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Abstract: Due to the exponential growth of the Internet of Things networks and the massive amount
of time series data collected from these networks, it is essential to apply efficient methods for Big
Data analysis in order to extract meaningful information and statistics. Anomaly detection is an
important part of time series analysis, improving the quality of further analysis, such as prediction
and forecasting. Thus, detecting sudden change points with normal behavior and using them to
discriminate between abnormal behavior, i.e., outliers, is a crucial step used to minimize the false
positive rate and to build accurate machine learning models for prediction and forecasting. In this
paper, we propose a rule-based decision system that enhances anomaly detection in multivariate time
series using change point detection. Our architecture uses a pipeline that automatically manages
to detect real anomalies and remove the false positives introduced by change points. We employ
both traditional and deep learning unsupervised algorithms, in total, five anomaly detection and five
change point detection algorithms. Additionally, we propose a new confidence metric based on the
support for a time series point to be an anomaly and the support for the same point to be a change
point. In our experiments, we use a large real-world dataset containing multivariate time series about
water consumption collected from smart meters. As an evaluation metric, we use Mean Absolute
Error (MAE). The low MAE values show that the algorithms accurately determine anomalies and
change points. The experimental results strengthen our assumption that anomaly detection can
be improved by determining and removing change points as well as validates the correctness of
our proposed rules in real-world scenarios. Furthermore, the proposed rule-based decision support
systems enable users to make informed decisions regarding the status of the water distribution
network and perform effectively predictive and proactive maintenance.

Keywords: time series; anomaly detection; change point detection; rule-based decision system;
machine learning; Internet of Things; water dataset

1. Introduction

Internet of Things (IoT) is a relatively new computing paradigm that enables the
connectivity and synchronization of large numbers of heterogeneous devices, i.e., things,
to perform complex tasks without the direct involvement of human agents. Due to the
growth in popularity of IoT networks, the data collected over time from these networks
reached very large volumes. These observations are recorded in a time orderly fashion
and are structured as time series. We focus our work on analyzing time series for water
resource management and network distribution.

Water resource management is an essential field of study that has been the focus
of both researchers and practitioners. Reduction of water consumption is an issue that
requires the improvement of the water distribution network in order to minimize both
non-revenue and demand by taking into account several parameters: (i) current state of the
distribution network, (ii) changing demands, and (iii) consumption required. To improve
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the management of this resource and to minimize water consumption and losses, there is
a current need for new automated and intelligent decision support systems that employ
machine and deep learning to analyze in real-time the utilization of this resource and alert
users of any anomalies that appear in the water distribution system. In order to obtain
accurately detect anomalies, we need systems that manage to distinguish automatically
between normal and abnormal behavior before sending alerts to users. Using as motivation
the current need of preserving water consumption, the main focus of this paper is to propose
a system that works on real-world data to minimizing water losses. Thus, we propose a
novel automated and intelligent rule-based decision support system that enhances anomaly
detection for time series data with change point detection, with a focus on water data
collected by sensors from the Internet of Things. Furthermore, the proposed system
alerts end-users in real-time of any changes in the water distribution network in order
to employ effective procedures that enable predictive [1] and proactive maintenance [2].
Predictive and proactive maintenance is a solution used to alleviate the costs related to
loss of resources when water distribution networks encounter defects and the equipment
breaks down. Predictive maintenance is used to make assessments regarding the well
functioning of the water distribution network and consumption using real-time data to
detect anomalies and change points and historical data to predict future failures. Proactive
maintenance concentrates on monitoring and correcting the root causes of failures within
the network using real-time anomaly detection.

Anomaly (or outlier) detection is the identification of events, items, or observations
that do not correspond to normal behavior. Anomaly detection is an essential task in solving
different problems in IoT networks, e.g., detecting structural defects due to various reasons
such as lack of maintenance, edge cases that can generate critical situations, intrusions.
Recently, anomaly detection has been successfully used to detect malicious activities by
analyzing the data transferred between the IoT devices, modeling good behavior, and
detecting tamper data and malicious activities as anomalies. While anomaly detection
based approaches can potentially detect more attacks, current systems suffer from high
false positive rates. Additionally, in the current literature, there are many studies that
underline the importance of outlier detection in the water management domain [3,4].

Along with anomaly detection, change point detection plays an important part in
time series analysis. It indicates an unexpected and significant change in the analyzed time
series stream that represents a normal behavior and not an anomaly.

Currently, many anomaly detection systems need a lot of human interaction to
interpret the generated data. This process becomes more and more complex as the number
of interconnected devices grows exponentially. Furthermore, many anomaly detection
algorithms have high false positive rates, as they tend to label the change points as outliers.
Thus, a method that distinguishes between them is required to increase the accuracy
of anomaly detection systems and alleviate the decision process. By automating the
matching process between anomalies and change points, the required human interaction
and interpretation can be reduced only to rare cases. This process can be improved by
using a rule-based decision system that manages to discriminate between a change point
and an anomaly with high confidence.

We identified the following shortcomings in the current literature. Firstly, none of the
proposed methods remove change points from the points detected as anomalies to minimize
the detection of false positives, a challenge that still remains unresolved [5]. Secondly, none
of the current methods enable both predictive and proactive maintenance using a rule-
based decision support system for water management and network distribution systems.
Although both maintenance methods have been discussed separably [6,7] from the point
of view of anomaly detection applications, they have not been taken into consideration
change point detection.

Given these shortcomings in the current literature, the main research questions we
want to answer are:
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(Q1) Can we minimize the water consumption and losses using a rule-based decision
system that alerts users in real-time?

(Q2) Can we enhance anomaly detection techniques using change point detection?

(Q3)Can we remove the false positives that anomaly detection techniques find using
change point detection?

(Q4)Can we enable predictive and proactive maintenance using a rule-based decision
support system for water management?

To answer the four research questions, in this paper, we propose a novel rule-based
decision system that enhances anomaly detection using change point detection for IoT time
series. The architecture uses a pipeline that automatically manages to detect real anomalies
and remove the false positives introduced by change points. We use five anomaly detection
algorithms: Gaussian Distribution (GD), K-Means, Isolation Forest (IF), OC-SVM (One-
Class Support Vector Machine), and Autoencoders (AEs). For change point detection,
we also use five algorithms: window-based segmentation (WinSeg), binary segmentation
(BinSeg), bottom-up segmentation (BottonUp), Pruned Exact Linear Time (PELT), and
exact segmentation dynamic programming model (OPT). We propose a new confidence
metric based on the support for a point to be an anomaly and the support for a point to
be a change point. We propose a novel rule-based decision module based on support and
confidence metrics to alleviate human intervention and improve the decision process by
automating some of the most frequent cases that arise during detecting false positives. In
our experiments, we use a large real-world dataset containing multivariate time series about
water consumption collected from smart meters. The experimental results strengthen our
assumption that anomaly detection can be improved by determining and removing change
points as well as validates the correctness of our proposed rules in real-world scenarios.

Thus, the main contributions of this paper are:

(C1) A new rule-based decision system for anomaly detection in IoT time series in order to
answer (Q1);

(C2) A new confidence metric based on the support for a point to be an anomaly and
the support for a point to be a change point to remove false positives in order to
answer (Qy);

(C3) A new pipeline that automatically manages to detect real anomalies and remove the
false positives introduced by change point using the confidence score in order to
answer (Q3);

(C4) Extensive experiments on real-world multivariate time series using five anomaly
detection and five change point detection algorithms in order to enable predictive
and proactive maintenance and answer (Qy).

The solution proposed in this paper is a continuation of a work initiated within the
Datat4Water—Excellence in Smart Data and Services for Supporting Water Management
(https:/ /data4water.pub.ro—accessed on 3 May 2021) H2020 Twinning project [8].

This paper is structured as follows. Section 2 presents current research methods,
models, and strategies used for anomaly detection. Section 3 discusses the algorithms
used to implement our solution. In Section 4, we present our pipeline used for enhancing
anomaly detection using change points. We present the experimental setup and the results
in Section 5, and we provide a final discussion of our findings in Section 6. Finally, we
summarize our findings and hint at future research directions in Section 7.

2. Related Work

There are multiple research solutions for solving the anomaly detection problem in
IoT networks. These solutions imply using different heuristics rules or machine learning
algorithms. From the perspective of the learning models, there are three main categories:
unsupervised [9,10], supervised [11,12], and semi-supervised anomaly detection [13,14].
As we apply unsupervised methods, our focus in this section is going to be only on
these techniques.
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The unsupervised solutions detect anomalies using unlabeled datasets and consider
that the majority of collected items are normal. They are a better fit for scenarios where,
due to large streams of heterogeneous data from different sensors, it is impractical to
label the dataset. Kieu et al. [9] propose a solution to improve outlier detection in time
series based on sparsely-connected recurrent Autoencoder ensembles. They argue that by
combining multiple Autoencoders, the overall detection accuracy is improved, as these
ensembles tend to reduce the effects of overfitting for some Autoencoders. To test their
idea, they build two types of frameworks. The first proposed framework trains multiple
recurrent Autoencoders independently, while the second one trains the Autoencoders
jointly. For the experiments, they use two relatively small datasets. The first dataset
consists of 120 univariate time series, each time series having 2000 to 5000 observations.
The second dataset has seven 3-dimensional time series, each time series between 3750—
5400 observations. They compared their solutions both with classical machine learning and
deep learning approaches. In most of the cases, their ensembles solutions outperform the
individual methods. Current literature argues that ensemble methods do not fully avoid
the overfitting issue, as sometimes they do not generate a sufficient level of diversity [15].

Vishwakarma et al. [10] present another deep learning unsupervised approach. The
proposed solution uses Feed Forward neural networks, and it is limited to univariate time
series. The input data are transformed into a bivariate series using a robust measure of
location and the dispersion matrix. One of the primary issues of their solution is that they
use simulated data. Although the obtained results are promising, it is a known fact that
there is a significant gap between simulated and real datasets and we cannot rely solely on
synthetic data to judge the performance of anomaly detection techniques [16], which can
impact the discrimination sensitivity of Neural Networks.

Recurrent Neural Networks (RNN) have been used successfully for analyzing time
series in prediction [17], change point detection [18], and anomaly detection tasks [19,20].
Saurav et al. [19] propose a temporal model based on RNNs for time series anomaly
detection considering sudden or regular changes in the normal behavior. The proposed
model can automatically adapt to various types of changes and uses RNN based multi-step
prediction and local normalization over a window to deal with non-stationary time series.
The traditional RNN network suffers from the vanishing gradient problem [21]. Thus, a
new class of recurrent networks was designed, Long Short-Term Memory (LSTM) [22].
LSTM based solutions were widely used for analyzing time series and especially for the task
of anomaly detection. Maleki et al. [20] present an LSTM-based Autoencoders architecture
for unsupervised anomaly detection. The proposed solution provides online detection by
using a sliding window to iteratively update the algorithm’s parameters.

Munir et al. [23] tackle the impact of Convolutional Neural Networks (CNN) on
detecting periodic and seasonality related point anomalies in unlabeled streaming data.
The presented CNN based solution, i.e., DEEPANT, consists of two modules: a time series
predictor (using CNNs) and an anomaly detector. Each predicted value is passed to the
anomaly detector module that tags the corresponding timestamp as normal or not. The
solution is evaluated using 10 datasets containing a total of 433 real and synthetic univariate
or multivariate time series. DEEPANT is compared with 15 other algorithms using F-score
as the metric. One important conclusion of this study is that although LSTM based solutions
are performant on temporal data due to the LSTM’s ability to extract long-term trends,
CNN is a good alternative because of its parameter efficiency. Thus, DEEPANT is equally
applicable to big and small datasets, as opposed to LSTM architectures that require large
learning datasets.

Kieu et al. [24] propose an advanced framework that uses deep neural networks
and enriched multivariate time series for outlier detection. The proposed framework
uses Autoencoders, in particular, a 2D convolutional neural network-based Autoencoder
(2DCNN-AE) and a long short term memory-based Autoencoder (LSTM-AE). The
Autoencoders are compared with two non-Deep Learning baselines, i.e., Local Outlier
Factor and One-Class Support Vector Machines. After analyzing the results, the authors
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concluded that LSTM based method always obtains the best metrics, i.e., Precision, Recall,
and F1, in the case of a large dataset (S5 dataset that contains 371 time series). Although,
Recall and F1 remain the best for LSTM-AE even for smaller datasets, in most of the cases
the Support Vector Machines method has a better Precision.

Some authors argue that using a preprocessing step that does a preliminary screen of
the data is very important and can have a major influence on the accuracy of the detection
task. Zhang et al. [25] propose a solution that consists of a three-level hybrid model, i.e.,
a preprocessing, a prediction, and an outlier detection level. In the preprocessing step,
the input data is analyzed, and obvious outliers, such as sudden extremes, are removed.
During second level prediction, the authors (i) decompose the preprocessed data into
new and stationary intrinsic mode functions, and (ii) apply classification, regression tree,
autoregression to obtain predicted values. To detect outliers in the predicted data, they
use an exponential weighted moving average method. A relatively small real dataset from
a hydrometeorological observation network was used in the experiments. Based on the
obtained results, the authors believe that the first two levels of the proposed model improve
its accuracy and robustness.

In the recent literature, there are also many interesting unsupervised non-Deep
Learning methods for time series outlier detection [26,27]. Kant et al. [26] use an enhanced
K-means Clustering algorithm in combination with PSO (Particle Swarm Optimization).
The Enhanced K-Means combines the traditional K-means algorithm with the Weight-
based centre approach. The results show that the proposed algorithm finds the largest
number of outliers compared with the traditional K-Means or PSO algorithms. Another
unsupervised non-Deep Learning approach is PBAD (pattern-based anomaly detection) [27].
The proposal method (i) mines for the frequent itemsets and sequential patterns, (ii) it
calculates their distance-weighted similarity, and (iii) constructs a pattern-based embedding
of time series. The embedding is used to construct the anomaly detection classifier. PBAD
uses as a classifier an ensemble of decision trees, i.e., the Isolation Forest algorithm. The
proposed solution is compared with other state-of-the-art pattern-based anomaly detection
methods, e.g., Matrix profile (MP) [28] an anomaly detection technique based on all-pairs
similarity-search. In the majority of the cases, it outperforms all the other methods for
both Univariate and Multivariate time series datasets. The methods are evaluated by
computing the area under the receiver operating characteristic (AUROC) and average
precision (AP). A solution for anomaly detection in water consumption is proposed by
Gonzalez-Vidal et al. [5]. The authors analyze the data collected by smart meters using an
ARIMA-based framework anomaly detection and conclude that removing the false positive
from the picture is still a challenge.

As an overall impression, after analyzing the current literature, we consider that
even if some of the current solutions propose interesting new pipelines, many of them
are not thoroughly tested using large real time-series datasets. Additionally, to the best of
our knowledge, there is no current anomaly detection solution that uses change point
algorithms to lower the false positive rate, which is highly desired for the anomaly
detection task.

3. Methodology

A time series is a set of observations recorded at a specific point in time. Time series can
be seen as discrete (i.e., each observation is measured at fixed points in time) or continuous
(i.e., the values of measurements are recorded continuously for a window of time) [29].
In this section, we define a time series and then discuss some of the models used in our
architecture to correlate outliers with change points.

3.1. Time Series Definition

A statistical mathematical model that describes a sequence of data points recorded
over a specified period of time is called a time series [30]. A time series can be described as
a sequence of random continuous or discrete variables X = {x;|t € 1, T}, where t denotes
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the time point when a value was measured and T = ||X]|| is the cardinality of X. Moreover,
the sequence X is a stochastic process meaning that it can be defined as a family of random
continuous or discrete variables.

A time series can be univariate or multivariate. A univariate time series is a series
with a single time dependent variable. A multivariate time series has at least two time
dependent variables, i.e., M > 2. Each of these variables depends on both its past values
and the other variables.

A time series data point x; is described by three components:

(i)  my: the trend component represents variations of low frequency and can be determined
by the moving averages or spectral smoothing methods;

(i)  s;: the seasonal component is a function that represents normal fluctuations that are
more or less stable after a known period (or lag) #;

(iii) y;: the noise (residual) are used to check if a analysis model has correctly determined
the information in the data points and can help to predict future values [31].

These components are used to decompose the time series as an additive decomposition
function (i.e., x; = m; + s; + y;), or a multiplicative decomposition function (i.e., x; = m; - 5¢ - xy).
The seasonal and trend components indicate if a time series X is autocorrelated,
i.e., determines if X is linearly related to a lagged version of itself. Thus, given the

autocovariance function at a lag h as yx(h) = Cov(X;,j, X¢), where Cov(-,-) is the

_ ax(h)
: RS, o : ) o hifred 1
A time series X is stationary if its properties are similar to a k time shifted time

series. Thereby, X is stationary if its mean (j:x(f)) is independent of ¢ and its covariance
(yx(t+ h,t)) is independent of ¢ for each h. Usually, the trend and seasonality components
are eliminated to get stationary residuals.

covariance function, then the autocorrelation is px (h)

3.2. Time Series Outlier Detection

An outlier or an anomaly is a data point that significantly differs from other
observations in a time series. Outliers can appear due to an experimental error or an
anomaly in the measurement. Such suspicious points in the time series data must be
identified and interpreted separately in order not to interfere with the analysis step and
lead to wrong conclusions.

The outlier detection problem implies ranking the data points x; of a time series X
using an outlier score s¢, such that higher values of s; mean that x; is more likely to be
an outlier.

3.2.1. Gaussian Distribution

Gaussian Distribution (GD) or normal distribution is a probabilistic statistical
approach used in detecting outliers. To determine that the data points are normally
distributed, the probability density function (PDF) is used to model the sample’s
distribution space. Equation (1) gives the general form of the probability density function
for a GD, where ¢ is the sample standard deviation, and y is the sample mean.

1
oV 2

e,%("t;# )2

fxe) = @

In the case of GD, an outlier is a data point that has a significant distance from the
mean, i.e., the point lies many standard deviations (¢) away from the mean (). One
approach for detecting the distance is to fit a covariance estimate to the data by utilizing
an ellipse to center the data points. The Mahalanobis distances are used to estimate if a
point is an outlier and determine the ellipse. All the points that are outside the center of the
ellipse are considered anomalies. Equation (2) presents the Mahalanobis distances between
two data point x; and y;, where 51‘2 is the standard deviation of the i-th dimension over
the sample.
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3.2.2. K-Means

K-Means is an unsupervised machine learning algorithm that creates k similar clusters
of data points [32]. Using the K-Means, the data points that do not belong to any clusters
are marked as anomalies. The algorithm detects in an iterative way (i) the k center points,
i.e., centroids, (ii) the points closest to the centroids using a distance function. K-Means
stopping criteria is either when the centroids do not change from one iteration to another,
or a predefined number of iterations is reached. As this algorithm is unsupervised, the
number of clusters is either known or is determined using a heuristic, e.g., Elbow Method,
Silhouette Coefficient, etc. We chose the Elbow method to determine the optimal number
of clusters. Furthermore, to avoid inaccurate clustering results by choosing the initial
centroids at random, we use K-Means++, which minimizes the intra-cluster variance. The
Euclidean distance (Equation (3)) is used to measure the membership of a data point point
x; to a centroid ¢; in an M-dimensional space.

®)

3.2.3. Isolation Forest

Isolation Forest (IF) is an unsupervised anomaly detection algorithm based on Random
Forest [33]. The algorithm trains multiple Isolation Trees using sub-samples with random
attributes constructed using Bagging (Bootstrap aggregating). The Isolation Tree splits
the sub-sample points using a randomly selected attribute value between its minimum
and maximum value. The partitioning of the data produces trees with shorter paths for
anomalies as attributes values that better represent the data are more likely to be separated
in early splits. After multiple Isolation Trees are constructed, the algorithm scores the data
points to quantify its potential of being an anomaly. As anomalies are closer to the root
of the Isolation Tree, the score is a function of path length. Equation (4) presents the score
function, where 1 is the size of the dataset, h(x;) measures the number of edges traversed
from the root to a data point x;, E(h(x;) is the average of h(x¢), and c(n) is the average
path length of unsuccessful search in Binary Search Tree.

h
s(xg,n) =2 < 4)

3.2.4. One-Class Support Vector Machine

One-Class Support Vector Machine (OC-SVM) is an unsupervised machine learning
algorithm trained on a dataset containing elements from one class [34], i.e., the “normal”
points. The OC-SVM models a function that estimates the support for the entire dataset.
This approach is used to detect the representative points in a dataset and isolate the
anomalies that are very few. Equation (5) presents the OC-SVM function, where sign(-) is

the sign function, w are the equation coefficients that need to be determined in order to

2
minimize the margin, i.e., HI%H, between the two hyperplanes H. 1 and H_ created by the

two classes {—1, +1}, b is the bias terms that ensures the function does not go through the
origin, and ®(+) is a transformation function in an upper dimensional space in the case the
data points are not linearly separable.

+1 normal

f(x¢) = sign(w - ®(x;) —b) = { (5)

—1 outlier



Water 2021, 13, 1633

8 of 19

When using OC-SVM, a kernel function is needed to transform the input data into

the required form for processing. A widely used kernel function is RTF (Radial Basis
Function). The RTF kernel function is k(x;, x;) = e llxi=xi ‘2, where the kernel coefficient
¥ = W and ||x; — x}||* is the squared Euclidean distance.

3.2.5. Autoencoders

An Autoencoder (AE) is a neural network that reproduces an input time series of
X = {x;|t = 1, T} by an output vector X = {#|t = 1, T} in an unsupervised manner [24].
Each vector £; is expected to approximate the input x;. Both x; and £; have the same
size M. The architecture of this network contains two components: an encoder and a
decoder. The encoder (¢ : RM — RN) maps the input X to an intermediate N < M
dimensional space X = {Xt|i = 1,T}, ie, Xt = ¢p(x4) = Ug(wextT + b,) where w, € RM
is the weight vector, b, is the bias, and ¢, is an activation function (signoid, ReLU, etc.).
The decoder (¢ : RN — RM) maps X to the output X, i.e., 2 = (%) = oy(wyx; + by)
where w; € RN is the weight vector, by is the bias, and ¢y is another activation function.
The aim of the network is to estimate for each data point £; = ¢(¢(x;)) which minimizes

argmin,, || X — ¢ ((X))[3.

3.3. Time Series Change Point Detection

The problem of change point detection in time series data deals with finding the
point in time when the properties (e.g., mean, variance, etc.) of the time series change
abruptly [35].

A change point is a transition point between different states in the time series data. A
continuous state is defined as a segment. For a given time series X and a set of indexes

T = {t1,tp, ...t} € {1,2,.., T}, a segmentation is defined by {X}:’;“ or simply X, t,.,,
where the dummy indexes ty and tg1 are implicitly available and K is the number of
change points.

The change point detection methods are dependent on prior knowledge about the
number of change points K. Thus they are either supervised (i.e., the K is known) or
unsupervised (i.e., the K is unknown). The change point detection problem is formulated
as detecting the best possible segmentation T for a time series X according to a criterion
function V (7, X). The criterion function is the sum of costs c(-) of all the segments X, 1, .,
that define the segmentation V (7, X) = YK c(X, 1, .1)- The “best segmentation” 7 is the
minimize of the criterion function V(t, X;).

Depending on the approach, i.e., supervised and unsupervised, the entire problem
is reduced to solving an optimization problem. For a known number of change points K,
the change point detection problem consists in solving min | _x(V (7, X¢)), while for an
unknown number of change points it consists in solving min. (V (7, X;) + ¢(7)) where &(71)
is a measurement that balances out V (7, X;) over-fitting when small change amplitudes
are detected. Therefore, the search method is how the discrete optimization problem is
solved. Its constraints are defined by the number of change points to detect.

In the literature, the cost functions are either parametric (e.g., maximum likelihood
estimation models [36], multiple linear model [37,38], mahalanobis-type seminorm
model [39]) or non-parametric models (e.g., non-parametric maximum likelihood
model [40], rank-based detection model [41], kernel-based detection model [42], etc.).

The search methods use either optimal detection models, i.e., finds the exact solution
to the optimization problem, or approximate detection models, i.e., solves the optimization
problem yielding an approximate result. Approximate detection models are used when it
is desired to reduce the computational complexity.

3.3.1. Window-Based Segmentation Model

The Window-based segmentation (WinSeg) [43,44] algorithm computes the
discrepancies between two adjacent time windows that slide along the data point of
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a time series X; in order to detect change points. A discrepancy is a value calculated for
each index of time ¢ between the immediate past, i.e., the left window, and the immediate
future, i.e., the right window. Using this method, the algorithm detects peaks, i.e., large
values, when two windows cover dissimilar segments and compute the discrepancy curve.
The change point indexes are determined using a peak detection procedure on the curve.

3.3.2. Binary Segmentation Model

Binary segmentation (BinSeg) [45,46] is a greedy sequential algorithm that searches
for the change point that minimizes the sum of costs. The time series is then split into two
at the index of the determined first change point and restarts the computation on the new
sub-series. The algorithm stops when either the required number of required change points
are found or when a stopping criterion is met.

3.3.3. Bottom-up Segmentation Model

Bottom-up segmentation (BottonUp) [47,48] is a sequential approach used to perform
fast signal segmentation that starts with many change points and successively deletes the
less significant ones. Thus, the time series is divided into many segments along a regular
grid, and then, the contiguous segments are successively merged according to a measure
of how similar they are. Moreover, bottom-up segmentation can extend any single change
point detection method to detect multiple changes points.

3.3.4. Pruned Exact Linear Time Model

When the number of change points is unknown, then the optimal solution can be
computed using exact segmentation to minimize the penalization function. The model
Pruned Exact Linear Time (PELT) [49] finds the exact solution when the penalty is linear.
PELT considers each time series data sample sequential. The explicit pruning rule tests if
each sample point and determine if it is a potential change point. PELT works under the
assumption that each region’s length is randomly drawn from a uniform distribution.

3.3.5. Exact Segmentation Dynamic Programming Model

When the number of change points is known then the optimal solution can be
computed using the exact segmentation dynamic programming model (OPT) [50]. The
OPT algorithm solves the problem recursively by using the additive nature of the objective
function V (7, X;). Under these observations the optimal partitions with K — 1 elements of
all sub-series of X; are known, thus the first change point of the optimal segmentation can
be computed. Using recursively, the complete segmentation is then computed.

4. Proposed Solution

The architecture of our proposed solution contains four modules (Figure 1). The
Anomaly Detection Module uses specialized unsupervised Machine Learning algorithms to
detect outliers from an input time series. The Change Point Detection Module uses different
techniques to detect change points within the same input time series. The Change Point
Enhanced Anomaly Detection Module takes the output from the previous two modules,
compares the results, and calculates a confidence score of each point to be an outlier. These
results are analyzed by the Decision Module using a set of rules. The system either takes an
automated action or alert users to make an informed decision. The code is freely available
online on GitHub at the following link https:/ /github.com/cipriantruica/iot-ts-cpd-ad.
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Figure 1. Proposed Solution Architecture.

4.1. Anomaly Detection Module

The Anomaly Detection Module uses the unsupervised algorithm presented in
Section 3.2 to detect anomalies. The algorithms are implemented in Python using the latest
SciKit-Learn (https://scikit-learn.org/stable/index.html) Machine Learning package.

Gaussian Distribution: in our implementation, we use the Elliptical Envelope as the
covariance function for GD. We initialize the proportion of outliers to 0.01.

K-Means: we initialized the K-Means centroids using the K-Mean++ algorithm, thus
removing the problem of detecting poor clusters due to the initial values chosen for the
centroid. To minimize the number of dimensions and remove the curse of dimensionality
from which clustering algorithms suffers when dealing with data points that have a large
number of attributes [51], we use the PCA (Principal Component Analysis) to extract only
the attributes that better describe the data points. To get the optimal number of clusters for
the K-Means algorithm, we used the Elbow Method. Any point that has a distance from
the closest centroid of over a given threshold is considered an anomaly.

Isolation Forest: for IF, we used 100 Isolation Trees trained on subsamples with
replacement using Bootstrap. For each time series, the proportion of outliers should be
determined using Cross-Validation. We found that a good default value for our dataset
is 0.01.

One-Class Support Vector Machine: we initialized the kernel function to RTF. Using
Cross-Validation, we set the upper bound on the fraction of training errors to 0.01.

Autoencoder: we used the PyOD (https://pyod.readthedocs.io/en/latest/) Python
package that uses Keras and Tensorflow to implement an Autoencoder network. We model
a network containing 13 fully connected hidden layers having the following number of
perceptrons: [M, 64,32,16,8,4,2,4,8,16,32,64, M|, where M is the number of dimensions
in the time series. We set the maximum number of training epochs to 100.

4.2. Change Point Detection Module

The Change Point Detection Module uses the algorithm presented in Section 3.3 to
detect change points. The algorithms are implemented in Python using the latest version
of the Ruptures (https:/ /centre-borelli.github.io/ruptures-docs/) package. For all the
employed change point detection algorithms, we use the same parameter configuration: the
model is initialized using the /,-norm, and the minimum segment and length between two
change points is set to 2. PELT determines the optimal number of points before stopping
automatically. For the other algorithms, i.e., WinSeg, BinSeg, BottomUp, and OPT, we set
as the optimal number of breakpoints the value computed with PELT.

4.3. Change Point Enhanced Anomaly Detection Module

The Change Point Enhanced Anomaly Detection Module computes the confidence
for a data point to be an outlier. Equation (6) presents the con fidence(x) score, where

supportap(x) = "“%g‘) is the support for the data point x to be an anomaly, i.e., the

number of times the point is marked as an anomaly (1n4p(x)) divided by the number of
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algorithms employed for this task (n4p), and supportcpp(x) = nffci[;gc) is the support of

the same data point x to be a change point, i.e., the number of times the point is marked as
a change point (ncpp(x)) divided by the number of algorithms used for detecting change
points (ncpp). The proposed confidence function ensures that if supportcpp(x) = 0, then
its score is equal to 1. Furthermore, in the case that supportop(x) = supportcpp, then
confidence(x) = 0.5, leaving the decision to be taken by the user.

confidence(x) = supportap (x) (6)
support ap(x) + supportcpp(x)

When a data point is both labeled as an anomaly and a change point, the con fidence(x)
function can remove the obvious false positives introduced by change point. In case the
decision is felt to the human operator, then the function helps in taking an informed
decision. This function also enables the performance of effective predictive and proactive
maintenance. By assessing the values of the con fidence function, predictive maintenance
is achieved in time by determining if the system is functioning correct. Thus, if we mark
anomalies as change points means that the system works normally. While, if we only
determine anomalies we can assume with a high confidence that the system is faulty.
Proactive maintenance concentrates on monitoring and correcting the root causes of failure.
Thus, if the system determines with a high confidence that there are anomalies within the
water distribution network, then the human operator can in-time correct any errors. While,
if there is a high confidence that the data points are only change points, the human operator
can conclude that this behaviour is normal and no maintenance is required.

4.4. Decision Module

The Decision Module uses rules to determine if a human operator should be alerted
or if the system can take an automatic decision. Frequent cases are also the easiest to
interpret by the system and give an automatic response. Rare or ambiguous cases require
human interpretation. Thus, the system needs to alert an operator and let him make an
informed decision.

The system can take automatic decisions for the following frequent cases:

A1 When the support for anomaly detection is high, and there is no or low support for
change point detection, then the system automatically marks the point as an anomaly.
Az When the support for change point detection is high, and there is no or low support for
anomaly detection, the system marks the point as a change point and not an anomaly.
Az  When the support for change point detection is low, and there is no support for
anomaly detection, the system marks the point as a change point and not an anomaly.

Human intervention is still required for the following very rare cases:

H; When the anomaly support is low and no change point is detected or the change
point support is low, regardless if support sp(x) > supportcpp(x) or support sp(x) <
supportcpp(x).

H, When both the anomaly support and change point support are high, regardless if
support ap(x) > supportcpp(x) or support sp(x) < supportcpp(x).

H; When the anomaly support is equal to the change point support, regardless if both
are high or low.

For Hy, Hy, and H3, the human operator should analyze the data point and take an
informed decision, whether the data point is an anomaly or a change point.

Based on the use cases, we propose the decision rules presented in Table 1 either for
automatic resolve or to alert a human operator. These rules enable human operators
that manage the water distribution network to perform effectively predictive and
proactive maintenance.
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Table 1. Decision rules.

Case Rule Decision

Aq supportap(x) — 1 A (supportcpp(x) = 0V supportcpp(x) — 0) = confidence(x) —1  Automatic response
Ay (supportap(x) = 0V supportap(x) — 0) A supportcpp(x) — 1 = confidence(x) — 0 Automatic response
Az support gsp(x) = 0 A supportcpp(x) — 0 = confidence(x) =0 Automatic response
H; support sp(x) — 0 A (supportcpp(x) = 0V supportcpp(x) — 0) = confidence(x) — 0.5 Human intervention
H, support sp(x) — 1 Asupportcpp(x) =1 = confidence(x) — 0.5 Human intervention
Hs support sp(x) = supportcpp(x) = confidence(x) = 0.5 Human intervention

5. Experimental Results
5.1. Dataset

For our experiment, we used a dataset containing customer water consumption
information collected by smart meters. In total, we had available 119 multivariate time
series, each collected over a period of 6 to 24 months at intervals of 5 s. The dimensions
were as follows: flow, pressure, outside humidity, outside temperature, rainwater quantity.
The total amount of raw data was over 4.8 GB. Although in our internal experiments we
use the raw data, for anonymization consideration in the following experiments each time
series was aggregated to 1 hour, then preprocessed and smoothen using Moving Averages.

5.2. Results
5.2.1. Evaluation

To evaluate the results of the both the Anomaly Detection Module and Change Point
Detection Modules, we used the Mean Absolute Error MAE = % Y[ | |y; — ;| to determine
the accuracy of the algorithms, where y; is the label and #; is the predicted label. We used
as y; the values returned by the detection algorithms for each time series point x;. Thus, for
Anomaly Detection y; represents either an anomaly or a normal point, while for Change
Point Detection y; represents either a change or a normal point. Then we split the dataset
into a training and a testing set using a 80-20% train-test ration. Thus, in the training
set, we kept the first 80% of the time series data points, maintaining the sequence order,
and in the test set, we kept the last 20% of time series data points, again maintaining the
sequence order. We employed Logistic Regression to create a model from the training set
that discriminates between the outliers and normal points. We then predicted the values
for the data points in the test set and computed the MAE using the predictions made by
the model and the real labels.

5.2.2. Anomaly Detection

The first set of experiments determined anomalies for all the time series in our dataset.
We computed the Mean Absolute Error (MAE) for each time series separately. We note
that the MAE scores were consistent within the entire dataset. To showcase and discuss
the results, we present one of the experiments in Figure 2 with the correlated MAE results
presented in Table 2. We observe that all the MAE scores, regardless of the algorithm, were
very small. This result denotes that the algorithms accurately predicted the anomalies
within the time series. The overall best MAE score was obtained by the OC-SVM. This
result is a direct impact of the small number of points labeled as anomalies. The AE model
has the largest MAE score, which implies that the model needed further hyperparameter
tuning. Furthermore, all the algorithms accurately determined anomalies in the same
window of time, which increases the probability of labeled points to be real anomalies.
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Table 2. Anomaly Detection MAE.
Anomaly Detection Change Point Detection
Algorithm MAE Algorithm MAE
GD 0.027 £ 0.001 WinSeg 0.017 £ 0.001
K-Means 0.031 & 0.004 BinSeg 0.092 £ 0.003
OC-SsVM 0.018 £ 0.001 BottomUp 0.092 £ 0.002
IF 0.024 £ 0.003 PELT 0.095 + 0.005
AE 0.163 £ 0.010 OPT 0.095 £ 0.002

1000

200

400 600 800 1000

(b) K-Means (c) IF (d) OC-SsVM

Figure 2. Anomaly Detection (Note: the line is the time series and the dot is the anomaly).

5.2.3. Change Point Detection

The second set of experiments determined change points for all the time series in
our dataset. As in the case of anomaly detection, we compute the Mean Absolute Error
(MAE) for each series in order to determine the algorithms” accuracy. To better understand
the results and have a comparison with the anomaly detection algorithms, we present the
experiments on the same time series in Figure 3 with the correlated M AE results presented
in Table 2. The MAE obtained by the change point detection algorithms was <0.095, which
emphasizes that the algorithms accurately determined change points. WinSeg obtained the
lowest MAE score, i.e., ~0.017, a score reinforced by the low number of points detected by
the algorithm (Figure 3). We observe that the algorithms determined change points that
overlapped, which increased the probability of true positives.

(a) WinSeg

00 600 800 1000 200 00 600 800 1000 200 00 600 800 1000 200 00 600 800 1000

(b) BinSeg (c) BottomUp (d) PELT (e) OPT

Figure 3. Change Point Detection (Note the line is the time series and the dot is the change point).

5.2.4. Change Point Enhanced Anomaly Detection

The last set of experiments used the con fidence(x) score to determine if a data point
marked as an anomaly was actually a change point. Table 3 showcases examples for the
same time series used in previous experiments.

If the support for the anomaly was low and the point was not a change point, according
to rule H; human intervention was required to analyze the results and make a decision,
e.g., point with IDX 112 had anomaly support of 0.20 and a confidence score of 1.00. This
rule enables human operators to perform efficiently predictive and proactive maintenance.
Other points had high support and confidence for being an anomaly, and the system did
not require human intervention conform to rule A, e.g., point IDX 891 with both support
and confidence equal to 1.00.
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Table 3. Change Point enhanced Anomaly Detection.

Anomaly Detection Change Point Detection
- - Anomaly Confidence

IDX GD K-Means OC-SVM IF AE Support WinSeg BinSeg BottomUp PELT OPT Support

110 0.00 v v v v 0.80 0.00
112 v 0.20 0.00 1.00
375 v 0.20 v v v 0.60 0.25
410 v 0.20 v v 0.40 0.33
24 v v v 0.60 0.00 1.00
520 0.00 v v v v v 1.00 0.00
885 vV v v v 0.80 v v v v 0.80 0.50
891 v v v v o/ 1.00 0.00 1.00
895 v 0.20 v v v v 0.80 0.20
925 v 0.20 v v v 0.60 0.25

The same happened the other way around when a point was marked as a change
point and not an anomaly, the system marked the point as a change point by default
according to rule Aj. If the support of the change point was large and the confidence was
low then there was no requirement for human intervention, e.g., point IDX 895 where
support 4p(x) = 0.20, supportcpp(x) = 0.60, and con fidence(x) = 0.20.

If both the support for being an anomaly and for being a change point were high,
according to rule Hy human intervention was required as the system could not take a
decision, e.g., point IDX 885 where supportap(x) = 0.80, supportcpp(x) = 0.80, and
con fidence(x) = 0.40. Furthermore, the rule enables the user to make an informed decision
regarding the need for performing maintenance.

Using the experimental validation, we can infer that the proposed decision rules
stood. Thus, the system could automatically determine if there was a need to alert a human
operator or take a decision by default. These actions led to efficient predictive and proactive
maintenance of the water distribution network.

6. Discussion

Asnew devices have been developed to monitors water installations, there is a need for
self-learning solutions that employ machine and deep learning algorithms to automatically
generate alerts and predict anomalies. These devices are required to save the world’s scarce
water resources using edge computing sensors that are tightly integrated with artificial
intelligence in the cloud. Thus, for early identification of real-time abnormal behaviour
and to avoid the waste of resources, these sensors, together with machine learning models,
are used to extract knowledge and identify patterns in the flow of water consumption.
Furthermore, using cloud-enabled analytic tools with data collected from IoT sensors,
end-users are alerted in real-time of any changes in the water distribution network in order
to employ effective procedures that will enhance the decision-making process and enable
predictive and proactive maintenance.

Predictive and proactive maintenance are performed continuously when the water
distribution network operates efficiently for long periods. When the system starts to show
disruptions signs in the provided services, then human operators and users must be alert to
make informed decisions. To enable these novel types of maintenance that lowers costs [52],
close monitoring of each network device is needed using intelligent rule-based decision
support systems. Anomaly detection and change-point detection algorithms that can scale
with the volume of data are needed to create systems that can enable human operators and
end-users to take advantage of these two types of maintenance procedures (Figure 4) and
make informed decisions regarding the status of the water distribution network.
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Figure 4. Workflow for predictive and proactive maintenance.

Anomaly detection in time series is a complex task that requires large datasets to
accurately discriminate between points that present a normal and abnormal behavior.
Thus, the experiments need to be conducted on real data to create accurate models. In our
experiments, we used a real-world dataset containing 119 multivariate time series, each
collected over a period of 6 to 24 months at intervals of 5 s. The total size of the dataset is
over 4.8 GB. Using such a large dataset, we manage to fine-tune our models. Furthermore,
we observe that there is a shortage of real-world large multivariate time series dataset for
anomaly detection in the current literature [9,25].

The proposed architecture uses five different anomaly detection algorithms, i.e.,
Gaussian Distribution (GD), K-Means, Isolation Forest (IF), OC-SVM (One-Class Support
Vector Machine), and the state of the art Deep Neural Networks Autoencoders. We observe
that, on average, OC-SVM has the overall best performance, managing to discriminate
between normal and anomaly points. We observe that the algorithms manage to determine
anomalies accurately in the same window of time. Furthermore, the employed Autoencoder
algorithm needs more hyperparameter tuning to obtain better results and decrease the
number of points marked as anomalies.

Using the decision rules proposed in Table 1, the proposed enhancement of anomaly
detection by using change point detection manages to reduce the human intervention for
all the cases. Thus, automating the process of detecting abnormal behavior in time series.
We can conclude that for frequent cases, human intervention is not required, and based
on the rules we propose, the system automatically makes an accurate decision. In the less
frequent cases, when human intervention is needed, the system sends alerts that describe
the situation based on the proposed rules as soon as possible. Thus, our system manages
to enable users to make informed decisions regarding the status of the water distribution
network and perform effectively predictive and proactive maintenance.

7. Conclusions

In this paper, we present a change point enhanced anomaly detection architecture for
IoT time series data. We propose an architecture that uses five distinct anomaly detection
algorithms to detect outliers and then compute an agreement between them using a support
function to determine if a data point in the time series is actually an outlier. Then, on the
same time series, we detect change points using five distinct algorithms and compute a
change point support to determine if a data point in the time series is actually such a point.
Using the two support scores, we compute a confidence score that helps the rule-based
decision system to automatically take a decision or determine if there is a need to alert a
human operator. Furthermore, we experiment on a large dataset containing real-world time
series regarding customer water consumption collected from smart meters. The results
show that the proposed method manages to automate the decision process when dealing
with anomaly detection, thus helping the decision process.

In conclusion, through this work, we address the identified shortcomings in the current
literature and answer our research question as follows. To answer (Q1), we propose a new
rule-based decision system for anomaly detection in IoT time series data with a focus on
water resources management and distribution systems. To answer both (Q;) and (Q3), we
propose a new confidence metric based on the support for a point to be an anomaly and
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the support for a point to be a change point to remove false positives and enable human
operators to perform efficiently predictive and proactive maintenance. To compute the
proposed confidence metric, we developed a novel pipeline that automatically manages to
detect real anomalies and remove the false positives introduced by change points using the
confidence score. Finally, to prove the efficiency of our solution and to answer (Qy), we
perform extensive experiments on real-world multivariate water consumption time series
data using five anomaly detection and five change point detection algorithms.
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detection other anomaly detection methods, i.e., Gaussian Processes, ARIMA, and other
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employ attention and convolutional layers.
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