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Abstract: The Juksan weir, installed in the Yeongsan river in South Korea from 2010 to 2012, has
secured sustainable water resources and helped control flooding. However, low river flow velocities
due to the weir have deteriorated the quality of the river water. For natural river restoration, the
water gate was opened in 2017. In this study, the three-dimensional finite difference model Visual
MODFLOW was used to analyze the effects of gate opening on stream–aquifer interactions. A
conceptual model was developed to simulate the stream–aquifer dynamics caused by the operation
of the water gate at the Juksan weir. Groundwater data were also analyzed to determine the impacts
of weir operations on groundwater quality. Our results indicate that a lower river level due to the
weir opening changed the groundwater flow, which then affected the water balance. The change
in groundwater flow increased the variability of the groundwater quality which had homogenized
because of induced recharge after the construction of the weir. This could affect groundwater use
in agricultural areas near the weir. Therefore, further groundwater monitoring and hydrodynamic
analyses are required to anticipate and address any potential issues.

Keywords: stream–aquifer interaction; Juksan weir; water gate operation of weir; groundwater
flow model

1. Introduction

As part of the Four Major Rivers Restoration Project, 16 weirs were constructed on four
major rivers in South Korea from 2010 to 2012, which helped to meet water demands during
the dry season and control flooding. Many studies have shown that hydraulic structures
such as weirs and dams are useful for replenishing groundwater resources [1,2]. Water
filling at the weir caused an increase in the groundwater level during the dry season [3],
while river level management at the Changnyong-Hamman weir in the Nakdong River
resulted in a decline in the average groundwater level during the wet season [4].

Low river flow velocities due to a weir can lead to deterioration in river water qual-
ity and changes in sediment deposition [5]. Weir construction affects the aquatic envi-
ronment [6], which changes the algal occurrence characteristics [7,8]. After a weir is
constructed, algal blooms can develop due to decreased turbidity, although the nutrient
concentrations are reduced [9,10]. In addition, sediment is deposited in the riverbed up-
stream of the weir [11], which has produced increases in the flood stages of the Geum
River [12]. The sediment structure and characteristics can change the conductance between
the riverbed and the aquifer, which also affects the quality of the groundwater and river
water [13].

In 2017, the water gates of 9 weirs on the Geum, Yeongsan, and Nakdong Rivers were
opened on a trial basis for natural river restoration. Changes in water quality and the
aquatic ecosystems were monitored to analyze the impacts of the weir opening. After the
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weir was opened, the flow velocities in the rivers increased, which had a positive impact
on the river and its ecosystem, such as reduction of green algae and improvement of water
quality. However, a lowered river level due to the weir opening has caused groundwater
depletion and influenced the crop production in the nearby cultivation areas.

The variations in the river water level change the groundwater flow in riparian
areas, leading to changes in the water balance [14]. This could also affect stream–aquifer
interactions [15]. In addition, weir-induced hydrodynamics can significantly influence
the water quality and aquatic ecosystems [3,16], thereby affecting groundwater use in
agricultural areas near the weirs. For example, the groundwater can be degraded due
to contaminated river water, while saline groundwater can be diluted by induced river
water [17,18]. The decrease in groundwater temperature could also led to crop cold damage
in water-curtain greenhouses [19]. Therefore, evaluating the impacts of weir operation on
the groundwater system is required, while groundwater modeling can be used to predict
the response of the aquifer system to the variations in the river level [20,21]. However, a
few studies have investigated the effect of weir operation on groundwater. A numerical
model showed that the groundwater discharge rates increased about 1.9 times following the
Baekje weir opening [22], and the other model indicated that river level change accounted
for approximately 50–90% of groundwater decline during the weir opening period [23].

In this study, we evaluate the effects of the opening of the Juksan weir on stream–
aquifer interactions in the Yeongsan River, South Korea. The groundwater flow and
storage caused by the weir opening was investigated using Visual MODFLOW Classic
(Waterloo Hydrogeologic Inc., Waterloo, ON, Canada), a three-dimensional finite difference
model [24]. Groundwater and river water data were used to analyze the relation between
the transmissivity of the aquifer and the groundwater level response rate following a
change in the river level. In addition, changes in groundwater quality were analyzed to
evaluate the effects of the water gate operation at the weir on hydrochemical properties
using groundwater data.

2. Materials and Methods
2.1. Study Area and Hydrogeological Setting

The study area is a 6.4 km2 alluvial aquifer, located on the left bank of the Yeongsan
River near the Juksan weir, South Korea (34◦57′33′′–34◦58′59′′ N, 126◦36′50′′–126◦39′23′′ E)
(Figure 1). The Yeongsan River flows in a meandering pattern from east to west in the
northern part of the study area. The western part of the study area is characterized by hilly
terrain, with an oxbow lake located in the center of the study area. The oxbow lake was
created during a river straightening project (conducted in 1980) that cut off the left-bank
meander [25]. The width of the Yeongsan River varies from 150 to 370 m, and the width
of the oxbow lake varies from 100 to 220 m. Juksan weir is located near the downstream
confluence of the oxbow lake. A hydroelectric power plant was installed at the upstream
confluence of the oxbow lake during the construction of the Juksan weir in 2012. The
oxbow lake drains into the Yeongsan River via the downstream confluence. The bedrock
in this region consists predominantly of biotite granites. Quaternary alluvium that was
deposited in a fluvial environment unconformably overlies the bedrock and is distributed
along the Yeongsan River and the oxbow lake. The alluvium is composed of clay, sand, and
gravel characterized by fining-upward sequences. It is therefore a confined aquifer. The
surface elevation in the study area ranges from 3.3 m to 4.9 m.
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Figure 1. Location and geological map of the study area near the Juksan weir (JS) in the Yeongsan 
River Basin, South Korea (modified from [26]). 

Figure 2a shows the locations of groundwater monitoring wells in the study area. 
Groundwater data obtained from 17 monitoring wells were used to analyze the effect of 
the weir opening on groundwater levels and quality. The monitoring wells are installed 
in the alluvium. The river monitoring wells and stream–groundwater quality monitoring 
wells were installed in 2012 and 2016, respectively, to monitor groundwater variations 
caused by the construction of the weir. 

Figure 2b shows the sedimentary structures in the alluvial deposits along transect A 
with the groundwater level observed in May 2018. Columnar sections at three monitoring 
well sites were used to analyze the distribution of the sedimentary layers. The alluvial 
deposits are characterized by fining-upward sequences. The upper and middle alluvial 
materials consist of silty clays and sand with thicknesses of 6.7 and 2.6 m, respectively. 
The lower 4.8 m are composed of sand, gravel, and weathered soil. A permeable layer is 
located in the lower alluvium, where groundwater actively interacts with river water. 

  

Figure 2. (a) Locations of the monitoring wells and (b) sedimentary units in the alluvial deposits along transect A. 

Figure 3 shows the groundwater use in the study area. The study area is character-
ized by agricultural fields that cultivate barley and rice. Barley and rice are cultivated 
during the summer and are irrigated with water from the river, not groundwater. 
Groundwater is mostly used for domestic and agricultural purposes in the bedrock of the 
hinterland. The groundwater pumping rates for each well vary from 140 to 36,500 m3/year 
for domestic and from 180 to 24,300 m3/year for agriculture purposes. 

Figure 1. Location and geological map of the study area near the Juksan weir (JS) in the Yeongsan
River Basin, South Korea (modified from [26]).

Figure 2a shows the locations of groundwater monitoring wells in the study area.
Groundwater data obtained from 17 monitoring wells were used to analyze the effect of the
weir opening on groundwater levels and quality. The monitoring wells are installed in the
alluvium. The river monitoring wells and stream–groundwater quality monitoring wells
were installed in 2012 and 2016, respectively, to monitor groundwater variations caused by
the construction of the weir.

Figure 2b shows the sedimentary structures in the alluvial deposits along transect A
with the groundwater level observed in May 2018. Columnar sections at three monitoring
well sites were used to analyze the distribution of the sedimentary layers. The alluvial
deposits are characterized by fining-upward sequences. The upper and middle alluvial
materials consist of silty clays and sand with thicknesses of 6.7 and 2.6 m, respectively.
The lower 4.8 m are composed of sand, gravel, and weathered soil. A permeable layer is
located in the lower alluvium, where groundwater actively interacts with river water.
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Figure 2. (a) Locations of the monitoring wells and (b) sedimentary units in the alluvial deposits along transect A.

Figure 3 shows the groundwater use in the study area. The study area is characterized
by agricultural fields that cultivate barley and rice. Barley and rice are cultivated during
the summer and are irrigated with water from the river, not groundwater. Groundwater is
mostly used for domestic and agricultural purposes in the bedrock of the hinterland. The
groundwater pumping rates for each well vary from 140 to 36,500 m3/year for domestic
and from 180 to 24,300 m3/year for agriculture purposes.
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shows variations in water level observed at site OW-1 with the corresponding river levels 
recorded upstream of the Juksan weir. An action took place to recover the river stage to 
the original level by opening the weir in 2017. The river level decreased from 3.5 m to 2.5 
m in June 2017 and decreased further to 1.5 m in November 2017. These decreases were 
due to water gate operations at Juksan weir for natural restoration of the Yeongsan River, 
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than the river levels during the period when the river level was maintained due to the 
management of the Juksan weir. Groundwater induced from the river discharges into the 
oxbow lake in the area upstream of the Juksan weir. 
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aquifer system during water gate operation of the Juksan weir. The partial differential 
equation that describes the groundwater flow can be solved analytically by employing 
advanced techniques. For example, Strack [27] has suggested the analytic element 
method, in which analytical solutions of simple conditions and stresses are superimposed 
to obtain solutions for complex case studies. Contrary to the numerical methods, analyti-
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merical methods. Depending on the discretization type, the numerical methods can be 
classified into finite element [28], finite difference [29], and finite volume [30]. In this 

Figure 3. Groundwater use in the study area.

Water levels vary with precipitation and water gate operation at the weir. Figure 4
shows variations in water level observed at site OW-1 with the corresponding river levels
recorded upstream of the Juksan weir. An action took place to recover the river stage to the
original level by opening the weir in 2017. The river level decreased from 3.5 m to 2.5 m in
June 2017 and decreased further to 1.5 m in November 2017. These decreases were due to
water gate operations at Juksan weir for natural restoration of the Yeongsan River, which
also decreased the local groundwater levels. The groundwater levels were lower than the
river levels during the period when the river level was maintained due to the management
of the Juksan weir. Groundwater induced from the river discharges into the oxbow lake in
the area upstream of the Juksan weir.
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Figure 4. Time series of groundwater level from OW-1 with the corresponding river levels upstream
of the Juksan weir.

2.2. Model Development

Visual MODFLOW was used to simulate groundwater flow in the alluvial stream–
aquifer system during water gate operation of the Juksan weir. The partial differential
equation that describes the groundwater flow can be solved analytically by employing
advanced techniques. For example, Strack [27] has suggested the analytic element method,
in which analytical solutions of simple conditions and stresses are superimposed to obtain
solutions for complex case studies. Contrary to the numerical methods, analytical solutions
have the advantage that they do not require discretization of the volume or area. Inevitably,
post-processing is required to obtain the water balance. On the other hand, the calcula-
tion of the water balance of the discretization cells is intrinsic to the numerical methods.
Depending on the discretization type, the numerical methods can be classified into finite
element [28], finite difference [29], and finite volume [30]. In this study, we have used
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MODFLOW, a finite difference model [31], because we want to study the water balance of
the aquifer and because of the simplicity of this method.

Figure 5 shows the model domain with the selected boundary conditions. We used
430 columns and 300 rows, with grid dimensions of 10 m by 10 m. The aquifer was
vertically divided into three layers to reflect the heterogeneity of the fluvial-alluvial de-
posits [32–34]. The upper layer consisted of silty clay, the middle layer consisted of sand,
and the lower layer was composed of gravel and weathered soil. Average surface elevations
were used for each layer and the groundwater surface elevation was 5 m. The average
thicknesses of the upper, middle, and lower layers of the aquifer were 7 m, 4 m, and 5 m,
respectively. Each layer was assumed to be isotropic and homogeneous.
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The Yeongsan River and the oxbow lake were represented by a Constant Head Bound-
ary package (Dirichlet condition) in the upper layer and a River package (Cauchy con-
ditions) in the middle layer. The constant head boundary assumes the boundary with a
specified head. In the river boundary, flow across the boundary is directly proportional to
the head difference between the river level and groundwater level until the groundwater
level is lower than the riverbed [35], after which a certain amount of flow occurs. The river
level upstream of the weir was set to 3.5 m (the management level of the Juksan weir),
while the river level downstream of the weir and the oxbow lake were set to −1 m. The
alluvium and bedrock in the hinterland were implemented as a General Head Boundary
package (Cauchy conditions) in the lower layer. The general head boundary behaves as
Cauchy boundary type, and the difference with the river boundary is that the flow is
infinitely increased without being limited by the groundwater level. The water level in the
hinterland and the conductance of the river boundary and general head boundary condi-
tions were then calibrated (discussed in the following section). A groundwater recharge
rate of 165 mm/year was applied to the top layer of the model, which was calculated from
the annual precipitation (1193 mm) and the recharge factor (0.14) in the study area [36].

The hydraulic conductivities of the upper and middle layers were assumed to be
0.001 m/day and 5 m/day, respectively. The hydraulic conductivity of the lower layer was
55 m/day, which was estimated from pumping and recovery test data and the thickness of
the layer [37]. Groundwater actively interacts with river water through the lower layer of
the aquifer in the study area. The average hydraulic conductivity of granite (0.4 m/day)
was used for the bedrock conductivity in the study area [36]. Groundwater pumping
was not considered in the model because groundwater use in the study area is negligible
(Figure 3) and did not affect the model calibration due to the high hydraulic conductivity.
The effect of groundwater use in the hinterland was reflected by calibrating the water level
of the general head boundary condition.
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2.3. Model Calibration

The steady state model was calibrated using trial and error, whereby we adjusted
the model parameters until the fit between the model output and the observations was
acceptable. The developed model was calibrated by changing the conductance of the
river, the general head boundary conditions, and the water level of the general head
boundary condition. Model calibration was achieved by matching the calculated heads
with groundwater data obtained from 11 monitoring wells while the management level
of the Juksan weir was 3.5 m. The average groundwater level in 2016 was also used for
model calibration.

Several trial and error simulations indicated that an acceptable fit was obtained
between the observed and simulated heads when the conductance values were 300 m2/day
for the river, and 8 m2/day and 2 m2/day for the alluvium and bedrock in the hinterland,
respectively. Sensitivity analyses indicated that the normalized root mean square error
(NRMSE) decreased and became constant by increasing the conductance of the river
boundary condition above 100 m2/day (Figure 6a). This illustrates that the oxbow lake
is well-connected to the alluvium, unlike normal oxbow lakes in which low-permeability
sediments are deposited due to the absence of river flow. We presumed that there was
no settling of fine suspended sediments, since the oxbow lake water flows from drainage
channels in the hinterland that drain into the Yeongsan River downstream of the oxbow
lake. In addition, the water flow caused by the operation of the hydroelectric power plant
allows the riverbed to be eroded.
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The agreement obtained between the calculated and measured heads after calibration
is shown in Figure 6b. The root mean square error (RMSE) and the NRMSE between
the observed and calculated heads were 0.57 m and 7.8%, respectively. This indicates an
acceptable agreement between the calibrated model and the monitoring data [38].

3. Results and Discussion
3.1. Analysis of Groundwater Level Decline

The stream–aquifer interactions are controlled by the hydrogeologic environment,
including the geologic characteristics of the aquifer [39]. Groundwater and river water data
were used to analyze the impacts of the transmissivity on the groundwater level reaction
rate following a change in the river level. The groundwater and river water data were
obtained from the Juksan (JS) and Seungchon (SC) weirs in the Yeongsan River, the Beakje
(BJ) weir in the Geum River, and the Changnyeong-Haman (CH) weir in the Nakdong
River (Figure 1).
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Figure 7 shows the groundwater level response rate following a change in the river
level due to the opening of the four weirs. The response rate (R) was calculated as follows:

R =
rGW

rSW
(1)

where rGW and rSW are calculated slopes of observed decline of water level change with
time in groundwater and river water, respectively. The response rate increased with
increasing transmissivity, which means that the transmissivity of the aquifer is an important
factor for determining the response rate. The groundwater level near the Changnyeong
Haman weir decreased immediately following a decrease in the river level due to a high
transmissivity. In contrast, the groundwater level response rate near the Seungchon weir
was low because of a low transmissivity.
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3.2. Impacts of Water Gate Operation on Stream–Aquifer Interaction

The groundwater level of the alluvial deposit responds rapidly to the fluctuations
of the river level, indicating that groundwater and river water are directly interrelated
through the riverbed [40]. The model results show that the groundwater level is still
lower than the river level in the area upstream of the weir after the weir was opened,
which indicates a losing stream (Figure 8a,b). The groundwater induced recharge from the
Yeongsan River discharged into the oxbow lake. The groundwater level decreased further
in riparian areas upstream of the weir due to the weir opening, and the groundwater level
decreased with increasing distance from the river (Figure 8c). This effect was especially
apparent in the area upstream of the weir, except for the area inside the oxbow lake, which
was the most affected.
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Table 1 lists the water balance computed by the Visual MODFLOW simulation. The
induced recharge from the Yeongsan River upstream of the weir is the major groundwater
source and decreased by 47%, from 13,000 m3/day to 6900 m3/day, following the open-
ing of the weir. Groundwater discharge also decreased by 23%, from 13,000 m3/day to
10,000 m3/day, in the oxbow lake and by 35%, from 6800 m3/day to 4400 m3/day, in
the river downstream of the weir. These results indicated that the decline in river level
changed the stream–aquifer interaction, affecting the water balance [41]. The decline in
groundwater level in alluvium could also reduce the groundwater storage in the hinterland,
and as a result, groundwater pumping rates could be affected with declined groundwater
level [42,43].

Table 1. Water balance in the study area (m3/day).

Before Weir Opening
(Management Level: 3.5 m)

After Weir Opening
(Management Level: 1.5 m)

In

Recharge 2800

total: 21,000

2800

total: 15,000River Upstream of weir 13,000 6900

Hinterland 5250 5260

Out
River and ox bow

Upstream 6

total: 21,000

40

total: 15,000
Down-stream 6800 4400

Oxbow lake 13,000 10,000

Hinterland 700 570

3.3. Changes in Groundwater Quality

Changes in groundwater flow can affect the groundwater quality [44]. The chemical
characteristics of the river water and groundwater were analyzed to determine how their
compositions changed using groundwater data collected from 15 monitoring wells [45].
Figure 9 describes the spatial distributions of river water and groundwater quality before
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(December 2016) and after (November 2017) the weir opening. The river showed Na-HCO3
as the dominant water type according to the classification of Piper [46]. In contrast, ground-
water showed various water types: Na-Cl, Ca-HCO3, and Na-HCO3 types. However, in
the area upstream of the weir (except inside the oxbow lake), the groundwater quality was
homogenized because large volumes of river water flowed into the aquifer following the
weir construction in 2012 (Figure 9a). The groundwater quality was the Na-HCO3 type in
this area, which is similar to the river water. After the decrease in induced recharge due to
the opening of the weir, the groundwater quality in the area upstream of the weir changed,
exhibiting various types (Ca-HCO3, Ca-Cl, and Na-Cl) (Figure 9b). On the other hand, there
were various types of groundwater quality inside the oxbow lake where the groundwater
level was not affected by the weir operation, which was expected to be affected by the
geochemical environments and land use [47].

The electrical conductivity (EC) of groundwater in the area upstream of the weir
ranged from 170 to 328 µS/cm, whereas the EC inside the oxbow lake ranged from 386 to
728 µS/cm in December 2016. After the weir opening, the EC in the area upstream of the
weir increased by 60 µS/cm on average in November 2017.
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An interesting feature was observed in the groundwater quality after the weir opening.
Figure 10 shows the interquartile ranges (IQR) of the groundwater ions in the upstream
area where the groundwater quality was affected by the opening of the weir (Figure 9b).
The IQR in the upstream area is smaller than that of the other areas. This means that the
variability of the groundwater quality decreased due to the river water induced recharge
after the weir was constructed in 2012. After the weir was opened in June 2017, the IQR
increased because the variability of the groundwater quality increased due to a decrease
in the induced recharge, especially for Ca, Cl, and HCO3 ions. However, no significant
changes in variational ranges were indicated in the wells outside of the influence zone.

It is likely that the drastic increases in ranges of chemical variation after the weir
opening are associated with the groundwater velocity change. At the higher water velocity,
water chemistry can be more homogenized because dispersion of solutes can be enhanced.
It is well known that the dispersion coefficient is proportional to the average linear velocity
of groundwater [48]. Before June of 2017, the water level difference between the upstream
river stage and the oxbow lake was 4.5 m, and it decreased to 2.5 m after the weir opening.

Decrease of the hydraulic gradient caused decrease in groundwater velocity and
dispersion. The groundwater velocity was expected to be decreased by about 40% after the
weir opening. At the lower dispersion condition, it is likely that the groundwater should
be more influenced by the locally varying geochemical and hydrogeological environments
such as redox conditions, mineral and organic compositions, and infiltration. As a result,
water chemistry can show spatially wider variation by the reduced groundwater velocity.
The reduced variational ranges for SO4 found in Figure 10 (not shown in the figure, but
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also NO3) are likely to be associated with stronger redox conditions created by slower
groundwater movement.
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4. Conclusions

The Juksan weir installed on the Yeongsan river in South Korea has secured sufficient
water resources, and the water gate was opened to improve the water quality and naturally
restore the rivers in 2017. The impacts of the opening of the Juksan weir on stream–aquifer
interactions were analyzed using numerical modeling and changes in groundwater quality
were analyzed. The conclusions of this study can be summarized as follows:

The groundwater level decreased immediately following a decrease in the river level
due to water management at the Juksan weir. In particular, the groundwater level de-
creased significantly in the areas upstream of the weir, except for the area inside the oxbow
lake. As a result, the area upstream of the weir was the most affected and the induced
groundwater recharge from the river decreased by 47%, while the hydrological conditions
were unchanged.

Changes in groundwater flow due to the weir also had a large impact on groundwater
quality. Before the weir was opened, the groundwater quality was homogenous because
large volumes of river water recharged the aquifer. However, after the weir was opened,
the decreased recharge increased the variations in groundwater quality. This change in
groundwater quality due to the water gate operation of the weir could affect groundwater
use in agricultural areas. Therefore, further monitoring of the groundwater and further
hydrodynamic analyses are both required to anticipate and address any potential issues.

The results of this study can help to predict changes in the groundwater system
induced by water gate operations at the weirs, thereby facilitating predictions of poten-
tial environmental issues. The results of this study can also help to determine effective
integrated water management policies in the region.
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