deep learning architecture was implemented in Python 3.6.9 with TensorFlow V.
2.2.0 and CUDA version 10.1. Training and predictions were done on a P100 NVIDIA GPU.
For both the informed and uninformed models, we used Adamax with a learning rate
of 5 × 10−4 as the optimizer. Training was stopped when performance on the validation
dataset stopped improving within a patience value equal to 50.

2.6. CKA and Similarity Analysis

In addition to investigating whether machine learning algorithms can be trained to
predict Keff using gridded binary K information, we also wanted to determine whether
these tools can infer the underlying pattern of energy dissipation in the process of inferring
Keff. If it can be shown that the deep learning procedure naturally infers the spatial
distribution of energy dissipation, then it would provide an example of how DL tools
can learn underlying concepts. Further, because the distribution of energy dissipation
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indicates which parts of the medium have the largest impact on steady-state flow, the
ability to make inferences regarding these patterns would also enable an understanding
of the relationship between Keff and the structure of the K distribution. Such knowledge
would also be valuable for understanding soil property distributions that may impact
dispersion, colloid trapping/mobilization, and erosion/piping.

To investigate the ability of deep learning tools to make inferences regarding the
underlying pattern of energy dissipation, we applied the UNET methodology in both
informed and uninformed modes, as described above. To compare how information
flowed through the UNET in the informed and uninformed modes, we examined the
intermediate representations (i.e., hidden layer outputs) of each trained model. Specifically,
the hidden layer outputs, known as hidden representations, characterize the “features”
learned by a hidden layer of a neural network from an input (i.e., K grid), represented
in a machine-readable format. Similarity measurements can be used to compare these
intermediate representations between networks.

Kornblith et al. [50] showed that for a similarity index to be suitable, it should be
invariant to orthogonal transformation and isotropic scaling, and not be an invertible linear
transformation. We used the Hilbert–Schmidt independence criterion (HSIC) [56], which is
a kernel-based statistical measure of the independence between two sets of variables:

HSIC(K, L) =
1

(n− 1)2 tr(KHLH) (6)

where:
K, H, L ∈ Rn×n

in which H is the centering matrix H = I − 1
n 11T, 1 is the identity matrix, and K =

k
(

X(i), X(j)
)

, L = l
(

Y(i), Y(j)
)

are positive semidefinite kernel functions. For linear

kernels, K = k(X, Y) = XYT. An HSIC value of 0 implies independence. Other re-
searchers [50,57,58] showed that HSIC can be made to be invariant to isotropic scaling by
normalization. This normalized HSIC index is known as centered kernel alignment (CKA):

CKA(K, L) =
HSIC(K, L)√

HSIC(K, K)HSIC(L, L)
(7)

In this study, we used the centered kernel alignment (CKA) metric proposed by
Kornblith et al. [50] with linear kernels to evaluate the similarities of layer representations
in our trained networks. Specifically, we calculated the CKA between corresponding
intermediate representations of the informed and uninformed networks. To assess the
similarity between corresponding intermediate representations of any two models, referred
to here generically as model 1 and model 2, at layer i and j, we flattened the representations
and let X ∈ Rn×m1 and Y ∈ Rn×m2 be the matrix of intermediate representations of model
1 and model 2 with m1 and m2 neurons for n examples. Then, we constructed the linear
kernel matrices: K = XXT and L = YYT. Finally, we used Equation (7) to compute the
CKA metric. We compared similarities for all paired combinations of layers to explore how
information flowed through both networks. From this similarity, we can determine if the
energy dissipation arm of the uninformed UNET was independently learning the energy
dissipation weighting information without being required or instructed to do so.

3. Results

The main goal of this study was to investigate the impact that “structure” has on the
effective value of hydraulic conductivity (Keff) of a binary heterogeneous medium. We
examined this for multiple realizations of random fields that contain different percentages
of the higher K material.

A key insight regarding this was presented by Knight [36] and Indelman and Da-
gan [37] who showed that the spatial distribution of energy dissipation during steady-state
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flow can be used to define spatially distributed weights on K that can be used to compute
Keff. We first confirmed this finding for the set of binary grids examined. Then, we ex-
amined whether deep learning algorithms can predict Keff with and without information
regarding the ED weights. By comparing DL algorithms trained with and without access
to energy dissipation weightings’ information, we sought to understand the mechanism by
which Keff is inferred by the DL.

3.1. Analysis of the Effective Hydraulic Conductivity (Keff) and High K Percentage

The steady-state flow problem, as shown in Figure 1, was solved for 3000 random
realizations of a binary flow field for each high conductivity mixture ranging from 1 to 99%,
for a total of 297,000 simulations. Keff was computed from the overall gradient applied
over the domain and the steady-state flow through the domain. Figure 3 indicates how Keff
varies as a function of the percent high K material present in the realization. The parallel
(layers in the direction of flow) and series’ (layers perpendicular to flow) arrangements for
each percent high K realization were calculated analytically and are shown by blue and
orange color lines to place limits on the ranges that Keff values can take. The mean value of
Keff for each high K percentage is shown as a solid red line.

Figure 3. Keff distribution as a function of percent high K for medium K contrast condition.

Figure 3 demonstrates the nonlinear dependence of Keff on percent high conductivity.
At low percentages of high conductivity, Keff is only minimally affected by the addition
of higher K material and remains approximately equal to the conductivity of the lower K
material. A nonlinear transition zone is seen to occur at approximately 40 to 70% high K,
and the relationship becomes approximately linear above 70%. For a given percentage of
high K, the maximum variance of Keff occurs in the transition zone. These results illustrate
the two related but different challenges for inferring Keff from a binary grid: predicting
mean Keff as a function of the percent high K material, and predicting Keff for a specific
grid given knowledge regarding the percentage of high K material present—especially in
the transition zone of percent high K material.

3.2. Analysis of the Energy-Dissipation Weighting Method to Explain the Keff

Knight [36] showed that the pattern of energy dissipation weightings, calculated from
the square of the gradient of the potential, can be used to determine an upscaled property
like Keff. This fact is confirmed by our study (Figure 4). The energy dissipation approach
can be thought of as computing a weighted average of the local K values on the grid that
perfectly recovers the flow-based Keff.
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Figure 4. Keff estimation using the energy dissipation method.

Despite the power of the energy dissipation approach, the weights are very difficult to
identify visually. For example, the two grids that are shown in Figure 5A,B both have 80%
high conductivity material but have strikingly different Keff values (0.53 and 0.24 cm/s,
respectively). The corresponding maps of the ED weights are shown in Figure 5C,D, illus-
trating that the grid with the lower Keff has a much more localized pattern of ED weighting.
While it might be tempting to attribute this localized weighting to the connected pattern
of low K cells running vertically through Figure 5B, beyond this qualitative assessment,
it is essentially impossible to visually infer the values of the ED weights from the knowl-
edge of the spatial organization of K. Of course, both the pattern of ED weights and their
values can be computed readily by solving the steady-state flow problem, but then the
value of Keff can be determined directly, and knowledge of the ED weights is superfluous.
Accordingly, the ED weighting approach is best seen as a method for understanding spatial
organization [38] rather than a practical approach for inferring Keff from a K grid.

Figure 5. Effects of structure on Keff for the structures with the same percent high conductivity: (A,B)
Grid samples with percent high conductivity values of 80; (C,D) Corresponding energy dissipa-
tion weightings.

By classifying the domain into high and low weight areas, we can see that the spatial
structure of high-weight areas varies systematically with the percent high conductivity
material. The paired images in Figure 6A show how the fractions of high energy cells relate
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to the corresponding ED maps for several K grids with different percentages of high K
material. Figure 6B shows the expected fraction of high energy cells as a function of the
threshold used to define high weight areas. Specifically, to label the high ED weight cells in
a grid, we followed the procedure of [38]. We first calculated the energy distribution after
solving the steady-state head distribution with MODFLOW. The weights were sorted in
descending order and a running sum was calculated from the highest local weight toward
the lowest. Those cells that contributed a defined percent of total weight (shown in the
legend on Figure 6B as a threshold) were identified as high energy cells. Then, the fraction
of the total area of the domain that is located within these cells is determined. Following
this approach, a low value of the expected fraction of high dissipation cells would indicate
that most of the energy dissipation occurs in a very limited area. As shown on Figure 6B,
the high energy area is restricted in a relatively small area when the high conductivity cells
occupy between approximately 50 and 80% of the domain. In contrast, and as expected, if
the domain is nearly homogeneous (containing >90% of either high or low K material), the
areas of relatively high energy dissipation are distributed throughout the entire domain.
The results are not highly sensitive to the choice of threshold, meaning that the structural
interpretation of this high dissipation area is robust. Finally, Figure 6C indicates a strong
relationship between Keff and the fraction of high energy dissipation cells (defined with a
threshold of 95%), but with some interesting complications to that relationship in the range
of 50 to 60% high conductivity material. These results suggest that information regarding
the fraction of high energy cells may be informative for inferring Keff for most percent high
conductivity material fractions, but this relationship varies in the nature and quality of
the correlation as a function of the fraction of high dissipation cells and percent of high
conductivity material.
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Figure 6. The energy dissipation pattern for different percent of high K materials: (A) Grid samples and their corresponding
energy dissipation weightings as a function of percent of high K material; (B) Average fraction of high energy dissipation
cells as a function of the percent high K for different thresholds; (C) Correlation between observed Keff and fraction of high
energy dissipation cells (HDC) as a function of percent of high K material. A threshold of 95% was used to define high
energy cells.
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3.3. Inferring Keff with UNET with and without ED Weights

The uninformed UNET achieved an RMSE = 0.0113 and R2 = 0.9984 when evaluated
on the testing data (Figure 7A). Interestingly, the informed UNET (Figure 7B) offered
only marginal improvement over the uninformed UNET with an RMSE = 0.0106 and
an R2 = 0.9986. It is important to note that, although the informed UNET was provided
information regarding the ED weights during training, its predictions of Keff are made based
solely on the K grid. In other words, the uninformed UNET independently determined
weights that are as good as the ED-informed. This leads to the question: Is the uninformed
UNET discovering the ED weights, or has it found some other weighting scheme that
is as effective as ED weighting? Regardless of the outcome, it is a contribution that the
uninformed UNET has achieved this performance without requiring that a flow model
be run. However, it would be even more interesting if it could be shown that the UNET
was discovering ED weighting without being given the physical insight that underpins
this approach.

Figure 7. The testing performance of Keff estimation using different methods: (A) Keff estimation using the energy dissipation
uninformed UNET model; (B) Keff estimation using informed UNET model with pre-training on energy dissipation.

3.4. Inferring ED Weights with an Informed UNET

The performance of the informed UNET for inferring ED is illustrated for some
example grids in Figure 8. The correspondence between the ED weights predicted by the
informed UNET and the value calculated directly from the flow model shows low RMSE
(0.0069) and high R2 (0.9549). This can also be aggregated to infer the fraction of high
energy cells, showing similarly good results (RMSE = 0.04876 and R2 = 0.9832). However,
considering all 625 cells in all 297,000 simulations, there are cases that show significant
mismatch (Figure 9A). In particular, UNET consistently under-predicts the ED weights
for cells that have very high actual weight (top right quadrant of Figure 9A). This leads to
an over-prediction of the fraction of high energy cells for cases with intermediate percent
high K (Figure 9B). From Figure 6B, these are the conditions that give rise to the most
concentrated ED weighting. Taken together, these results suggest that the UNET has
difficulty in inferring the ED weights when they are concentrated in highly localized areas
(e.g., 60–75% high K material in Figure 6B).
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Figure 8. Samples of energy dissipation weight distributions’ prediction for different ranges of
percent of high K material: (A) Observation; (B) Predicted values.

Figure 9. Performance of informed UNET model in energy dissipation estimation: (A) Energy dissipation weighting
prediction for all grids; (B) Fraction of high energy dissipation cells’ prediction performance as function of percent of high K
material. With reference to Figure 6B, a threshold of 95% was used to define high energy cells.
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4. Discussion

There were two primary objectives of this work. First, we aimed to investigate whether
DL can predict Keff from a binary K grid, with or without ED weighting information being
provided. Second, if an uninformed UNET can predict Keff, then does the weighting on the
intermediate layers represent the DL independent learning of the ED weighting?

4.1. Dependence of the ED Weighting Distribution on the K Field

The Keff associated with binary grids showed a highly nonlinear dependence on the
percentage of high K material (Figure 3). Specifically, Keff is closer to the arithmetic mean
for materials with low to medium percentage of high K, while being approximately halfway
between the arithmetic and harmonic means for materials with a higher percentage of
high K. The variation in this trend is due to the influence of specific structural patterns in
the spatial distribution of high and low K cells among grid realizations. The maximum
degree of variability occurs for materials with intermediate percentages of high K values.
In general, both the trend and the specific variations in Keff are very well explained by
ED-weighted averaging (Figure 4).

Given that the energy dissipation weights carry information regarding the impact
of structure on the effective conductivity of a binary K field, we examined the nature of
this weighting as a function of the percentage of high K material present in the medium.
Specifically, we defined the minimum area (i.e., threshold) that contains 95% of all of the
ED weight, and classified the cells within this region as being ‘high energy cells’. At high
and low percent high K conditions, the medium is nearly homogeneous, but the energy
is distributed over ~75% of the domain (Figure 6B). The ED weighting is more highly
constricted, residing in a smaller number of high energy cells for 60% high K material grids.
The restricted high K areas centered around 60% high K material tend to form localized
regions within which most of the energy dissipation occurs, indicating the influence of
structures that force the flow to occur through regions of relatively low K, leading to high
energy loss. However, as the percentage of high K increases to 80%, the high weight areas
become concentrated in a small number of unconnected regions, suggesting a different
structural mechanism whereby flow is forced through a small number of low K cells, rather
than being channeled through a continuous structure.

4.2. Comparison of Performance

The UNET performance improves when ED information is provided during training
(Table 1). However, the improvement is minimal: in terms of RMSE and R2, both informed
and uninformed UNET performed extremely well.

The performance was poorest when Keff values were low (Figure 7). The performance
was also relatively poor for intermediate percentage levels of high K material (Figure 10).
That is, the UNET algorithms had the most difficulty when localized structures acted to
impede flow, leading to a low Keff.

Table 1. Training, validation, and testing performance of all models.

Uninformed Informed

Keff RMSE (Train) 0.00626774 0.00964671
Keff RMSE (Val) 0.01129849 0.01077667
Keff RMSE (Test) 0.01129849 0.01064088

Keff R (Train) 0.99975328 0.99941291
Keff R (Val) 0.99920198 0.99926396
Keff R (Test) 0.99918991 0.99928351

Energy Dissipation Weighting RMSE (Train) 0.02693278 0.00248980
Energy Dissipation Weighting RMSE (Val) 0.02703661 0.00548620
Energy Dissipation Weighting RMSE (Test) 0.03300000 0.00695936

Energy Dissipation Weighting R (Train) −0.04757823 0.99531359
Energy Dissipation Weighting R (Val) −0.04673303 0.97724645
Energy Dissipation Weighting R (Test) −0.05657500 0.97722907
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Figure 10. Difference between inferred and actual fraction of high K cells for each grid. To compare
the errors of grids at each high k percentage, the values of the left y-axis is scaled by average of
actual number of high k cells at each k percentage. The fraction of high K cells for a 95% threshold is
presented by a blue line.

4.3. Hidden Layer Representation Analysis

The superior performance of the informed UNET is notable because it does not require
that the flow problem be solved to make predictions for the testing set. Specifically, once
trained with ED weight information (requiring solving the flow problem during training
and validation), the UNET algorithm uses the learned relationships to infer the values of
the ED weights for the test samples and combines this with the K grid to infer Keff without
having to solve the flow equation. In contrast, direct use of ED weighting requires the flow
problem to be solved for every Keff inference.

The performance of the uninformed UNET, for which ED weight information was
never presented, is comparable to that of the trained UNET. Again, this approach requires
solution of the flow problem to determine the Keff during training and validation, but the
ED weights are not determined. Given that the ED weights are thought to represent a key
mechanism linking the K grid to the value of Keff, this raises the question of whether the
uninformed UNET is somehow inferring information regarding the distribution of ED
without being explicitly provided with such information during training.

For the informed UNET, the output layer of the lower branch, which is concatenated
with the K grid before the final step of inferring Keff, represents the ED weight distribution.
That is, as in the direct use of ED weights, this matrix is combined with the K grid matrix
to infer Keff. Examining the corresponding layer of the uninformed UNET shows no
correlation with the true ED weights. However, a more advanced analysis, based on
computing the centered kernel alignment similarity (CKA) [50], provides a more complete
picture of the information flows through the informed and uninformed UNETs. These
results are visualized as a similarity matrix (Figure 11). The output of each layer of
the informed model is compared to other layers of the uninformed model to examine
the degree of similarity between them while accounting for the presence of invertible
linear transformations. A similarity value of zero between two layers indicates that their
representations are not invertible linear transformations of each other, while a similarity
value of 1 indicates that the two layers are equivalent up to a linear transformation.
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Figure 11. CKA similarity matrix between: (A) Informed UNET and untrained UNET (Random net); (B) Informed UNET
and uninformed UNET.

We first compared the results for the informed UNET with that of an untrained
network with random initial weights, named as Random net, and the same architecture
(Figure 11A). The values on the diagonal (representing the same layer in the two networks)
have high CKA similarity for the first three layers; this makes sense given that both
networks are being fed the same inputs. However, the similarity begins to diminish beyond
that point; they show very strong dissimilarity at the output layer, where the informed
UNET is constrained to predict values that correspond to the ED weights whereas Random
net has no such constraint. They also differ strongly at the final dense layer, meaning that
the untrained network did a poor job of inferring Keff.

The results are strikingly different when comparing the informed and uninformed
UNETs (Figure 11B). Namely, layer similarity remains high for all layers except the output
layer, where the informed UNET is required to predict values that correspond to the ED
weights whereas the uninformed UNET is not. Unlike the comparison with the untrained
network with random weights, the final dense layer is also highly similar, reflecting the
near-identical skill in predicting Keff achieved by the informed and uninformed UNETs.

The similarity results (Figure 11) are consistent with the findings of Kornblith et al. [50]
and Thompson et al. [59]. They show that there can be many possible intermediate ar-
chitectural solutions to achieve the same task, but that representations learned for the
layers closer to the inputs and the outputs tended to be similar. Further, we interpret
the consistent similarity for almost all levels to mean that the untrained UNET is “learn-
ing” some useful information that is related to the ED weights directly from the K grids
without any physical process constraints. However, the dissimilarity in the ED output
layer indicates that the information is not a direct map of actual ED weights. Rather,
when required to produce such a map (training under informed conditions), the UNET
learns an intermediate relationship that can provide the ED map to the user. It then uses
the ED distribution to infer Keff. However, when not required to produce an ED map
(training under uninformed conditions), the UNET does not develop a layer to translate
the information to a user-readable ED map. Rather, the latent information about the ED
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weights propagates through the UNET, with an associated change in the final dense layer
to produce high-quality inferences of Keff.

The CKA analysis cannot uncover relationships between networks in the presence of
invertible nonlinear transformations. To examine this, we sequentially swapped the weights
of the uninformed UNET with those of the informed UNET. Specifically, at each step of
this analysis (i.e., for each layer), we used the weights of the uninformed model for the
preceding layers while maintaining the informed UNET weights for the succeeding layers.
The results (Figure 12) are presented with the deepest layer at the top left, progressing
along each row and then downward to the final layer, toward output and final dense
layer, at the bottom right. There are strong linear correlations between the observed
Keff and these predicted with the ‘swapped’ network until the substitutions reached the
conv2d_12 layer. This is consistent with the high CKA representation’s similarity to
this layer (Figure 11). There is a strongly nonlinear relationship for conv2d_13, which
corresponds with a low CKA value at this layer. In the final layer (i.e., the output layer),
we see a strong negative linear correlation between the output of the mixed structure
model and that of the informed model. This pattern is consistent with the high CKA
value observed in Figure 11, and suggests that an orthogonal transformation between the
weights was necessary to overcome the changes applied in the deeper layers to recover
the correct Keff values. This analysis suggests that both the informed and uninformed
UNET are implementing similar computational processes, ostensibly extracting information
corresponding to the ED distribution from the K grid, but representing it differently in n-d
dimensional space. Further, the user-imposed requirement to produce a readable ED map
results in a nonlinear transformation that must be compensated in later layers to produce
accurate inferred Keff values.
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Figure 12. Correlation between true Keff and the output of UNET model built up by sequential
substitution of informed model weights with uninformed UNET collectively. Each subplot labeled
with the corresponding layer name in DL model.

5. Conclusions

We have investigated the ability of DL algorithms to infer the effective hydraulic
conductivity of binary K grids. Upon training, DL methods were able to infer Keff with
extremely high accuracy (R2 > 0.99) when provided with only the binary grid.

Relying on previous work that showed the value of energy dissipation weighting
for understanding and inferring Keff, we examined whether providing such information
improved the DL performance. While adding information derived from the ED distribution
improved the performance of each algorithm, the improvement was marginal.

The UNET architecture could be trained to infer the ED weighting from the K grid.
This finding was supported by a similarity analysis of the hidden layers of UNETs with
and without ED information provided. The accuracy of the inferred ED weights was lower
when the energy dissipation weights were concentrated into small areas, i.e., the UNET
was better able to infer the impacts of diffuse structures than highly localized structures.
This finding may be due to the relatively small number of realizations that showed strong
structural control in our sample set: highly localized structures are statistically less likely
to occur in random grids. Future work should examine this possibility as well as extending
the findings of this investigation to structured and geostatistically-constrained conditions.

While the UNET extracted the relevant ED weight information from the K grids, it
only translated this information to a user-readable map if required to do so. This may have
other implications for the use of ML/DL techniques in subsurface hydrology. For example,
ML/DL algorithms may be able to implicitly infer head distribution information ‘naturally’
if they are trained to predict streamflow; however, the head distributions may not be
available to the user unless the algorithms are specifically designed to produce them.
This may be an important consideration if ML/DL algorithms are applied to models
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with multiple calibration data types or if the models will be used for multi-objective
decision support.
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Appendix A

Table A1. Deep learning structure parameters. UNET model structure.

MODIFIED UNET MODEL

3 × 3 CONV. 16-SAME PADDING-STRIDE 1-RELU ×2
2 × 2 MAXPOOLING STRIDE 2

3 × 3 CONV. 32-SAME PADDING-STRIDE 1-RELU ×2
2 × 2 MAXPOOLING STRIDE 2

3 × 3 CONV. 64-SAME PADDING-STRIDE 1-RELU ×2
2 × 2 MAXPOOLING STRIDE 2 DROPOUT 0.64

3 × 3 CONV. 128-SAME PADDING-STRIDE1-RELU ×2
2 × 2 CONV2DTRANSPOSE. 64-SAME PADDING-STRIDE 2-NO ACTIVATION ×1

CROPPING
CONCATENATION

3 × 3 CONV. 64-SAME PADDING-STRIDE 1-RELU ×2
2 × 2 CONV2DTRANSPOSE. 32-SAME PADDING-STRIDE 2-NO ACTIVATION ×1

CROPPING
CONCATENATION

3 × 3 CONV. 32-SAME PADDING-STRIDE 1-RELU ×2
2 × 2 CONV2DTRANSPOSE. 16-SAME PADDING-STRIDE 2-NO ACTIVATION ×1

CROPPING
CONCATENATION

3 × 3 CONV. 16-SAME PADDING-STRIDE 1-RELU ×2
1 × 1 CONV. 1-SAME PADDING-STRIDE 1-NO ACTIVATION ×1

CONCATENATION
3 × 3 CONV. 10-SAME PADDING-STRIDE 1-TANH ×1

FLATTEN
1 DENSE-LINEAR
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