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Abstract: Surface water bodies, such as rivers, lakes, and reservoirs, play an irreplaceable role in
global ecosystems and climate systems. Sentinel-2 imagery provides new high-resolution satellite
remote sensing data. Based on the analysis of the spectral characteristics of the Sentinel-2 satellite, a
novel water index called the Sentinel-2 water index (SWI) that is based on the vegetation-sensitive
red-edge band (Band 5) and shortwave infrared (Band 11) bands was developed. Four representative
water body types, namely, Taihu Lake, Yangtze River, Chaka Salt Lake, and Chain Lake, were selected
as study areas to conduct a water body extraction performance comparison with the normalized
difference water index (NDWI). We found that (1) the contrast value of the SWI was larger than that of
the NDWI in terms of various water body types, including purer water, turbid water, salt water, and
floating ice, which suggested that the SWI could achieve better enhancement performance for water
bodies. (2) An effective water body extraction method was proposed by integrating the SWI and Otsu
algorithm, which could accurately extract various water body types with high overall accuracy. (3)
The method effectively extracted large water bodies and wide river channels by suppressing shadow
noise in urban areas. Our results suggested that the novel method can achieve efficient water body
extraction for rapidly and accurately extracting various water bodies from Sentinel-2 data and the
novel method has application potential for larger-scale surface water mapping.

Keywords: Sentinel-2; water body extraction; spectral characteristics analysis; water index;
Otsu algorithm

1. Introduction

As an important part of the global water cycle, surface water bodies have an irreplace-
able role in global ecology and climate systems [1,2]. Surface water usually includes rivers,
lakes, and reservoirs with obvious seasonal variations [3–5]. Therefore, the rapid and
accurate monitoring of surface water is of great significance to hydrological processes and
water resource management [6,7]. Unlike traditional field measurements, remote sensing
imagery is macrographic, dynamic, and inexpensive and can obtain surface information
in real time [8,9]. Therefore, remote sensing technology has been widely used in regional-
scale and global-scale surface water mapping [10–12]. The methods of extracting water
bodies from optical imagery include the single-band threshold method [13], water index
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method [14–16], remote sensing image classification method [17,18], mixed pixel decom-
position method [19–21], and multisource data combination method [20,22]. However,
considering the precision requirement and the complexity of the methods, the water index
method is one of the most convenient and highly precise water extraction methods [23].

McFeeters made full use of the near-infrared (NIR) and visible light green bands of
the Landsat Multispectral Scanner (MSS) data and proposed the normalized difference
water index (NDWI). The index can effectively highlight the water body information and
eliminate soil and surface vegetation, but it misses built-up areas [14]. In the referenced
paper [15], Xu proposed the modified normalized difference water index (MNDWI) based
on Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) data, which
can not only overcome the shortcomings of NDWI but also reveal characteristic information,
such as the water environment. The multiband water index, namely, the automated water
extraction index (AWEI), was built for Landsat TM data, which can further handle mountain
shadows caused by the terrain that the MNDWI fails to eliminate [23].

Although these indices have good effects for water extraction from Landsat series
satellites, a slight change in the spectral range of the corresponding wavebands for different
sensors may lead to a change in the water extraction results. Therefore, modified waters
have been widely explored for various satellite sensors [16,24]. In the referenced paper [25],
the slope and NIR band are combined to construct the normalized difference vegetation
index (NDVI) and NDWI and then the index is applied to HuanJing (HJ)-1A/B satellite
images for water extraction; the result is then finally consistent with the MNDWI results
based on the Landsat TM data. In the referenced paper [26], a water index, namely, the
linear discriminant analysis water index (LDAWI), was proposed to identify water bodies
in SPOT5 satellite imagery and the index achieved good performance with an overall
accuracy of 98%. For Gaofen-1 satellite remote sensing imagery, the NDWI and modified
two-mode method were combined to extract surface water and the results suggested that
the proposed method has higher and stable mapping accuracy [27].

Sentinel-2 is a new satellite launched by the European Space Agency (ESA), which
can obtain global satellite data with a wide width and multispectral band and has been
successfully applied in surface water mapping [28–31]. Due to the multispectral advantage
of Sentinel-2, the NDWI with threshold adjustment is a simple and effective method to
extract water bodies [32,33]. In the referenced paper [33], the NDWI and MNDWI with
different bands from Sentinel-2 was evaluated and the results suggested that object-level
MNDWI with Band 11 can achieve feasible water extraction performance. Due to the
different spatial resolutions between shortwave infrared (SWIR) bands and optical bands,
spatial resampling or band sharpening should be conducted before calculating water
indices [32,33]. Recently, different pansharpening algorithm comparisons of NDWI and
MNDWI water indices were conducted. The à trous wavelet transformation (ATWT)
with 10-m MNDWI yielded the best water body mapping results [32]. In the referenced
paper [34], Yang et al. employed principal component analysis to sharpen the 10 m NDWI
and the 20 m SWIR bands and, then, the SWIR band was sharpened with the green band to
construct the MNDWI to identify exact water bodies. Although the sharpening method
between SWIR bands and optical bands can be performed to balance the different spatial
resolutions, the efficiency of water body extraction at a large scale will be limited.

Currently, most of the research has focused on existing water body indices and has not
taken into account the unique vegetation-sensitive red-edge band of Sentinel-2. Therefore,
this study first analyzes the spectral response mechanism of different land cover types for
Sentinel-2 and then identifies the sensitivity bands of water bodies to calculate a novel
NDWI. By testing various water types (freshwater lakes, coastal waters, salt lakes, and ice),
the extraction performance and precision of the new index and the NDWI are compared.
Finally, the application scope of the novel water index is discussed. This novel water
index can assist the understanding of the dynamic changes in surface waters by utilizing
large-scale surface water mapping.
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2. Data Source

In order to acquire land and coastal waters with high-resolution optical imagery,
the European Commission and the ESA jointly developed the Sentinel-2 satellite mission
under the Copernicus program [35,36]. The Sentinel-2 mission is composed of two satellite
constellations (Sentinel-2A and 2B) running in sun-synchronous orbit. The orbit height is
786 km, the inclination is 98.5 degrees, the revisit period is 5 days, and the design life is
7 years [28].

The payload of the Sentinel-2 satellites is a push-broom multispectral imager (MSI)
and the payload parameter information is shown in Table 1. It has 13 channels, the spectral
range is from 0.4 µm to 2.4 µm, and the spatial resolutions are 10 m, 20 m, and 60 m [37].
The Sentinel-2 data product is Level-1C (L1C) top-of-atmosphere (TOA) reflectance data
processed by geometric correction. The download address for the data source is https:
//scihub.copernicus.eu/dhus/#/home (accessed on 9 March 2018).

Table 1. Payload parameter information of the Sentinel-2 satellites.

Bands Wavelength Range/µm Spatial Resolution/m

Band 1—Coastal aerosol 0.433–0.453 60
Band 2—Blue 0.4575–0.5225 10

Band 3—Green 0.5425–0.5775 10
Band 4—Red 0.65–0.68 10

Band 5—Vegetation Red Edge 1 (VRE1) 0.6975–0.7125 20
Band 6—Vegetation Red Edge 2 (VRE2) 0.7325–0.7475 20
Band 7—Vegetation Red Edge 3 (VRE3) 0.773–0.793 20

Band 8—Near-infrared (NIR) 0.7845–0.8995 10
Band 8A—Vegetation Red Edge 4 0.855–0.875 20

Band 9—Water Vapor 0.935–0.955 60
Band 10—Shortwave Infrared 1 (SWIR 1) 1.36–1.39 60
Band 11—Shortwave Infrared 2 (SWIR 2) 1.565–1.655 20
Band 12—Shortwave Infrared 3 (SWIR 3) 2.1–2.28 20

The selection of study areas required the consideration that the experimental areas
are representative and, thus, the water and nonwater types in the study areas should be
abundant and diverse. Water bodies include rivers, lakes, reservoirs, offshore, and other
conventional water bodies, as well as special water bodies containing sediment, salt, and
ice. Nonwater bodies include vegetation, buildings, bare land, and other objects. According
to the selection criteria, Taihu Lake, the Yangtze River, Chaka Salt Lake, and Chain Lake
are selected as the experimental areas. Figure 1 shows the specific locations of the study
areas and the land cover descriptions of the study area data are summarized in Table 2.

Table 2. The metadata and land cover descriptions of Sentinel-2A.

Study Area Location Satellite Type Data Acquisition Land Cover Description

A Taihu Lake Sentinel-2A 28 February 2017 River channel, lakes, and urban water bodies
surrounded by the vegetation and buildings.

B Yangtze River Sentinel-2A 28 February 2017 Rivers, offshore, and sediment-polluted
surrounded by the farmland.

C Chaka Salt Lake Sentinel-2A 30 July 2016 Salt water surrounded by the bare land.

D Chain Lake Sentinel-2A 9 April 2017 Lake clusters and reservoirs surrounded by
the bare land and vegetation.

https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
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3. Methods
3.1. Analysis of the Spectral Response Mechanism

By using the difference in the reflectance values between the target objects in different
bands, the brightness value of the target objects can be enhanced and the brightness
value of the background objects will be suppressed. Based on this principle, McFeeters
constructed the NDWI using green and NIR band extracted from the Landsat 5 data, which
can effectively suppress soil and vegetation information and enhance water [14]. This
formula is as follows.

NDWI =
ρGreen−ρNIR
ρGreen+ρNIR

(1)

In the formula, ρGreen denotes the reflectance of the green band (Band 3 of the Sentinel-2
data) and ρNIR denotes the reflectance of the near-infrared band (Band 8 of the Sentinel-
2 imagery).

Xu found that the buildings would be easily confused with water using NDWI due
to the near-infrared band and the reflectance of buildings is suddenly enhanced from the
near-infrared to the SWIR band [15]. Therefore, the SWIR band is used instead of the NIR
band in the MNDWI and the building noise can be effectively suppressed to enhance water
bodies. This formula is as follows.

MNDWI =
ρGreen−ρSWIR2

ρGreen+ρSWIR2
(2)
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In the formula, ρGreen denotes the reflectance of the green band, which corresponds to
Band 3 of the Sentinel-2 data, and ρSWIR2 denotes the reflectance of the SWIR2 band, which
corresponds to Band 11 of the Sentinel-2 imagery.

For Sentinel-2, the spatial resolution of the SWIR2 band is 20 m and the spatial resolu-
tions of the NIR and green bands are both 10 m. Thus, the NDWI can be directly calculated,
while the MNDWI cannot be directly determined due to the different spatial resolutions.
Compared with the Landsat sensor, the Sentinel-2 sensor has not only improved resolution
but also introduced a vegetation-sensitive red-edge band. Therefore, the spectral response
mechanism requires analysis to explore the new water index for Sentinel-2 imagery. The
TOA reflectance was derived from different land cover types and water types to generate
the spectral curves in Figure 2. Figure 2a shows the spectral curves of the ground objects in
study area A and Figure 2b shows the spectral curves of the water bodies in study areas B,
C, and D.
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As shown in Figure 2a, the reflectance of the general water gradually decreases.
However, the reflectance values of buildings, vegetation, and bare land increased from
the green band (Band 3) to the near-infrared band (Band 8) or from the VRE1 band (Band
5) to the SWIR2 band (Band 11). Therefore, Band 5 and Band 11 can effectively enhance
the general water bodies and suppress the buildings and bare land noise. Relative to
various water bodies, such as reflected in Figure 2b, the reflectance difference between
turbid water and floating ice in the green and NIR band is small and the difference in the
reflectance of salt water bodies between the VRE1 band (Band 5) and the SWIR2 band
(Band 11) is significant. By utilizing the above analysis, Band 5 and Band 11 with same
spatial resolution are suitable for constructing a water index for Sentinel-2 imagery. Thus, a
novel water index data at 20 m resolution was constructed using Sentinel-2 imagery, which
is reflected in the following formula.

SWI =
ρVRE1−ρSWIR2

ρVRE1+ρSWIR2
(3)

In the formula, SWI represents the Sentinel-2 water index, ρVRE1 represents the VRE1
band (Band 5 of the Sentinel-2 imagery), and ρSWIR2 represents the SWIR2 band (Band 11
of the Sentinel-2 imagery).

3.2. A Method of Automatic Threshold Determination

Otsu’s method is an efficient and widely used image binarization algorithm that
utilizes the maximum variance between classes to distinguish objects and background. That
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is, when the value of the target water body is quite different from that of the background,
the water body and the nonwater area can be easily distinguished. The algorithm has been
widely used for the automatic threshold extraction of water bodies [13].

The principle of the algorithm is as follows: It is assumed that image I is classified
according to the gray level {1, 2, 3, . . . , M} and the image is divided into thresholds. Then,
the probability for each gray level i is determined as follows:

Pi =
ni
N

(Pi ≥ 0) (4)

where N denotes the total number of image pixels and ni denotes the number of pixels
corresponding to gray level i. The probabilities of C0 and C1 pixels in the entire image are
ω0 and ω1, respectively, and the average gray values are µ0 and µ1, respectively.

ω0 = ∑T
i=1 Pi (5)

ω1 = ∑M
i=T+1 Pi (6)

µ0 = ∑T
i=1

iPi
ω0

(7)

µ1 = ∑M
i=T+1

iPi
ω1

(8)

The total average gray level of the whole image is U.

U = ω0 ∗ µ0 + ω1 ∗ µ1 (9)

The interclass variance (Y) of C0 and C1 is as follows.

Y = ω0(µ0 −U)2 + ω1(µ1 −U)2 (10)

The maximum threshold of the interclass variance Y is the best threshold <good in the
study area, as is described as follows.

<good = argmax(Y) (11)

Water body W was detected by the best threshold <good and it was extracted according
to the following rules.

W =

{
1 i ≥ <good
0 i < <good

(12)

W = 1 denotes a water body and W = 0 denotes a nonwater body.

3.3. The Contrast Value between Water Bodies and Nonwater Bodies

The purpose of the water index is to enhance the brightness value of water and to
suppress nonwater brightness values. By comparing the mean value of the index values
in water and nonwater bodies, the ability of the NDWI and SWI to distinguish water
bodies from the nonwater areas can be evaluated. The greater the difference of mean
value between water and nonwater bodies, the more easily the water body is extracted.
Thus, the effectiveness of a water index can be evaluated by comparing the mean value
difference between water and nonwater bodies [15]. The formula of the contrast value (CV)
is as follows.

CV = E− K (13)

In this case, E denotes the mean value of NDWI or SWI in terms of the water body
and K denotes the mean value of NDWI or SWI in terms of the nonwater body.
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3.4. Accuracy Assessment Method

Visual interpretation and the quantitative accuracy index are adopted to conduct
accuracy verification. The first method is to judge visual effects such as the degree of
continuousness and the smoothness of the boundary, which can quickly assess the per-
formance of extraction water bodies. Regarding the detailed differences in water body
extraction, the quantitative accuracy index is a widely used method that uses random
sample points and high-resolution images. The flow contains three steps: (1) 200 random
water sample points and 200 random nonwater sample points are generated for each study
area; (2) high-resolution images are used as the reference data to verify and adjust the
random sample points and the ground reference points are then generated; (3) ground
reference points are superimposed on the water extraction results to verify the accuracy of
each random sample point; (4) four widely used accuracy evaluation indices, including
producer accuracy, user accuracy, overall accuracy, and Kappa coefficient, are employed to
quantitatively assess the water body extraction accuracy.

4. Results
4.1. Comparison of the Water Indices Enhancement Performance

In order to compare the enhancement performance of NDWI and SWI, the mean
values of water indices for the different water types (turbid water, floating ice, and salt
water) and nonwater types (building, vegetation, and bare land) are shown in Figure 3.
The mean value of the SWI for the water types ranges from 0.78 to 0.89, while that of
NDWI in the water types ranges from 0.18 to 0.41. For the nonwater types, the mean values
of the NDWI and SWI range from −0.24 to −0.07 and from −0.18 to −0.09, respectively.
Compared with the mean value range of water and nonwatery bodies, the difference of
the SWI is greater than that of the NDWI, which suggests that the SWI can achieve better
enhancement performance.

Water bodies enhanced by the NDWI and SWI in the four study areas are shown in
Figure 4. Figure 4a is a composite image of the Taihu Lake area. The enhanced water
bodies utilizing the NDWI and SWI are shown in Figure 4b,c, respectively. The NDWI and
SWI can effectively distinguish most of the water bodies and the background objects are
suppressed. Comparison of the results of the NDWI and SWI for Taihu Lake shows that the
difference between water bodies and nonwater bodies using the SWI is more significant
than that using the NDWI. This is because the reflectance of polluted water in Taihu Lake
is lower in Band 11 than in Band 8 and the SWI can effectively enhance polluted water.
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Turbid water is easily confused with buildings and bare land. Figure 4d shows the
composite image of turbid water in the Yangtze River and the water body enhanced images
of NDWI and SWI are shown in Figure 4e,f, respectively. Compared with Figure 4e,f, the
performance of the NDWI cannot enhance turbid water from the background in the Yangtze
River and coastal waters, but the SWI can effectively separate the water features from the
background. Combined with the spectral curve in Figure 2b, it can be observed that the
reflectance of turbid water in the green band (Band 3) is consistent with that of the general
water body and the reflectance in the NIR band (Band 8) is larger than that in the general
water body. Thus, the NDWI value of turbid water is smaller than that of general water
bodies. For the SWI, the reflectance of turbid water in the vegetation-sensitive red-edge
band (Band 5) is greater than that of general water bodies and the reflectance in the SWIR
band (Band 11) is consistent with that of general water bodies. Compared with the general
water bodies, the mean value of turbid water is 0.89 by using SWI calculations, which
makes it easier to distinguish turbid water from buildings and bare soil.

Chaka Salt Lake is a shallow salt lake. Figure 4g shows a composite image of Chaka
Salt Lake. The enhanced images of the water body were obtained by using the NDWI and
SWI (Figure 4h,i, respectively). The results show that the NDWI cannot effectively enhance
most of the water body information, while the water bodies can be highlighted using the
SWI. This is because the reflectance difference between the green band (Band 3) and NIR
band (Band 8) is smaller than that between the vegetation-sensitive red-edge band (Band 5)
and SWIR band (Band 11), which renders the mean value of the SWI larger than that of the
NDWI in Chaka Salt Lake.

The Sentinel-2A image of Chain Lake is shown in Figure 4j and flowing ice is present
in Chain Lake. The enhanced images of the water body were obtained by using NDWI and
SWI (Figure 4k,l, respectively). As we can see from the enhanced water body performance,
the NDWI misses some of the floating ice, while the SWI can effectively highlight floating
ice. Combined with Figure 2, the reflectance of floating ice is similar to that of general
water bodies from the visible light band (Band 3 and Band 5) to the NIR band (Band 8)
and the reflectance of floating ice is larger than that of general water. In the SWIR band
(Band 11), the reflectance of floating ice is slightly different from that of general water and
so the NDWI value of floating ice is smaller than that of general water, with a mean value
of 0.23 (Figure 3). The SWI value of floating ice is larger than that of general water and the
mean value is 0.88 (Figure 3). Therefore, the SWI can achieve better performance than the
NDWI in terms of extracting floating ice.

4.2. Validation of the Effectiveness of the Water Index

In order to analyze the accuracy of the NDWI and SWI, the contrast value derived
from the mean values of NDWI or SWI is calculated to evaluate the separation between
water bodies and nonwater bodies. The mean values and contrast values of the water
bodies and nonwater bodies for the NDWI and SWI in each study area are summarized
in Table 3. The mean value of the SWI in terms of water bodies is higher than that of the
NDWI and the difference between the mean NDWI value and the mean SWI value in terms
of nonwater bodies is not significant. Therefore, the contrast values of SWI are higher than
those of NDWI in each study area, which suggests that the SWI is a more robust and the
more effective water index for enhancing water information features in Sentinel-2 imagery.
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Figure 4. Water bodies enhanced by the NDWI and SWI in the four study areas. ((a) Taihu Lake composite image (R: Band 8;
G: Band 4; B: Band 3), (b) NDWI of Taihu Lake, (c) SWI of Taihu Lake, (d) Yangtze River composite image (R: Band 4;
G: Band 3; B: Band 2), (e) NDWI of the Yangtze River, (f) SWI of the Yangtze River, (g) Chaka Salt Lake composite image
(R: Band 2; G: Band 3; B: Band 4), (h) NDWI of Chaka Salt Lake, (i) SWI of Chaka Salt Lake, (j) Chain Lake composite image
(R: Band 8; G: Band 4; B: Band 3), (k) NDWI of Chain Lake, and (l) SWI of Chain Lake)).
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Table 3. Sample means and contrast values.

Study Area
NDWI SWI

Water Nonwater CV Water Nonwater CV

Taihu Lake 0.38 −0.20 0.58 0.78 −0.12 0.90
Yangtze River 0.22 −0.23 0.45 0.89 −0.09 0.98

Chaka Salt Lake 0.13 −0.21 0.34 0.81 −0.17 0.98
Chain Lake 0.34 −0.26 0.60 0.84 −0.31 1.15

Figure 5 shows the box plots of the NDWI and SWI in terms of water bodies and
nonwater bodies. Figure 5a–d are the study areas of Taihu Lake, Yangtze River, Chaka
Salt Lake, and Chain Lake, respectively. The plots show that the NDWI and SWI can
distinguish most of the water bodies and nonwater bodies; however, the maximum or
minimum NDWI values for the nonwater areas almost overlap with the standard deviation
of the NDWI values for the water bodies, while the maximum or minimum SWI values
for the nonwater areas can be effectively distinguished from the SWI values for the water
bodies based on the standard deviation. By performing analysis of the box plots, the results
suggest that the NDWI will cause some misclassifications of water and nonwater bodies,
while the SWI can effectively separate different water body types and nonwater bodies.
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for Taihu Lake, Yangtze River, Chaka Salt Lake, and Chain Lake, respectively).

4.3. Water Body Extraction Performance

Otsu’s method can automatically determine the segmentation threshold based on the
image histogram, which is widely used in water body extraction in combination with water
indices [38]. The water body extraction results using Otsu’s method are shown in Figure 6.
Panels (a), (d), (g), and (j) correspond to the NDWI water extraction results for Taihu Lake,
Yangtze River, Chaka Salt Lake, and Chain Lake study areas, respectively. Similarly, panels
(c), (f), (i), and (l) correspond to the SWI water extraction results for the four study areas.
The blue regions of the four study areas in (c), (f), (i), and (l) correspond to the parts of
the water bodies extracted by both the NDWI and SWI and the red regions correspond
to the parts of the water bodies that the SWI extracted but were missed by the extraction
performed with NDWI.
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Figure 6a–c show that the SWI and NDWI can effectively extract most of the water
bodies; however, the NDWI misses some water bodies in narrow rivers, which suggests that
the NDWI easily confuses water bodies and nonwater bodies along these rivers. Figure 6d–f
show that the NDWI cannot extract water bodies with high sediment concentrations
because the NDWI easily misclassifies such water as buildings, bare soil, etc. However, the
SWI can more effectively extract both turbid and nonturbid water in the Yangtze River and
offshore. Figure 6g–i show that the NDWI has a poor extraction performance for saline
water bodies, while the SWI can effectively extract the whole salt lake. Moreover, because
the SWI is sensitive to water bodies in the SWIR band, a small amount of water bodies
on bare land can also be effectively identified. Figure 6j–l show that both the NDWI and
the SWI can extract most of the water bodies with floating ice. Due to the NDWI value
difference between floating ice and the background being smaller than that of the SWI, the
floating ice is easily confused with the high-reflectance bare ground in the NDWI results,
while it is accurately extracted in the SWI results.

4.4. Accuracy Assessment

For the water extraction results of the four study areas in Figure 6, visual interpre-
tation and a quantitative accuracy index are used to conduct accuracy assessments. The
performance of water body extraction with different water indices in Chaka Salt Lake and
Chain Lake show great differences; therefore, visual evaluation suggests that the extraction
accuracy of the SWI is better than that of the NDWI in these two study areas. For Chaka Salt
Lake, the SWI can not only extract salt water more completely than the NDWI but also the
sensitivity of the SWI with respect to water turbidity renders it capable of distinguishing a
small amount of water from bare soil; thus, the SWI has a better extraction performance
than the NDWI in this regard. For Chain Lake, the smoothness and continuity of the SWI
for extracting the lake boundary is improved compared to the NDWI extraction; thus, the
water body extraction accuracy of the SWI is higher than that of the NDWI.

The study areas of Taihu Lake and the Yangtze River cover various land cover types
and water body types. The quantitative accuracy index method is employed to assess the
water body extraction accuracy and the results are shown in Table 4. For the two study
areas, the producer’s accuracy, user’s accuracy, overall accuracy, and Kappa coefficient of
the SWI are superior to those of the NDWI, which suggests that the SWI can achieve better
extraction performance than that of the NDWI. For Taihu Lake, since both indices can
accurately extract most of the water, the differences in terms of the quantitative accuracy
index between the NDWI and the SWI are small. For the Yangtze River, the accuracy of the
NDWI is obviously lower than that of the SWI. This is because the NDWI classifies water
bodies containing sediment as bare soil, buildings, or other nonwater land cover types,
while the SWI can accurately extract these water body types. These results indicate that
the extraction accuracy of the SWI is higher than that of the NDWI in the Yangtze River
study area.

Table 4. Accuracy verification in Taihu lake and Yangtze river.

Study Area Producer’s Accuracy User’s Accuracy Overall
Precision Kappa

Water Nonwater Water Nonwater Accuracy Coefficient

Taihu Lake
NDWI 95.80% 89.68% 79.72% 98.05% 91.50% 0.808

SWI 99.11% 90.28% 79.86% 99.62% 92.75% 0.833

Yangtze River NDWI 96.43% 81.63% 72.65% 97.83% 86.6% 0.722
SWI 98.11% 89.63% 86.19% 98.63% 93% 0.868
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Figure 6. Water extraction performances and differences between the NDWI and SWI. ((a,d,g,j) represent the water bodies
extracted by the NDWI in the Taihu Lake, Yangtze River, Chaka Salt Lake, and Chain Lake images, respectively. (b,e,h,k)
represent the water bodies extracted by the SWI in the Taihu Lake, Yangtze River, Chaka Salt Lake, and Chain Lake images,
respectively. (c,f,i,l) show the differences between the NDWI and SWI in the Taihu Lake, Yangtze River, Chaka Salt Lake,
and Chain Lake images, respectively).
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5. Discussion

Sentinel-2 produces widely used remote sensor imagery with high spatial resolution
and a short return period and this imagery has great application potential in large-scale
surface water mapping [39,40]. By investigating the spectral response mechanism of
Sentinel-2, a new water index, namely, the SWI, was proposed to extract various water
body types with Otsu’s method. Moreover, the extraction performance and precision
suggest that the novel method is simple and effective. However, there is still some matters
with respect to the application scope that requires discussion.

Firstly, the spatial resolution and selected SWI response band were balanced. The
highest spatial resolution of Sentinel-2 is 10 m, while Band 5 and Band 11 with 20 m spatial
resolution were employed to establish the SWI to enhance the water body information.
By comparing the enhancement performance of the NDWI at a 10 m spatial resolution
with that of the SWI at a 20 m spatial resolution (Figure 7), the results demonstrate that
the enhancement performance of the SWI is better than that of the NDWI (Figure 7b,c).
Compared with the extraction results of the NDWI, the extracted water bodies of the
SWI are more complete and accurate and a comparison (Figure 7f) shows that the river
channels are missed using NDWI at a 10-m resolution [41]. In addition, a previous study
generated 10m MNDWI from Sentinel-2 imagery by sharpening the SWIR band and the
results demonstrated that MNDWI can produce more accurate extraction results [32].
However, the complexity of the pansharpening algorithm restricts the efficiency of water
body mapping. Therefore, from the perspective of water extraction performance and
efficiency comparing the various water indices, the selection of response bands is more
important than spatial resolution.

Secondly, the applicability of the proposed method in urban areas was assessed. Due
to the complex background of urban areas and building shadows, it is a great challenge
to use water indices to extract water bodies in urban areas [42]. In order to investigate
the applicability of the SWI in urban areas, four cities surrounding Taihu Lake, namely,
Suzhou, Jiaxing, Wuxi, and Huzhou, were selected to conduct the water body extraction
performance comparison using the NDWI and SWI. The extraction results are shown in
Figure 8. Blue regions indicate water bodies extracted by both the NDWI and SWI; red
regions indicate water bodies extracted by the SWI but not by the NDWI; and purple
regions indicate water bodies extracted by the NDWI but not by the SWI. Hence, the blue
and red regions represent water bodies extracted by the SWI and the blue and purple
regions indicate water bodies extracted by the NDWI.

The results of water body extraction in urban areas (Figure 8) have yielded several
findings: (1) Large water bodies can be extracted well with both the SWI and NDWI,
especially the lakes and connected open water bodies in Figure 8b,c; (2) wide river channels
are significantly missed using the NDWI in Figure 8d but are accurately extracted by the
SWI; (3) severe mixing of building shadows and water bodies occurs when using the NDWI
in Figure 8(a1,c1), which may indicate that the NDWI has difficulty eliminating shadow
noise; (4) the NDWI can accurately extract small water bodies and narrow river channels
in Figure 8(b1,c1). This pattern is due to the difference in the resolution between the SWI
and the NDWI and the SWI cannot effectively extract the subpixel water bodies from the
super-resolution maps. Therefore, the SWI can accurately extract large water bodies and
wide river channels in urban areas but cannot effectively extract narrow rivers because the
SWI is calculated based on 20 m response bands.
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using NDWI, (c) water body enhancement using SWI, (d) water body extraction using NDWI, (e) water body extraction
using SWI, and (f) extraction performance comparison).

There are two reasons why SWI can result in better extraction performance regarding
the various water body types. The first one is to take into account the unique band
characteristic of Sentinel-2 and, then, analyze the spectral response mechanism to determine
the sensitive characteristic bands to highlight the water body from the background. The
second one is to employ the Otsu algorithm to automatically identify the segmentation
threshold and, following that, the water body and nonwater body can be separated clearly.
The determination of the sensitive characteristic band is critical to achieve better water
body extraction performance and the new water index, namely SWI, has been confirmed to
enhance various water body types. Therefore, this method has application potential for
larger-scale surface water mapping.

The limitation of this method is the relatively low spatial resolution. Currently, the
highest spatial resolution of Sentinel-2 is 10 m, while the sensitive characteristic bands
selected by this method is 20 m. Therefore, some narrow rivers and small lakes cannot
be accurately extracted in urban areas. Although there are some documents that possess
adopted image fusion methods to improve spatial resolution [32], they also face two
challenges: (1) The complexity of fusion methods restricts the efficiency of large-scale
surface water extraction; (2) changes in the spectral response mechanism after fusion
will affect the performance of water body enhancement. Therefore, efficient and reliable
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image fusion methods for Sentinel-2 requires further development in order to improve the
accuracy of water body extraction in large scales.
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6. Conclusions

An effective water body extraction method for Sentinel-2 contributes to large-scale
water body mapping to understand surface water dynamic changes. This paper fully
considers the unique band characteristics and analyzes the spectral response mechanism
of Sentinel-2A data. A new water index, namely, the SWI, is proposed. The enhancement
and extraction performances of various water body types from a typical study area are
compared and the extraction accuracy is verified. The conclusions can be summarized
as follows:

(1) Compared with NDWI, the SWI calculated using vegetation-sensitive red-edge and
SWIR bands can achieve better enhancement performance for various water body
types, including purer water, turbid water, salt water, and floating ice. The contrast
values between water bodies and nonwater bodies of the SWI are larger than those of
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the NDWI, which indicates that the SWI can effectively separate different types of
water bodies and nonwater bodies;

(2) The integration of the SWI and Otsu algorithm is an effective method for accurately
extracting various water body types. Visual evaluation suggests that the extraction
accuracy of the SWI is better than that of the NDWI for Chaka Salt Lake and Chain
Lake. Quantitative assessment shows that the overall accuracy of water body extrac-
tion using SWI for Taihu Lake and the Yangtze River (92.75% and 93%, respectively)
is higher than that using the NDWI;

(3) Although the water body extraction spatial resolution of the SWI is 20 m, the extraction
performance of the SWI is better than that of the NDWI with a resolution of 10 m.
Moreover, the new method can effectively extract large water bodies and wide river
channels by eliminating shadow noise in urban areas.
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