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Abstract: Pakistan is a flood-prone country and almost every year, it is hit by floods of varying
magnitudes. This study was conducted to generate a flash flood map using analytical hierarchy
process (AHP) and frequency ratio (FR) models in the ArcGIS 10.6 environment. Eight flash-flood-
causing physical parameters were considered for this study. Five parameters were based on the
digital elevation model (DEM), Advanced Land Observation Satellite (ALOS), and Sentinel-2 satellite,
including distance from the river and drainage density slope, elevation, and land cover, respectively.
Two other parameters were geology and soil, consisting of different rock and soil formations, respec-
tively, where both layers were classified based on their resistance against water percolation. One
parameter was rainfall. Rainfall observation data obtained from five meteorological stations exist
close to the Chitral District, Pakistan. According to its significant importance in the occurrence of a
flash flood, each criterion was allotted an estimated weight with the help of AHP and FR. In the end,
all the parameters were integrated using weighted overlay analysis in which the influence value of
the drainage density was given the highest value. This gave the output in terms of five flood risk
zones: very high risk, high risk, moderate risk, low risk, and very low risk. According to the results,
1168 km2, that is, 8% of the total area, showed a very high risk of flood occurrence. Reshun, Mastuj,
Booni, Colony, and some other villages were identified as high-risk zones of the study area, which
have been drastically damaged many times by flash floods. This study is pioneering in its field and
provides policy guidelines for risk managers, emergency and disaster response services, urban and
infrastructure planners, hydrologists, and climate scientists.

Keywords: GIS; ALOS-PALSAR DEM; AHP; FR; flash flood susceptibility assessment; flash
flood zonation

1. Introduction

Flood disasters have become the most frequent natural phenomenon due to climate
change and environmental factors. There is a significant threat to human lives worldwide
because most countries are susceptible to flood hazards, and it causes different types of
damage, such as physical, social, and economic damage. Floods cause damage everywhere,
especially in agricultural areas and infrastructure sectors near rivers. This phenomenon
may be due to no proper mapping or preventive measures or different parameters, such
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as the drainage density and slope. Floods occur due to several reasons. Heavy rainfall is
one of the significant reasons behind floods. Floods are caused when it rains heavily and
discharge exceeds the capacity of rivers, dams, and canals [1–3]. Flood risk modeling is an
essential strategy for flood management and mitigation [4,5]. Furthermore, some human
factors affect recurrent floods, among which are changes in land use, channel manipulation,
construction of bridges, barrages, agriculture practices in river beds, and deforestation [6–8].
Therefore, initial measures should be taken to minimize flood hazard damage. Such
susceptibility analysis needs to be done, and risk analysis should be performed as early as
possible [9,10].

Nowadays, susceptibility analysis has become famous in GIS (Esri Inc., Redlands, CA,
USA) and remote sensing techniques [11,12]. Remote sensing helps to gather information
about features of topographic surfaces, the vegetation cover, the land, the effects of climate
change, and many other relevant data of various regions. Simultaneously, GIS techniques
help to prepare a spatial database by using remote sensing data for flood mapping. RS
(Remote Sensing) and GIS (Geographic Information System) techniques have been useful
for urban flood hazards throughout the world by using multi-criteria zoning decision
analysis in the Argentinian province of Tucuman [13]. For flood susceptibility, zonation
images are gathered through remote sensing, such as Landsat 5 (Thematic Mapper), Landsat
7 (Enhanced Thematic Mapper Plus), Landsat 8 (Operational Land Imager), and Satellite
Pour Observation Terre (SPOT) [14,15]. The ANN (Artificial Neural Network) model
for flood imitation with GIS was utilized in the Johor River Basin (Malaysia). The flood
susceptibility mapping was predicted and validated using the frequency ratio model and
GIS techniques in the Johor River Basin [16,17]. In India, while analyzing Kosi river basin
mapping of flood risk evaluation, [16] used GIS and RS techniques. Furthermore, GIS
is used for predicting spatial areas susceptible to flooding [12]. It is also used for flood
susceptibility analysis, as well as for its validations [13]. In Iran, flood mapping using
GIS-based frequency ratio models and flood susceptibility assessments was done in the
province of Golestan [18,19]. Therefore, numerous research works integrate GIS and RS
techniques that were beneficial for mapping flood risk management.

The results of various GIS-based statistical analyses are more acceptable, accurate, and
logical than only using a spatial database. The analytical hierarchy process (AHP) with
GIS for the mapping of floods has become popular [20,21]. The logistic regression [22],
Shannon’s entropy model [16], decision tree [19,23], ANN [18], FRM [8,12], fuzzy logic [19],
and AHP models were utilized for susceptibility mapping of floods. The AHP model is
a widely used efficient technique that is easily utilized and understandable [18,21,24–26].
Furthermore, for the bivariate statistical technique, frequency ratio (FR) is an important
quantifiable method and acknowledged in the study of natural disasters [8,12,27].

There have been sporadic disasters and emergencies in the last ten years due to flash
floods, landslides, avalanches, and glacier lake outburst floods (GLOFs), resulting in the loss
of human and animal lives, and partial or complete damage to infrastructure [28]. Pakistan
is exposed to various hazards, including waterlogging, riverbank erosion, floods, cyclones,
earthquakes, drought, desertification, landslides, heatwaves, GLOFs, and water salinity.
Pakistan has experienced 25 calamities from 2000–2015 in which floods, earthquakes, and
landslides were the most common [20,23,29–32]. During the last six years, there have
been glacier outbursts in two major areas: upper Chitral Sonoghour and Booni. Recently,
on 2 August 2013, unusually heavy rain in the upper pastures of Reshun village caused
an unprecedented flash flood. Similarly, in July 2015, the heavy rainfall on the upper
barren land of low altitude pasture above the village changed the rill into a heavy flash
flood. Structures were destroyed, irrigation channels and linking roads were damaged,
and gardens, crops, and orchards were washed away [2].

Modeling flood susceptibility is one of the latest strategies used for dealing with
flood disasters. The study area (Chitral District) experiences recurrent floods, which cause
damage to infrastructure, standing crops, and earning sources, and even lead to human
casualties. There is a lack of flood susceptibility assessment and mapping. Flood modeling
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could also be considered to develop routing of floodwater by considering the interaction
of physical parameters. Flood risk modeling is essential in river management [33]. It
involves factors such as drainage density, slope, land use, elevation, rainfall deviation,
lithology, and land use/cover. All these factors can be used with the help of Multi Criteria
Analysis-Analytic Hierarchy Process (MCA-AHP) and FR to identify very high to very
low susceptibility zones. This study was an attempt to model the risk susceptibility and
zonation in the floodplain of Chitral District. With the integration of GIS, many hydraulic
models have been used for flood hazard evaluation. Flood modeling is a central part of
flood risk reduction that aims to reduce the weakness of components in danger. This study
was pioneering research in its field since no such study has been carried out so far in
Pakistan, especially in the study area. Hence, it will provide guidelines for policymakers
dealing with flood hazards, particularly in Chitral District.

Due to its river, Chitral’s floodplain is highly susceptible to recurrent flooding during
the summer season. Almost every year, severe damage is caused to standing crops and
infrastructure, as well as causing animal and human casualties. Population settlements are
encroaching toward risky locations in the study area. A considerable number of villages
are next to the river catchment. One main problem is that there are no known accurate
flood zone methods in the Chitral municipality that provide information about floods to
the municipal department, leaving Chitral more vulnerable to significant environmental,
economic, and social damage [34]. Historical data indicate that three extreme and seven
moderate flood incidences occurred between 2010 and 2015 in Pakistan’s Chitral region,
which destroyed natural resources and thousands of lives. To emphasize this problem,
attempts were made to research certain factors to better identify and forecast areas that
are more vulnerable to flooding. This study was conducted to reduce flood disasters in
the Chitral river of Chitral District, as no such study has been conducted in this area
before. This research also identified the spatial pattern of flash flood hazards through AHP
and FR models [35]. This research highlights the flood hazards and provides information
for flood risk management policies to policymakers or the local government of Khyber
Pakhtunkhwa province, Pakistan.

The key objective of this analysis was based on developing and applying quantitative
analysis techniques with the integration of GIS for flood-susceptible mapping in the Chitral
region of Khyber Pakhtunkhwa (KPK), Pakistan, and to estimate areas at risk. The GIS, FR,
and AHP analysis results were further used for the detection and spatial mapping of flood
risk areas for the Chitral region. FR and AHP models were used to evaluate the possible
areas that were flood-prone. These results will be beneficial for planners, researchers, and
the local government for impact assessment to predict the flood zones in the future and
mitigate the risk of flood by developing different strategies. Therefore, the study used FR
and MCA by utilizing AHP with GIS to generate flash flood hazard zonation to specify
the high-risk areas and identify the most critical factor responsible for flash floods in the
study area.

2. Materials and Methods

Chitral is located within 35◦14′00” N to 36◦56′00” N and 71◦11′00” E to 73◦42′00” E,
with an area of 14,850 km2 [36]. Geographically, on the eastern side of Chitral, the Ghizer
District of Gilgit Baltistan and the Swat District are situated. Afghanistan is on the north-
west side of Chitral, and on the southern side, Upper Dir is situated. Khyber Pakhtunkhwa
(KPK) is the northwestern province of Pakistan and Chitral is the biggest district in this
province [21,37,38]. This city is also known as Chitral and Qashqai. Chitral is undoubtedly
the most sentimental, dazzling, and captivating spot in the lofty Hindukush Range. Chitral
is one of the most elevated areas of KPK Province. Chitral’s elevation sweeps from 1094 m
at Arandu to 7726 m at Tirchmir. There are more than 40 peaks in Chitral. Tirchmir is the
most noteworthy pinnacle of the Hindu Kush, with a height of 7708.08 m. The terrain of
Chitral is hilly. Timberland covers nearly 4.8% of Chitral’s land and mountains.
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Chitral River has diversity in the riverbed, channel gradient, and channel width. The
river valley is broad, having a mild incline and sidelong disintegration at certain upper
reaches. Furthermore, the stream valley of Chitral is thin and is characterized by horizontal
and vertical disintegration. The whole area of Chitral is a sloping landscape. This area
has significant flood-causing factors, such as snow, liquefying glaciers, and high amounts
of monsoon rain. The immediate effects of obliterating floods include human, property,
and infrastructure loss. The degraded sub-tropical scour woods secure the low-elevation
regions, while temperate forests secure the higher height zones. However, the study region
is presented with numerous hydro-meteorological calamities, mostly flash floods and
riverine floods [37,39].

3. Collection and Preparation of Data
3.1. Inventory of Flash Floods

The accuracy of established flash flood susceptibility maps is significantly impaired
by the inaccurate mapping of previous flash flood events. To forecast potential flash flood
events in a city, records of the area’s previous flash flood events must be available [40].
These events depend on many factors, including the distance from the river, drainage
density, slope, elevation, rainfall, soil, geology, and land-use/cover activities. These factors
are essential for planning the inventory of flash floods and the forecast of possible flash
flood events. In this analysis, 300 flood and non-flood points were randomly chosen from
the flooded region and low-flood-likelihood high-altitude areas used for training and
testing data sets (Figures 1 and 2). These points were arbitrarily split into 70% for training
data points and 30% for validation purposes.

Figure 1. Geo-location of the study area and points show the training and testing points that were
used in this research.
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Figure 2. Damage caused by a flash flood in Chitral.

3.2. Conditioning Factors of Flash Floods

In order to achieve acceptable and the best outcomes, the most vital stage of any risk
assessment and zonation is to select appropriate factors or decision criteria to get suitable
and best results.

Natural disasters, such as floods, landslides, and cyclones, are mostly dependent on
several conditions being present. It is vital to select effective variables to map flood hazards
based on any catchment area [16]. It is often seen as a complicated challenge to choose
parameters to create flood susceptibility maps [12]. Therefore, a field survey was conducted
to determine the most relevant flood-triggering variables. The most flood-prone areas were
visited during a month-long field visit in 2015, and personal opinions from residents were
collected, which played a constructive role in planning the inventory map. A total of eight
parameters, namely, distance from the river, drainage density, slope, elevation, rainfall, soil,
geology, and land use land cover (LULC), were included in the modeling in this report. All
these maps were transformed to a 12.5 × 12.5 m pixel raster image (format), which was up
to DEM resolution for the model studies (Table 1). The cell size of each parameter was kept
as 12.5 m in the resampling method such that the overlay analysis would get the pixel at the
same scale and the output was also the same as the input. The maps acquired at different
scales were digitized and while converting them to the raster format, the resolution of the
pixels was kept at 12.5 m. The reason for keeping the resolution at 12.5 m for all raster
parameters was to match the pixel size. Most of the parameters were extracted from the
DEM that had a resolution of 12.5 m, and all other parameters were brought to the same
resolution. Below is a comprehensive overview of the mentioned variables.

Table 1. The sources from which various data were gathered and their implementation purpose.

S. No Primary Data Spatial Resolution Format Source of Data Derived Map

1 Sentinel-2 10 m Raster (https://earthexplorer.usgs.gov;
accessed on 20 June 2018)

Land-use map, extraction of
drainage basin

2 ALOS-PALSAR
(DEM) 12.5 m Raster https://search.asf.alaska.edu/;

accessed on 12 August 2019

Slope, drainage density,
elevation, flow accumulation,

distance from the river

4 Geological data 1:10,000 Vector Geological Survey of Pakistan Geological map

5 Soil data 1:100,000 Vector Soil Survey of Pakistan Soil map

6 Rainfall data 1:100,000 Raster Pakistan Meteorological
Department Rainfall deviation map

https://earthexplorer.usgs.gov
https://search.asf.alaska.edu/


Water 2021, 13, 1650 6 of 18

3.2.1. Distance from the River

Particularly, the area which is close to the rivers is more prone to flooding in both cases
of normal flood and flash flood within the river basin as water flows from higher elevation
and accumulates at lower elevations. Mostly during heavy rain, the areas that are nearby
terrestrial water places become flooded, such as dams, ponds, and lakes. Furthermore, the
nearby terrains of water bodies are mostly flat. The 2500 m distance was given to the most
susceptible areas, while areas more than 10,000 m away were considered as being at no
risk (Figure 3a).

3.2.2. Drainage Density

Drainage density is expressed as the total length per unit area of the river network.
In this research area, the stream order was conducted using the system suggested by
Strahler [41]. During the research, high weightage was allocated to low-drainage-density
areas, and lower weights were allocated to areas with sufficient drainage. In the five
sub-groups, the drainage density layer was further reclassified into five (5) classes. Those
areas having low drainage density were categorized with a score of 5, and those with
very high drainage density were classified with a score of 1. We used a kernel density to
identify the river density within 0.303–3.618 km to generate a raster cell, as displayed in
Figure 3b [42,43].

3.2.3. Slope

Many factors affect catchment hydrologic characteristics, which ultimately influence
the production of surface runoff. It governs overland movement, penetration, and subsur-
face flow length. The slope angles’ combination defines the slope shape and its relation
with the lithology, composition, soil form, and drainage. A slope chart was prepared in
this study using ALOS PALSAR DEM and slope generation tools in ArcGIS. Due to the
almost flat terrain, the slope classes with less value were given a higher level, while the
class with the maximum value was classified as lower due to its comparatively high runoff.
The outcomes of the initial classification and the layers of reclassification of the slope and
elevation are shown in Figure 3c for the case study.

3.2.4. Elevation

The tendency of water accumulation is from higher to lower elevations. Elevation
information shows how the stature of the ground changes over a region. The areas with
lower elevations are mostly susceptible to flash floods due to simultaneous rainwater
accumulation. The ALOS PALSAR DEM was utilized to extricate various factors. High
elevation areas are most susceptible to pluvial flash floods. A map based on elevation was
generated from the DEM using five classes in this research. The raster map in Figure 3d
shows the elevation map obtained for the Chitral District.
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Figure 3. In this study, maps of flash flood conditioning variables were used: (a) distance from the river, (b) drainage
density, (c) slope, (d) elevation, (e) rainfall deviation, (f) soil resistivity, (g) geology infiltration, and (h) land use/cover.
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3.2.5. Rainfall Deviation

Flood susceptibility and heavy rainfall are both positively correlated with flood oc-
currences. Havoc flooding triggers flash flooding. The rainfall rate rises from July to
September for the study region, and in this way, flooding months are detected, i.e., sessions
of monsoon in the Chitral District, Pakistan. In the estimation of flood types that are flashy,
rapid, and of short duration, the amount of surface runoff is critical due to heavy rainfall [8].
Here, the variance in rainfall was regarded as an initiating factor for the study of flood
susceptibility because a positive deviation of rainfall can cause floods, whereas a negative
deviation of rainfall causes a shortage of rainfall, leading to the possibility of drought. For
the estimation of variance and spatial mapping, the annual average with reported annual
precipitation of the Chitral region was taken from 2010–2015. The deviation of rainfall was
calculated from the recorded average rainfall of each rain gauge station using the following
Equation (1):

Q =

(
(L− Z)× 100

z

)
(1)

where L is the recorded rainfall, Z indicates the average rainfall, and Q represents the
rainfall deviation.

The rainfall deviation was calculated based on the data of five rain gauge stations,
i.e., Chitral, Drosh, Kalam, Saidu, and Dir. The technique of inverse distance weight
(IDW) interpolation was used in ArcGIS to make the map of rainfall deviations for Chitral
(Figure 3e).

3.2.6. Soil

The essential soil components and characteristics are soil structure and moisture. Soil
textures significantly affect floods, as water is quickly drained by sandy soil and little
runoffs occur. This means that areas marked by clay soils influence flooding more. The
probability of flood risk rises with a decline in soil penetration, which allows the surface
runoff to rise. The soil map was listed for this case study based on infiltration capabilities.
Three broad categories were considered for the soil types discovered within the district:
extremely infiltrated, mildly infiltrated, and less infiltrated. To assign a weight to each soil
class, a weighted soil map was prepared such that the soil type with a higher capability to
cause a high flood rate was ranked as 3, with a low flood rate capacity being ranked as 1
(Figure 3f).

3.2.7. Geology

Basin geology affects the hydrological response. The main geological characteristic for
runoff surfaces is soil absorptivity. In comparison to a permeable layer, impermeable soil
causes rapid and significant surface runoff. The geology of the lower catchments of the
study area comprises Chitral Slate, Reshun conglomerate, Koghuzi Greenschist, Calcareous
Phyllite, and Purit Formation, which have low infiltration and cause higher chances of
flooding. Rock formation and soil permeability were used to analyze the role of each layer
of spatial data regarding the occurrence of flood events. Clay is more resistive as compared
to sandy soil, which allows for more water infiltration. Weights were allotted to each
class parameter, and afterward, the chosen parameters were added to build up a flood
susceptibility guide (Figure 3g).

3.2.8. Land Use and Land Cover (LULC)

Land use/cover is also one of the main variables in flood mapping. It reflects the
current use of the land, its pattern, and types of its use, and hence its importance for soil
stability and infiltration. Land cover, such as soil vegetation cover, whether permanent
grassland or another crop cover, has a significant impact on the soil’s ability to act as
water storage. Rainwater flooding is much more common on bare fields than on those
with decent crop cover. In other words, different forms of land use act as resistant covers,
reducing water retention time; in most cases, it increases the peak release of water, resulting
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in a more precise flood. This means that LULC is a critical variable in determining the
likelihood of flood events. In this study, an exceptionally high value was given to water
bodies, while a low value was given to snow cover (Figure 3h).

4. Methodology
4.1. Analytical Hierarchal Process (AHP)

In the AHP, the primary task is the creation of a matrix representing the importance of
all selected alternatives. Based on its relevance and meaning in such phenomena, it allows
policymakers to make reasonable decisions. In AHP the problem can be recognized as how
to derive weights, rankings or importance in a set of alternatives according to their value
for occurring in some instances. This is a widely applicable multicriteria decision-making
(MCDM) approach [19,44].

4.2. Frequency Ratio (FR)

FR is one of the main bivariate analysis techniques, which is well accepted for use in
flood susceptibility analysis. The spatial association between dependent and independent
variables is the basis of FR as a bivariate statistical study. The spatial associations between
the dependent factors were based on the training points selected for the flood-causing
determinants, including climatological, topographic, and local factors, which were added
as independent factors that were analyzed in this research. The frequency ratio model
was successfully used in the study of the susceptibility of flood and insecurity in various
flood-prone regions worldwide [8,18].

The study methodology is highlighted in several key steps below: (1) collection of data
and its preparation, (2) training and testing the datasets’ generation, (3) AHP modeling and
the selected class weight values, (4) SCWV and FR models, (5) validating the models, and
(6) and flash flood susceptibility maps’ generation (Figure 4). These steps are described in
the details given below.

4.3. Collection of Data and Its Preparation

Inventory maps of flash floods and the conditioning factors were produced in the
raster format with 12.5 m pixel size. In order to calculate the frequency ratio values of every
conditioning factor class using the frequency ratio method, the inventory map was then
overlaid with the conditioning factor maps. The weights of the class of variables were then
calculated using the frequency ratio values. The selection of correlation-based features was
used to validate and select the significant factors and evaluate the relative significance of
these factors for flash flood modeling.

4.4. Training and Testing Datasets’ Generation

The susceptibility to flash floods was divided into two sections with ratios of 70%
and 30%. Among these elements, 70% of the susceptibility data was used to sample the
conditioning factors assigned to the training dataset generation weights. In comparison,
the remaining 30% was used to sample the conditioning factors assigned to the weights for
the evaluation dataset generation. The collection ratios can influence a model’s efficiency
regarding the training division and test inventory. The ratio of 70/30 was used in this
analysis as it is a typical ratio used in modeling [24,26]. These steps were carried out in the
ArcGIS 10.6 environment.
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Figure 4. Flow chart of the methodology used in this study.

4.5. AHP Modeling and the SFWV

In the present analysis, the AHP approach was used to help the judgment by compar-
ing the selected flood-causing variables by calculating the selected factor weight values
(SFWVs). A survey of residents was conducted and observations from the field were made
to understand the relative significance of various flood factors in the Chitral area and
position their rank based on given preferences. The challenge in AHP can be described as
determining how to assign weights, ranks, or significance to a collection of alternatives
based on their likelihood of occurrence in specific situations. One of these variables was
calculated based on a numerical scale [45] (Table 2).

Table 2. Comparison of two factors that can induce flooding in the form of a numerical scale.

S. No Explanation/Definitions Importance Intensity

01 Extremely more important 8 and 9
02 Very strongly more important 6 and 7
03 Strongly more important 4 and 5
04 Moderately more important 3 and 2
05 Equally important 1

A pairwise contrast matrix was built based on the meanings or importance of the
flood variables. Of the seven total flood-causing variables chosen, values were allocated
to every rank on a scale from 1 to 9. These weights were assigned based on their relative
significance in this occurrence. The value assigned to one alternative was reciprocal to its
opposite relation (i.e., 1/2 to 1/9) (Table 3).
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Table 3. For the flood susceptibility mapping, the flood-causing variables and their selected factor weight values (SFWVs)
are shown.

S. No Classes (Abbreviations) DR DD SL E R So G LULC SFWV

1 Distance from the river (DR) 1 1 3 2 4 3 3 1 0.3390

2 Drainage density (DD) 3 1 2 0.5 0.2 4 4 1 0.1256

3 Slope (SL) 2 0.34 1 0.34 0.33 3 3 0.25 0.0562

4 Elevation (E) 1 0.25 0.5 1 0.25 2 2 0.25 0.0376

5 Rainfall (R) 0.5 0.2 0.34 0.25 1 0.5 0.34 3 0.2144

6 Soil (So) 0.34 0.17 0.25 0.2 0.5 1 0.5 0.25 0.1190

7 Geology (G) 0.25 0.17 0.2 0.17 0.5 0.34 1 0.35 0.1850

8 Land use/cover (LULC) 0.2 0.15 0.17 0.14 0.5 0.25 0.13 1 0.1480

For the hierarchical arrangement of the flood-affecting factors, the AHP technique was
applied and the eigenvector of chosen weight factor values was evaluated and modified
by calculating the consistency ratio (CR) [23,46]. Once each factor’s relative rank was
determined, the factor weight values for classified sub-factors were computed in order to
assess the accuracy while considering the scale of significance. Hence, the eigenvector was
calculated by considering the Equation (2):

Ax = λmaxX (2)

where λ is the eigenvalue, x is the eigenvector of n criteria, and A is the comparison matrix
of n criteria. The largest eigenvalue (λmax) for a stable reciprocal matrix equals the number
of comparisons n. Therefore, it is mandatory to determine the consistency ratio (CR) for the
same. Saaty [45] suggested that the judgment collection is “inconsistent” if the CR reaches
“0.1” and needs to be replicated. Similarly, if the CR equals “0,” the decision is completely
consistent; moreover, any value between 0 and 0.1 is often called consistent [45]. The ratio
of consistency is determined using the following Equation (3):

CR =

(
CI
RI

)
(3)

If the consistency ratio is based on CR, the consistency index is CI, and the random
index is RI. RI was used from [45]; however, CI was determined by using the following
Equation (4):

CI =
(

λmax− N
N − I

)
(4)

where the total number of sub-factors is λmax, which is equal to the average of x criteria,
and N is the total number of subfactors. AHP has the capacity to be implemented in
different fields where several factors are responsible for the occurrence of an incidence,
such as assessments for ecotourism [31], for the selection and evaluation of industrial land
use [47], for the evaluation of residential LULC suitability [48] in post-harvest technology
selection [49], in irrigation network maintenance [16], choosing the right underground
mining technique [17], for disease risk mapping and transmission [16].

4.6. FR Model and the SCWV

In this research, to calculate the frequency ratio (FR) for every class of all selected
factors, the following Equation (5) was used:

FR =

(
PpixE
PpixT

)
(

ΣpixE
ΣpixT

) (5)
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Ppixe shows the number of pixels p in the concerned areas of a flood class, whereas
PpixT represents the count of pixels in the research area, ΣpixE is the count of all pixels for
the flood class, ΣpixT is the overall number of pixels in the research area. If the resulting
value of FR was more than 1.0, it means that there was a fair and robust association between
the flood training points and the relevant factor and high flood risk class involved, while
a value of FR < 1 indicated a negative relationship and a low flood risk importance [50].
The FR value for each class was assumed to be the chosen class weight value in the present
analysis (SCWV). The flood vulnerability index (FVI) was also calculated to display the
expanded flood susceptibility importance from very high to very low flood risk areas in
the current AHP and FR model analysis. In order to calculate the FVI using the following
Equation (6), the SCWV representing every class of all the selected variables and the SFWV
selected for the flood occurrences were taken into account:

FSI =
n

∑
n=1

(wi × FR) (6)

In this equation, n is the total number of variables chosen (n = 7), wi is the weight
of variables (i.e., the SFWV), and FR is the value of the frequency ratio of each class (i.e.,
the SCWV).

5. Results and Discussion
5.1. Effect Weight of Each Class of Flash Flood Susceptibility Variables Found Using the
FR Method

Flood susceptibility mapping is an approach for making plans and managing pre-
hazards, which is needed to decrease the risk factors. Because of the high altitude, the region
of Chitral is often called a flood-prone location. With some intervals and return dates, there
are many signs of catastrophic flooding in this area. This study highlighted the analysis
of flood vulnerability based on decision making approach, i.e., analytic hierarchy process
and frequency ratio. Several independent causes induce/condition flooding and play
essential roles in flood evaluation. Thus, a statistical databank was prepared for all eight
selected conditioning factors (river distance, drainage density, slope, elevation, rainfall, soil,
geology, and LULC) with the corresponding subclasses (Figure 5). Their spatial relations
with flood risk were calculated precisely and are given below. Relationships between
flood-susceptible and flood-inducing variables were made to make spatial comparisons
between flood-susceptible regions and flood-inducing variables. In this respect, the values
for class weight and factor weight were considered. A factor’s weight value shows the
relative significance of each factor chosen for and determined using the AHP. The class’s
weight value shows the importance based on each factor for every individual class and
provides valuable details for understanding the role of flood generation.

Based on the quantitative analysis of the relationships between this site of historic
flooding and the topographical and geo-environmental variables influencing flash flood
events, each variable type’s impact weight was determined (Figure 5). The study showed
that the altitude class vector’s maximum weight belonged to the 500–3500 m elevation
class. The weight for a slope above 45◦ was the maximum weight for the angle of the soil
slope. The northwest slope orientation has a greater weight than the other slope directions.
Weights had a more significant impact than other groups in the vector distance from the
fault class of 400 to 500 m. Examination of the river’s vector distance found that much of
the weight associated with the flood was in the <2500 m class. The rainfall layer had the
second-highest weight, as seen in Table 3. This implies that the threshold value for the
frequency of flash flooding belonged to this rainfall class. Depending on the length, higher
rainfall above this value may also cause flash flooding in conjunction with other variables.
The vegetation and residential land-use types and being situated next to the river area and
on moderate slopes had the higher weighting factors relative to other land uses. Geological
research shows that the soil’s weight at the beginning is greater than that of the rocky
outcrops. In this area, the geology had a more significant weight than other parameters.
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Figure 5. Flood-inducing factors for mapping flood susceptibility based on class frequency ratios.

5.2. Relationships between Flood Susceptibility and Flood-Inducing Factors

Efforts were made to spatially associate flood-susceptible zones and flood-inducing
factors. Factor weight values were measured. Rainfall was found to be a good indicator
for drought and flood (positive range indicates more than normal rainfall and negative
range indicates less than normal rainfall). The factor’s weight value shows the relative
significance of each factor chosen for and determined using the AHP. The class’s weight
value shows the relative importance of individual classes for each factor and provides
valuable details to understand the role of flood generation. The individual class frequency
ratio for each factor is shown in Figure 5. In terms of climate, rainfall still plays an essential
part in the study of flood vulnerability. To identify the risk of flood, rainfall variance
was taken into consideration because rainfall deviation is considered the best predictor of
flood areas. Figures 3e and 5 show that there was a deviation of rainfall ranges from 918
to 1139 mm, which shows an FR value of <1, indicating these regions were more prone
to floods relative to low-rainfall-deviated areas. The FR values for the elevation of land
between 2 and 5 m were >1, suggesting a favorable association with flood vulnerability.
The angle of the slope of the sample area ranged from 8◦ to 45◦. The estimated FR value
was located between 2.077 and 4.91 in the slope gradient between above 45◦ and 16–30◦,
suggesting that this section was very strongly prone to flooding. In the places along the
riverbank, the flood rate was more significant and less so in those regions far away from
the river. The analysis of proximity was conducted to produce a specific river distance
interval. This analysis shows that a distance of 2500 m from the river has values of FR
ranging from 0.54, 0.56, 1.21, 1.26, and 0.48, respectively, which shows that the areas far
from the river had lower FR values, meaning a lower risk of flooding.

5.3. Susceptibility Mapping of Flood and Estimation of Risk Area

First, via an overlay analysis, final susceptibility zones were generated in GIS environ-
ments based on the values of the factor weights and the class values collected from the FR
and AHP analyses. For the same variables, the SCWV of each subset of all chosen factors
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was used, as seen in Figure 5. The flood susceptibility index (FSI) was then determined
by summing up the FR value for every flood-causing factor identified. A higher FSI value
indicates a greater susceptibility to flooding events. Conversely, lower FSI values suggest
less susceptibility to the occurrence of flooding. To recognize the Chitral District’s spatial
flood risk zones, the FSI database was reclassified into five susceptibility zones. The output
zones were categorized into very low, low, moderate, high, and very high risk, covering
7457.5, 1502.56, 2833.69, 1888.036, and 1168.11 km2, respectively (Figure 6 and Table 4).
During the affected areas visits, some severely damaged villages were identified (Figure 6).
Riverside areas of Madak, Booni, Resham, Owiran, Marot, Mario, PSO, Lot Deh, Ayun, and
Singur were shown to be at high flood risk. Second, parts of the western side of Rich Gol,
Torkhov, Nohbaiznoh Zom, Chapalli, and Last were identified as having low to extremely
low susceptibility to flooding. The low to high susceptibility classes for flooding suggest
that these regions were more susceptible to incidences of severe floods.

Figure 6. Flood risk zones map of the study area using the FP and AHP models.

Table 4. Flood susceptibility risk classes and estimated area in square kilometers and percentages.

Value Class Estimated Risk Area (km2) Estimated Risk Area (%)

1 Very low risk 7457.5 50
2 Low risk 1502.56 10
3 Moderate risk 2833.69 19
4 High risk 1888.036 13
5 Very high risk 1168.11 8

Total area 14,849.905 100

5.4. Validation

In risk management and susceptibility research, assessing the accuracy and validation
of retrieved findings is a key task. The validation of the analysis and model applied is
given using an accuracy evaluation. There are various methods for measuring accuracy
and validation, including area under the curve (AUC), prediction accuracy (PA), and
success rate (SR). [5,25,27]. PA and SR were considered in the current study to assess the
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precision using flood training and test points that were measured using the following
Equations (7) and (8):

PA =
Σap
Σtp

(7)

SR =
Σsp

Σtnp
(8)

where ap—accurate testing points, which were considered for food vulnerability; tp—total
food testing points; sp—considered training points for success rate; tnp—total training
points; PA—prediction accuracy; SR—success rate.

By applying the above equations, if the accuracy value was a perfect 1.0, this implies
total precision and the capacity of the model was managed without considering any bias;
however, a value >0.75 is considered as standard [22]. Prediction accuracy was measured
in the current study using 90 (30%) flood locations that were not taken during the FR
simulation, and 210 (70%) locations of the flood were utilized to measure the success rate.
Similarly, groups ranging from low to very high risk were taken as possible flood areas
that could occur in the future. The accuracy and success rate of the forecast were estimated
as 0.81 (81%) and 0.84 (84%), respectively (Table 5). Therefore, the forecast accuracy was
found to be >80 percent, which validates the use of the frequency ratio model used for the
analysis in this Chitral area flood susceptibility study.

Table 5. Flood susceptibility mapping estimation of prediction accuracy and success rate.

Susceptible
Class

Flood Testing
Points (30%)

Accurate
Points in Class

Prediction
Accuracy

Flood Training
Points (70%)

Accurate
Points in Class Success Rate

Very low risk 7 67 0.81 (81%) 15 189 0.84 (84%)
Low risk 9 18

Moderate risk 21 19
High risk 25 84

Very high risk 28 74
Total 90 210

Dynamic shifts that can be caused by human activity in the form of changes in
land use, infrastructure growth, and climate change were included in this study. These
changes can affect the normal hydrological cycle and thus flood patterns, especially flash
floods in populated areas that affect the affected communities’ lives and property. The
lack of dynamic consideration of evolving parameters relating to physical changes, flow
rates, direction, erosion, sedimentation, obstruction of the drainage system, etc., in flood
modeling and its causative impact on land growth and flood control is a weakness of the
model analysis. However, more research on the estimation, prediction, and mapping of
flash floods by applying other variations of hybrid artificial intelligence models in various
fields using high-resolution geo-spatial data for the improved development of maps of
vulnerability to flash floods has considerable potential.

6. Concluding Remarks

Accurate flash flood susceptibility maps must be used in flash flood management
studies by governing departments and decision makers for effective flash flood prevention
and organized growth of the Chitral District. This flood susceptibility mapping analysis was
performed to identify specific areas that are at risk of flooding. The flood susceptibility map
design’s essential purpose was to raise awareness among the public, municipal authorities,
and other organizations of the risk of flooding. In this analysis, we used computational
approaches for FR and AHP learning to forecast the probabilities of flash flood events. In
total, eight flash flood conditioning variables (river size, drainage density, slope, elevation,
rainfall, land use, soil types, and geology) were taken into account in the preparation and



Water 2021, 13, 1650 16 of 18

testing of the proposed models. To determine the maximum and minimum weights, the
AHP technique was performed on the selected factors that mainly cause floods.

Furthermore, a frequency ratio was performed to analyze the past flood occurrence
incidents based on flood- and non-flood-based points. We conducted a comprehensive
study using multi-source geospatial data in this research; many limitations remain in this
data configuration study. We used the publicly available ALOS-PALSER DEM spatial
resolution of 12.5 m; a higher DEM resolution will offer a more accurate flood map that
could be more valuable for the practical application of flood mitigation strategies. It was
observed from the study review that selected flood-inducing factor weight values were
high for distance from the river (0.245), rainfall variance (0.315), land use/cover (0.256), and
soil clay content (0.521), which suggested that these were the most critical factors causing
floods in the Chitral area. The SFWV was 0.1235 for slope angle and 0.325 for elevation,
which also played a part in flooding as contributing variables. The study demonstrates
that, compared to the topographic factors (elevation and slope), the climate (rainfall) and
local-based factors have a much more significant contribution since the Chitral area is flat
near the river Chitral. The validation outcome based on flood position points showed that
the prediction accuracy was 81% and the success rate was 84%.

To assess its practical use in diverse terrains and habitats, this analysis needs to be
applied to other locations. Dynamic shifts that can be caused by human activity in the form
of changes in land use, infrastructure growth, and climate change was also included in
this study. These changes can affect the normal hydrological cycle and thus flood patterns,
especially flash floods in populated areas that affect the affected communities’ lives and
property. However, more research on the estimation, prediction, and mapping of flash
floods by applying other variations of hybrid artificial intelligence models in various fields
using high-resolution geo-spatial data for improved development of maps of vulnerability
to flash floods has considerable potential. Along with public knowledge, the development
plan often proves to be an obstacle. However, a high-risk area that shows a great response
using a variety of strategies, such as flood-proofing steps, flood emergency preparation,
flood shelter facility, and evacuation planning, which can be forecast and identified through
the creation and use of practical methodologies for susceptibility analysis, can display sig-
nificant flood preparedness. Therefore, multiple computational models based on multiple
criteria may be implemented to reduce the flood risk load in future studies.
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